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ABSTRACT 

In this lecture I will review some recent progress in improving the accuracy of 
the calculation of density perturbations resulting from inflation. 

1. Introduction 

The early universe was very nearly uniform. However, the important caveat in that 
statement is the word “nearly.” Our current understanding of the origin of structure 
in the universe is that it originated from small “seed” perturbations, which over time 
grew to become all of the structure we observe. The best guess for the origin of these 
perturbations is quantum fluctuations during an inflationary era in the early universe. 

The basic idea of inflation is that there was an epoch early in the history of the 
universe when potential, or vacuum, energy dominated other forms of energy density 
such as matter or radiation. During the vacuum-dominated era the scale factor grew 
exponentially (or nearly exponentially) in time. In this phase (known as the de Sitter 
phase), a small, smooth spatial region of size less than the Hubble radius at that time 
can grow so large as to easily encompass the comoving volume of the entire presently 
observable universe. 

If the early universe underwent this period of rapid expansion, then one can un- 
derstand why the universe is approximately smooth on the largest scales, but has 
structure (people, planets, stars, galaxies, clusters of galaxies, superclusters, etc.). 
Inflation also predicts that the cosmic background radiation should be very nearly 
isotropic, with small variations in the temperature. Perhaps all of the structure we see 
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in the universe is a result of quantum-mechanical fluctuations during the inflationar? 
epoch. In this lecture I will explore this possibility. 

Because nearly all of the students are familiar with the basics of cosmology, I will 
not bother to define familiar terms and notation. In general. the notation follows that 
in The Early Universe iI\;olb and Turner. 1990). except that here the scale factor is 

denot,ed by n(t). 
Since this is a school. I will not provide an exhaustive list of references to original 

material. but refer to selveral basic papers (including several review papers) where 
students can find the references to the original material. The list of references include 
Bardeen (1980); Stewart (1990): \Iukhanov. Feldman. and Brandenberger (1992,): 

Liddle and Lyth 119931: and Lidsey. Liddle. Kolb. C’opeland. Barreiro. and .Abney 
(L’IXBX) (1997). 

2. Evolution of Perturbations 

2.1. Life Beyond the Hubble Radius 

An important part of this lecture will be the interplay of physical length scales with 
the Hubble radius. The time-dependent Hubble radius is defined as the inverse of 
the expansion rate: RH(f) E H-lit) = [87rGp(t)/3]-‘I* (the last part of the equation 
comes from the Friedmann equation for a spatially flat universe). In a radiation- 
dominated (RD) universe /, x u-’ and in a matter-dominated (ND) universe p x CL-~. 
so RH cx a* in an RD universe and RH x u3’* in a AID universe. 

First. let us review lvhat is meant by “crossing” the Hubble radius. For the sake 
of illustration, let’s take a length scale X to be at present X0 = 300/j-‘Alpc. Today 
the Hubble radius is RH(fO) = H&’ - 30005’11~~. so &/R~(fo) = 10-l and X0 
is said to be *within” the Hubble radius today. An\- physical length scale increases 
in proportion to the scale factor in an expanding universe. The scale which is X0 
today. was smaller in the early universe by a factor of u(t)/~ = l/(1 + z). where ug 
is the present scale factor. The Hubble radius also depends upon w(t)? e.g., RH = 
[a(t)/uo]“‘* = l/(1 + q2 m the AID era. So during the 1ID era the ratio X(t)/RH(t) 

depends upon redshift as A(t)/RH(t) = [Xo/RH(tO)](l + z)li2 = lo-‘(1 + z)li2. So 
for - _ 2 100, the length scale X was outside the Hubble radius. for 2 5 100. the 
length scale X was inszde the Hubble radius. -it 3 = 100 we say that a length scale 
of 300h-‘1lpc crossed the Hubble radius. 

Since A(t)/RH(t) d ecreases in time in a radiation-dominated or matter-dominated 
universe, any physical length scale X starts larger than RH. then crosses the Hubble 
radius (A = H-‘) only once. This behavior is illustrated by the left side of Fig. 1. 

