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Abstract

We present a measurement of the forward-backward charge asymmetry of
the process pp — Z°/y + X, Z°/y — ete™ at M., > Mz, using 110 pb~!



of data at /s = 1.8 TeV collected at the Collider Detector at Fermilab. The
measured charge asymmetries are 0.43 + 0.10 in the invariant mass region M,
> 105 GeV/c?, and 0.070+0.016 in the region 75 GeV/c? < M, < 105 GeV/c?.
These results are consistent with the Standard Model values of 0.528 + 0.009
and 0.052 £ 0.002, respectively.

PACS numbers: 13.38.4c, 12.15.Mm

The presence of both vector and axial-vector couplings in the process gg —
Z°/y — eTe” gives rise to an asymmetry in the emission angle of the electron in
the rest frame of the electron-positron pair, an effect which has been observed in
previous hadron collider experiments [1]. To lowest order in the couplings, the angular

(cos 0*) -
A(l + cos? 6%) + B cos 0%, where 6~ is the emission angle of the e~ relative to the g
momentum in the rest frame of the ete™ pair, and A and B are functions dependent

differential cross section in the rest frame of the ete™ pair takes the form

on the weak isospin and charge of the incoming quarks and the electron pair invariant
mass, M. Extensions to this calculation which account for the proton structure [2],
QED radiative effects [3], and leading order QCD effects [4] lead to a differential cross
section of the same form. The forward-backward asymmetry in cos 8%, Agpg, is a direct
probe of the relative strengths of the vector and axial-vector couplings over the range
of M., being considered. In addition, Ayrp constrains the properties of any additional
neutral gauge bosons not included in the Standard Model of electroweak interactions,
in a way that is complementary to a direct search for excesses in the total cross
section [5]. For values of M., significantly larger than My, App is predicted to be
large and positive (near 0.5), so statistically significant deviations from the Standard
Model can be observed with only a small number of events.

We present results using 110 pb™! of data from proton-antiproton collisions
with 4/s = 1.8 TeV collected at the Collider Detector at Fermilab (CDF) during
the 1992-1993 and 1994-1995 runs of the Fermilab Tevatron. CDF is described in
detail elsewhere [6]. We briefly describe those aspects of the detector relevant to
this analysis. The magnetic spectrometer consists of tracking devices inside a 3-m
diameter, 5-m long superconducting solenoidal magnet which operates at 1.4 T. A set
of vertex time projection chambers (VTX), which provide r-z tracking, are used to find
the z position of the event vertex. Outside the VTX is the central tracking chamber
(CTC), a 3.2-m long drift chamber used to measure charged particle momentum.
The calorimeter is divided into a central barrel (pseudorapidity |n| < 1.1), and end-
plugs (1.1 < || < 2.4), both of which are segmented into projective electromagnetic
and hadronic towers [6]. The towers subtend approximately 0.1 in 7 by 15° in ¢
(central) or 5° in ¢ (end-plug). The energies of electrons are measured in the central
electromagnetic calorimeter (CEM) and/or the end-plug electromagnetic calorimeter
(PEM). The event vertex position and the position of the electromagnetic energy
clusters in the calorimeters determine the 4-vectors of the electrons, which determine
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cos 0° up to a sign. The charge of at least one of the electrons, obtained from a CTC
track matched with an electromagnetic energy cluster, resolves the sign ambiguity.

