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Abstract

Interferometric gravitational wave detectors could measure the frequency

sweep of a binary inspiral [characterized by its chirp mass] to high accu-

racy. The observed chirp mass is the intrinsic chirp mass of the binary source

multiplied by (1 + z), where z is the redshift of the source. Assuming a non-

zero cosmological constant, we compute the expected redshift distribution of

observed events for an advanced LIGO detector. We �nd that the redshift

distribution has a robust and sizable dependence on the cosmological con-

stant; the data from advanced LIGO detectors could provide an independent

measurement of the cosmological constant.
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A non-zero cosmological constant may help solve some of the current observational puz-

zles, most notably, the con
ict between the age of globular clusters and the apparent high

value of the Hubble constant [which suggests a younger Universe]. [1] A sizable cosmolog-

ical constant can make the Universe old in spite of a high Hubble constant, although a

non-zero cosmological constant is ugly from the theoretical viewpoint. Whatever our aes-

thetic preferences, the value of the cosmological constant should ultimately be determined

by observational measurements.

Advanced LIGO detectors can expect to observe approximately 50 neutron star binary

inspiral events per year, from distances up to 2000Mpc, the accuracy in the measurement

of the signal strength can be better than 10%, and the accuracy in the measurement of the

chirp mass [which characterizes the frequency sweep of a binary inspiral] can be better than

0.1%. [2] [3]. The cosmological implications of gravitational wave observations of binary

inspiral have been discussed by several authors [4]. Most recently, Finn pointed out that the

observations of binary inspirals in an interferometric gravitational wave detector, in terms

of the distribution of observed events with signal strength and chirp mass, can be quite

sensitive to cosmology [5].

Previous discussions of the cosmological implications of gravitational wave observations

have focused on the measurement of the Hubble constant H0 [H0 = 100h km sec�1Mpc�1,

0:5 � h < 1]. In this letter, we consider the measurement of the cosmological constant 
�,

and �nd that the 
� dependence of the observed chirp mass spectrum is more robust than

its H0 dependence.

The observed chirp massM �M0(1 + z), where M0 is the intrinsic chirp mass of the

binary source, and z is the redshift of the source. Assuming a known and constantM0, the

chirp mass spectrum is determined by the source redshift distribution. For simplicity, we only

consider neutron star binaries in this letter; for typical neutron star masses,M0 = 1:19M�.

[5] We compute the expected redshift distribution of neutron star binary events for an

advanced LIGO detector, assuming a non-zero cosmological constant in a 
at universe.

Neutron star binaries (NS/NS) may one day become the \bread and butter" sources of
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LIGO style gravitational wave detectors. NS/NS merger rate at redshift z per unit observer

time interval per unit volume is

dn

dt
= _n0 (1 + z)2; (1)

where _n0 is the local NS/NS merger rate per unit volume, (1+z)2 accounts for the shrinking

of volumes with redshift (assuming constant comoving volume density of the merger rate)

and the time dilation.

The \best guess" local rate density from Phinney [6] is

_n0 '
�
9:9 + 0:6h2

�
h� 10�8Mpc�3yr�1 ' 10�7hMpc�3yr�1: (2)

i.e., 3 per year at 200Mpc for h = 0:75. Ref. [7] gives _n0 ' 3h3 � 10�8Mpc�3yr�1, which

is consistent with Eq.(2) within the uncertainty of the estimates. Since the rate of star

formation in galaxies appears to increase rapidly as one looks back to z = 0:3, it is possible

that we underestimate the rates for LIGOs sensitive to sources at cosmological distances

unless we consider evolutionary e�ects. [6] In this letter, we neglect evolutionary e�ects.

LIGO aims to monitor the last stage of inspiral of a NS/NS binary, during which the

gravity waves generated sweep up in frequency, over a time of about 15 minutes, from 10

Hz to approximately 103 Hz, at which point the neutron stars collide and coalesce. The

inspiral waveforms are determined to high accuracy by only a few parameters: the masses

and spin angular momenta of the binary components, and the initial orbital elements (i.e.,

the elements when the waves enter the detector band). As the binary's bodies spiral closer

and closer together, the waveform increases in amplitude and sweeps up in frequency (i.e.,

undergoing a \chirp"). The shapes of the waves, i.e., the waves' harmonic content, are

determined by the orbital eccentricity. Gravitational radiation energy losses should lead to

highly circular binary orbits. In the Newtonian/quadrupole approximation, for a circular

orbit, the rate at which the frequency sweeps or \chirps", df=dt, is determined solely by the

binary's \intrinsic chirp mass",M0 � (M1M2)
3=5=(M1 +M2)