In order for structure formation to occur via gravitational instability, there must 
have been small preexistin g fluctuations on physical length scales when they crossed 
the Hubble radius in the RD an 1ID eras. In the standard big-bang model these 
small perturbations have to be put in by hand. because it is impossible to produce 
fluctuations on any length scale while it is larger than RH. Since the goal of cosmolog? 
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Figure 1: The behavior of the Hubble radius. RH. and the physical size. A, with the 
scale factor a during normal espansion (left) and inflationary expansion (right). 

is to understand the universe on the basis of physical laws. this appeal to initial 
conditions is unsatisfactory. 

That any length scale crosses RH only once is not a fundamental result of anything 
sacred like Einstein’s equations. the cosmological principle. or special relativity, but 
it depends upon the assumption of the equation of state. To see how changing the 
equation of state changes the ratio Ait)/RH(f). let’s define L(t) to be the dimensionless 
ratio ,\(t)/RH(t). Obviously. if L.(t) is smaller than unit?;. the scale is within the 
Hubble radius and it is possible to imagine some microphysical process establishing 
perturbations on that scale. while if L(t) is larger than unity, it is beyond the Hubble 
radius and no microphysical process can account for perturbations on that scale. Sow 
RH(t) = H-‘(t) = a(t)/&(t) and A(t) x a(t), so L(t) is proportional to u(t), and t(t) 
scales as i;(t), which from the Einstein equation is proportional to -(p + 3~). There 
are two possible scenarios for Lit) depending upon the sign of p + 3~: 

at) 
{ 

< 0 + RH(t) grows faster than X(t). occurs for /, + 3p > 0 

> 0 + RH(fj grows more slowly than A(t). occurs for p + 3p < 0. 
(1) 

If during some epoch the equation of state was such that p + 312 < 0. then scales 
larger than RH remained larger than R ,tf. while scales smaller than the Hubble ra- 
dius were destined eventually to grow larger than the Hubble radius. The opposite 
behavior obtains during the standard RD and AID epochs when /3 + 3p > 0. During 
these epochs scales smaller than R H remain smaller than RH and scales larger than 
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Figure 2: In the reference unperturbed unixTerse. constant-time surfaces have constant 
spatial curvature (zero for a flat FR1V model). In the actual perturbed tmiirerse. 
constant-time surfaces have spatially varying spatial curvature. 

RH eventually become smaller than RH. 
Sow if p + 3p < 0 in the early universe and p + 3p > 0 in the later universe. then 

it is possible to have a ..double-cross” situation illustrated on the right side of Fig. 
1. In the double-cross scenario. length scales start smaller than the Hubble radius 
during the phase when p + 3p < 0 (the inflationary phase). cross the Hubble radius. 
then remain larger than the Hubble radius. During the standard phase. scales of 

astrophysical interest start larger than the Hubble radius. cross the Hubble radius. 
then remain smaller than the Hubble radius. 

Unlike the standard model. the double-cross model has the feature that it is 

possible to imprint perturbations on a scale as it crosses the Hubble radius during 
the inflationary phase. so one can imagine a reason to have preexisting perturbations 
on scales recrossing the Hubble radius during the RD-AID epochs. 

2.2. Metrzc Perturbutzons on Scales Layer than. RI{ 



\l-hat Iye are interested in folloiving the evolution of a spacetime which is neither ho- 
mogeneous nor isotropic. 1Ye \vill do this by following the evolution of the differences 

between the actual spacetime and a well understood reference spacetime. So we will 
c:onsider small perturbations awa!. from the homogeneous. isotropic spacetime I, see 

Fig. 2). 
l\:hen one studies ..perturbations” it is necessary to specify a reference background 

system. The reference system in our case is the spatially flat Friedmann-Robert.son- 
\\‘alker (FRjV) spacetime. with line element ds’ = n’i~) {dr’ - ti,jdX’dX1}. where 7 is 
conformal time. related to xormal” time by a’dr’ = A’. Sometimes equations will 
be written in terms of conformal time T. and sometimes in terms of coordinate time 
t. Derivatives with respect to conformal time will be denoted by a prime. while usual 
time derivatives are denoted by a dot. e.g.. the Hubble parameter can be defined as 
H(t) E b/u, or 7-t!(7) = ([‘,/CL = Ha. 