We select a sample of events for which there exists at least one isolated CEM
cluster with transverse energy Er > 20 GeV, which also satisfies tight electron iden-
tification requirements; and at least one other isolated cluster in the CEM (PEM),
with E;x > 20 GeV (15 GeV), and which satisfies looser requirements. The selection
criteria are similar to those used in previous CDF analyses [7]. In addition, we re-
quire that the invariant mass of the two calorimeter clusters (M, ) falls into one of
two regions: a pole region (75 GeV/c? < M., < 105 GeV/c?) or a high mass region
(M., > 105 GeV/c?). The two invariant mass regions were chosen in order to limit
the sensitivity of App to the absolute energy scale and to simultaneously minimize
the statistical uncertainty of App in each region. The events in each region are par-
titioned into a set where both electrons are found in the CEM (CC), and a set where
the tight electron is found in the CEM and the loose electron is found in the PEM
(CP). After applying all cuts, we find 98 CC events and 85 CP events in the high mass
region, and 2602 CC events and 2861 CP events in the pole region. Figure 1 shows
the distribution of invariant mass for the combined sample in each invariant mass
region, as well as the relative number of forward and backward events in the samples.
For each event, cos 6~ is determined in the Collins-Soper frame [8], which reduces the
uncertainty in cos 6" introduced by the transverse momentum of the incoming partons
to a negligible level.

There are two important sources of background to the process pp — Z°/vy+ X,
Z°/y — ete”: QCD dijet production, where both jets either contain or fake an
electron; and electroweak processes (WW, WZ production, ¢t decay, and Z° — 7777)
that produce two electrons in the final state. The number of background events due
to dijets is determined from the asymmetry data sample by examining the number
of same-sign (etet or e"e”) events in each invariant mass region. The distribution
in cos 8 for these events is obtained from a separate sample of QCD dijet events
with kinematics similar to the asymmetry data [9]. In the high mass region, for CC
events, every event has the charges of both electrons measured, and none of them are
same-sign events. Thus there are 075 QCD background events in the CC sample. In
the high mass region, for CP events, the CTC can efliciently determine the sign of
electrons in the PEM for tracks with 1.1 < |p| < 1.5. None of these are same-sign
events. The dijet sample is used to extrapolate the number of background events with
1.1 < |n| < 1.5 into the entire fiducial region of the PEM. This extrapolation gives
072! total QCD background events in the CP sample. In the pole region, similar
calculations yield 012 background events for CC events, and 110 & 36 background
events for CP events. Backgrounds due to other electroweak decay processes are
determined from Monte Carlo calculations using PYTHIA [10] as an event generator. A
fast detector simulation determines fiducial and kinematic acceptance of a particular
event. For the CC and CP samples of the high mass region, there is estimated to
be 1 electroweak background event in each. This background in the pole region is



insignificant.

Finite resolution in M., causes cross-contamination of events in the two invari-
ant mass regions, thereby inducing systematic shifts in Arg. The deconvolution of
events in the two invariant mass regions is performed with a Monte Carlo calculation.
We generate events using PYTHIA with MRSA [11] structure functions, and determine
the amount of cross-contamination as a function of cos§* via a fast detector simu-
lation. The kinematic and geometric acceptance of an event is determined by the
generated event topology and the known energy resolutions of the CEM and PEM.
Identification of an accepted electron is determined from the CEM and PEM eflicien-
cies, which were measured from CDF data in a way analogous to those of previous
CDF analyses [7]. Mass deconvolution leads to corrections in App of +0.07 4+ 0.03
in the high mass region and —0.010 4+ 0.003 in the pole region. The uncertainty in
Arp induced by uncertainties in the absolute energy scales of the CEM and PEM is
negligible.

We correct for electron identification efficiency and detector acceptance in each
invariant mass region with the same Monte Carlo calculations used for mass decon-
volution. We determine the ratio of background subtracted, mass deconvolved events
generated, which pass our selection criteria, to the total number of events generated
as a function of cos §*. The distribution in cos 8 of the data after background sub-
traction and mass deconvolution divided by this function gives the differential cross
section for the process pp — Z°/y + X, Z°/y — ete™ up to a normalization factor.
Figure 2 shows the resulting distributions of events for the two invariant mass regions.
The region | cos §*| > 0.8 has very low acceptance and is excluded from consideration.