1=5, where M1 and M2 are the

two bodies' masses. The number of cycles spent near a given frequency is n = f2(df=dt)�1.
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In LIGO, the frequency sweep is monitored by matched �lters. The incoming noisy signal

is cross correlated with theoretical templates. [8]

For a binary inspiral source located at redshift z, the detectors measureM�M0(1+z),

which is referred to as the observed chirp mass. For a given detector, the signal-to-noise ratio

is [5]

� = 8�
r0
dL

 M
1:2M�

!5=6
�(fmax); (3)

dL is our luminosity distance to the binary inspiral source. r0 and �(fmax) depend only

on the detector's noise power spectrum. The characteristic distance r0 gives an overall

sense of the depth to which the detector can \see". For advanced LIGO, r0 = 355Mpc. [5]

0 � �(fmax) � 1 is a dimensionless function, its argument fmax is the redshifted instantaneous

orbital frequency when the inspiral terminates because of the coalescence (or the imminence

of coalescence, when the orbital evolution is no longer adiabatic) of the compact components;

� re
ects the overlap of the signal power with the detector bandwidth. For source redshift

z, � ' 1 for 1+ z � 10 [2:8M�=(M1+M2)] [5]. � ' 1 is a good approximation in the context

of this paper. � is the angular orientation function, it arises from the dependence of � on

the relative orientation of the source and the detector, 0 � � � 4. Although � can not be

measured, its probability distribution has been found numerically in Ref. [2]:

P�(�) =

8>><
>>:
5�(4��)3=256; if 0 < � < 4;

0; otherwise:
(4)

P�(�) peaks at � = 1.

Throughout this letter, in presenting our results, we use � � �0 = 8, r0 = 355Mpc [for

advanced LIGO], andM0 = 1:2M� [for typical neutron star binaries].

The luminosity distance dL(z) = (1 + z)2dA(z), where dA(z) is the angular diameter

distance. In a 
at universe with a cosmological constant 0 � 
� � 1,

(1 + z) dA(z)

cH�10

=
Z z

0

dwq
(1� 
�)(1 + w)3 +
�

(5)

= z + (1�
�)

"
�3

4
z2 +

5� 9
�

8
z3 +

162
� � 135
2
�� 35

64
z4 +O(z5)

#
:
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For 
� = 0, (1+z) dA(z)=(cH
�1
0 ) = 2

h
1� 1=

p
1 + z

i
. For 
� = 1, (1+z) dA(z)=(cH

�1
0 ) = z.

Given the detector threshold in terms of the minimum signal-to-noise ratio �0, the maxi-

mum redshift of the source that the detector can \see", zmax, is given by Eq.(3) with � = 4.

For 
� � 0:5, zmax is given by

zmax � z(1)max '
hA (1 + hA)�1=6h

(1 + z) dA(z)=(cH
�1
0 )

i���
z=hA

; (6)

where (1 + z) dA(z)=(cH
�1
0 ) is given by Eq.(5), and

A � 0:4733

 
8

�0

!  
r0

355Mpc

!  M0

1:2M�

!5=6
: (7)

For 
� close to 0, zmax is given by

zmax � z(2)max '
0:99hA

�(hA)

"
1� 
�

1 + hA

 
1

�(hA)
� 1

!#
; �(z) =

2

z

"
1� 1p

1 + z

#
: (8)

Connecting the large and small 
� approximations with an arbitrary smoothing function,

we have

zmax = z(1)max

h
1� e�5


2

�

i
+ z(2)max e

�5
2
�: (9)

The above approximate formula is accurate to better than 1.2% for 
� < 0:5 and to

better than 0.6% for 
� � 0:5. Note that zmax depends on h only in the combination

hA(r0; �0;M0).

The number of binary inspiral events seen by a detector on earth per source redshift

interval per signal-to-noise interval is

d _N(> �0)

dz d�
= 4� _n0

�
cH�10

�3 "dA(z)
cH�10

#2
1 + zq

(1�
�)(1 + z)3 + 
�

P�(�; z); (10)

where P�(�; z) is the probability that the detector \sees" a source at redshift z with signal-

to-noise ratio � > �0,

P�(�; z) = P� (�(�))
@�

@�

�����
z

=
�

�
P� (�(�)) ; (11)

where P�(�) is given by Eq.(4).

5



It is straightforward to �nd the expected distribution of observed events in the source

redshift z and in the signal-to-noise ratio �. The distribution in z is

P (z;> �0) =
d _N(> �0)=dz

_N(> �0)
=

4� _n0
�
cH�10

�3
_N(> �0)

"
dA(z)

cH�10

#2
1 + zq

(1�
�)(1 + z)3 +
�

C�(x);

(12)

where C�(x) is the probability that a given detector detects a binary inspiral at redshift z

with signal-to-noise ratio greater than �0, it decreases with z. Because of Eq.(11), C�(x) =R
1

x d�P�(�), hence

C�(x) =

8>><
>>:
(1 + x) (4� x)4=256; if 0 < x < 4;

0; otherwise:
(13)

x =
4

hA(r0; �0;M0)
(1 + z)7=6

"
dA(z)

cH�10

#
: (14)

x is the minimum angular orientation function in terms of z, �0 and r0. Fig.1 shows the

distribution of observed events in the source redshift z, for 
� = 0, 0.5, 0.9, 1, and for

h = 0:5, 0.8, assumingA = 0:4733. P (z;> �0) increases with z due to the increase in volume

with z, until C�(x) cuts o� the growth at x ' 1. Since at small z, C�(x) is most sensitive

to h [the minimum angular orientation function x scales with h], the peak location of the

redshift distribution is determined by h. 
� determines the shape of the peak for given h.

Note that while the h-dependence of the peak location comes in through the straightforward

scaling of the minimum angular orientation function x in the combination of hA(r0; �0;M0)

[which depends on detector and source properties], the shape of the peak depends on 
�

through the angular diameter distance dA(z) in a detector and source independent way.

The distribution in the signal-to-noise ratio � is

P (�;> �0) =
d _N(> �0)=d�

_N(> �0)
=

4� _n0
�
cH�10

�3
_N(> �0)

Z zmax

0
dz

"
dA(z)

cH�10

#2
1 + zq

(1� 
�)(1 + z)3 +
�

P�(�; z);

(15)

where P�(�; z) is given Eq.(11) with �(�; z) given by Eq.(3). In a 
at and static universe,

P (�;> �0) � P (�;> �0)0 = 3�30=�
4 [5]. The number density of events for given signal-to-
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noise ratio � decreases sharply with increasing �. Fig.2 shows the distribution of observed

events in the signal-to-noise ratio � relative to the distribution in a 
at and static universe,

P (�;> �0)=P (�;> �0)0, for 
� = 0, 0.5, 0.9, 1, and for h = 0:5, 0.8, assuming A = 0:4733.

P (�;> �0)=P (�;> �0)0 also depends on h through the combination of hA(r0; �0;M0).

The total number of observed events, _N(> �0), is found by integrating Eq.(10) over z and

�. For the local rate density of Eq.(2), _N(> �0) is more sensitive to h than to 
�. However,

note that the h dependence comes in only through the overall factor of _n0
�
cH�10

�3
, and in

the combination of hA(r0; �0;M0). Fig.3 shows the total event rate per year as function

of h, assuming A = 0:4733 and _n0 = 10�7hMpc�3yr�1, for 
� = 0 [solid line], 0.5 [short

dashed line], 0.9 [dotted line], 1 [long dashed line].

In summary, we have calculated the expected maximum source redshift zmax, the source

redshift distribution P (z;> �0), the signal-to-noise ratio distribution P (�;> �0), and the

total number of events per year _N(� > �0), for advanced LIGO detectors in a 
at Universe

with nonzero cosmological constant. zmax, P (z;> �0), and P (�;> �0) all depend on 
� in a

fundamental way through the angular diameter distance, and they all depend on h through

the combination hA(r0; �0;M0). _N(� > �0) is very sensitive to the local binary merger rate

_n0 through _n0
�
cH�10

�3
, the value of which is quite uncertain at this time.

The expected redshift distribution of observed events in an advanced LIGO detector

has a robust and sizable dependence on the cosmological constant. Although the redshift

distribution has an apparent dependence on h which is more dominant, this dependence on

h is super�cial in the sense that it always appears in the combination of hA(r0; �0;M0)

[A is given by Eq.(7)]; increasing h has exactly the same e�ect on the redshift distribution

as increasing r0 or M5=6
0 , or decreasing �0, by the same amount. On the other hand, the

redshift distribution depends on 
� in a fundamental way, this dependence is detector and

source independent. The data from advanced LIGO detectors could provide an independent

and robust measurement of the cosmological constant.
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Figure Captions

Fig.1 The distribution of observed events in the source redshift z, for 
� = 0 [solid line],

0.5 [short dashed line], 0.9 [dotted line], 1 [long dashed line], and for h = 0:5, 0.8, assuming

A = 0:4733.

Fig.2 The distribution of observed events in the signal-to-noise ratio � relative to the

distribution in a 
at and static universe, for 
� = 0 [solid line], 0.5 [short dashed line], 0.9

[dotted line], 1 [long dashed line], and for h = 0:5, 0.8, assuming A = 0:4733.

Fig.3 The total event rate per year as function of h, assuming A = 0:4733 and _n0 =

10�7hMpc�3yr�1, for 
� = 0 [solid line], 0.5 [short dashed line], 0.9 [dotted line], 1 [long

dashed line].
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