In order to extract the measured value of Appg, we calculate its mean value
for an ensemble of calculations wherein the data, the background, and the mass
deconvolution corrections are all allowed to fluctuate about their mean values on a
bin-by-bin basis in cos #*. Each raw data bin is allowed to fluctuate with a Poisson
distribution. The total background level is allowed to fluctuate with a Gaussian
distribution about its mean value. Background is subtracted from the raw data for a
randomly varying set of values of cos 8, with a mean relative distribution determined
by the QCD dijet sample. The distributions in cos §* used to generate the mass
deconvolution corrections are also allowed to fluctuate with a Poisson distribution
in each bin. The mass deconvolution and efficiency corrections are then applied to
give a differential cross section, from which an asymmetry value is calculated over
the range |cos8*| < 0.8. We extrapolate this asymmetry value to the one which we
would observe over the full range of cos §* assuming a differential cross section of the
form A(1+ cos? 6*) + B cos 8*. The quoted measurement of Arp is the mean of this
extrapolated asymmetry value for 100,000 such trial calculations. The uncertainty
in App is determined from the standard deviation in the distribution of Arp in the
ensemble.

Table I summarizes the measured values for Apg. In the region defined by

M, > 105 GeV/c?, we measure App to be 0.43 + 0.08 (stat) =+ 0.06 (syst) using a



Pole Region High Mass Region

CC CP CC CP
Raw event sample 2602 2861 98 85
Forward events 1390 1513 56 75
Backward events 1212 1348 42 10
Background 02 110 + 36 | 172 1+
Predicted App 0.052 + 0.002 0.528 + 0.009
Measured Arp 0.070 £ 0.016 0.43 +£0.10

Uncertainties in Agp

Statistical 0.015 0.08
Background 0.002 0.04
Mass Deconvolution 0.003 0.03
Total uncertainty 0.016 0.10

Table I: Experimental results for Apg. There exist correlations between the different
sources of uncertainty.

sample of 183 events. In the region 75 GeV/c? < M., < 105 GeV/c?, we measure
Arp to be 0.070+0.015 (stat) +0.004 (syst) using a sample of 5463 events. Figure 3
compares the measurements with a Standard Model calculation [3], which includes
QED radiative corrections, and assumes the MRSA structure functions and the PDG
world average for sin’ 0;{7 [12]. The measurements are consistent with the predictions
of 0.528 £+ 0.009 in the high mass region and 0.052 + 0.002 in the pole region.

Models of additional heavy neutral gauge bosons predict large negative values
for App when M, is comparable to the boson’s mass [5]. The accumulation of
higher statistics of electron pairs in an invariant mass region above 350 GeV/c? [13],
for example, would show significant downward deviations from the Standard Model
prediction for App in the presence of a heavy neutral gauge boson with a mass of
500 GeV/c? [14]. Although the statistics in this region are insufficient at present,
measurements of App in this region will provide a particularly strong test of the
electroweak theory at very large M, in the future.

We thank the Fermilab staff and the technical staffs of the participating in-
stitutions for their contributions. We also thank U. Baur, for his help regarding the
effect of radiative corrections on Appg, and J. L. Rosner, for many useful discussions
which helped motivate these measurements, and for his calculation of the effects of
additional heavy neutral bosons on App. This work was supported by the U.S. De-
partment of Energy and National Science Foundation; the Italian Istituto Nazionale
di Fisica Nucleare; the Ministry of Education, Science, and Culture of Japan; the
Natural Sciences and Engineering Research Council of Canada; the National Science
Council of the Republic of China; and the A. P. Sloan Foundation.
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Figure 1: (a) The invariant mass distribution of events in the high mass sample. (b)
The invariant mass distribution of events in the pole region sample.
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Figure 2: (a) The fully corrected distribution in cos8* for events in the high mass
region. The points are data after all corrections have been applied. The solid line is a
Standard Model (MRSA) calculation, assuming the same normalization as the data.
The dashed line is the raw number of events observed in our sample. (b) The same
distribution for events in the pole region.



Results for Ag of Electron Pairs
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Figure 3: Results of our measurement of App, compared with a Standard Model
calculation. The solid line is a bin-by-bin Standard Model (MRSA) calculation of
Arp, and the dashed line is the same calculation integrated over the two mass regions
in our analysis. The crosses are the experimental results for App integrated over the
same mass Tegions.
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