The most general form of ia metric describing small perturbations away from the 
Aat FRW metric contains scalar. I-ector. and tensor perturbations [the covariant de- 
composition of Sg,, is giJ-en in Stewart (1990)]. F or the moment. n-e \Frill only be 

interested in the scalar perturbations. The perturbed line element including the 
scalar perturbations can be n-ritten in terms of four scalar functions (-4. B. ~5, E}: 

dS2 = W’(T) { (1 + 2.4)dr’ - 2dlB ds’dr - [(l - 2L*)6i, + 28~8~,E] ci~‘dz’} (2) 

?Jow because of the residual gauge freedom. not all of the four scalar perturbation 
functions (-4. B. L:. E} are independent. For instance if one works in the synchronous 
gauge, all hypersurfaces have the same time. In this gauge -4 = B = 0. and the line el- 
pment is ds2 = n’(7) {cl? - [!l - 2~)6,, + 2L?1i31,E] d.c’clxJ}. In the longitudinal gauge 
B = E = 0. and the line element is cfs’ = U’(T) ((1 + 2.4)dr’ - [(l - 2c,)S,,] d.c’dxJ}. 

It is sometimes bewildering to read the literature because everyone seem to have 
his/her favorite gauge. But really smart people support freedom of choice. and ivork 
nith combinations of the gauge-inuariant scalar functions 9 and Q first found 1, 
Bardeen (1980) : 

8 = LV-?f(B-E’) 
(3 = .-I + Cl?[(B - E’)u] ‘. P) 

Note t,hat in the longitudinal gauge Cp = .4 and q = L’. 

2.3. Perturbations in th.e Stress-Energy Tensor 

Inflation assumes that the universe was dominated by something with an equation of 
state that satisfies the inequality /, + 3p < 0. Such a component of the energy density 
is usually called “vacuum energy.” Since today we know that the vacuum energy 
must be \rery small (compared to what is required for inflation).’ any inflationary 

‘-And tasteful people assume that today the vacuum energy vanishes. i.e.. .I = 0. 



model has to have some dynamics for changing the vacuum energy. It is convenient 
to imagine that the dynamics of the change in the equation of state during inflation 
is described by the usual dynamics of a minimally coupled scalar field evolving under 

the influence of a scalar potential. This mysterious scalar field. denoted by o. is 
kno\vn as the inflators. and its potential. 1-(o). is known as the i72flaton potential. 

One assumes that the inflator1 field is homogeneous in the reference spacetime. 
o(x.7) = o&). and satisfies the equation of motion & + 3H& + V./:o = 0. (Since 
“prime” was used to denote d/dr. I will use S., to denote dS/do.) This field eyua- 

tion. together with the Friedmann equation. can be solved to find the evolution of 

the background spacetime and scalar field. -Alternatively. one can view the scalar 
field itself as the dynamical variable of the system. This allows the Einstein-scalar- 
field equations to be n-rittcn as a set of first-order. non-linear differential equations 
(Grishchuk 22 Sidorav 1988: AIuslimov 1990: Salopek &C Bond 1990. 1991: Lidse! 
1991a) 

[H.,(o)]’ - +qq = -$o, 

(j) = -__ 6, H 
477 .* (4 

In the actual perturbed spacetime there are small perturbations about the back- 
ground value: 0(x. r) = Ok + 60(x. T). Of course we ivill be interested in the 
evolution of 50. 

Now just as the metric perturbations are gauge dependent. the scalar field fluc- 
tuations are also. But one can circumvent the usual problems associated with gauge 
freedom 1)~. constructing a suitable b 0.auge-invariant scalar field fluctuation. h% = 
60 + oh(B - I!?). 

2.4. Perturbatzon Spectra 

Of great convenience is the particular gauge-invariant quantit? 

pQ-!i&260. 
dl 0 

(5) 

Clearly 72 defined by the first equality of Eq. (5) is gauge invariant because it is 
constructed explicitly from gauge-invariant terms. However even the second form in 
Eq. (.5) is gauge invariant. as when one performs a gauge transformation the non- 
gauge-invariant terms in L’ cancels the non-gauge-invariant, terms in the 60 term. 

‘R 
R has a simple physical interpretation in the synchronous gauge? where C’R = 

I 4 with ‘R the three-dimensional Ricci curvature on the spatial hypersurface. row 
the usefulness of R follow from the fact that as shown by Bardeen (1980). K! is 
constant on scales much larger than RH. 

The picture of the generation of quantum fluctuations during inflation can be 
appreciated by studying Fig. 3. 
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Figure 3: Quantum fluctuations in the inflaton field during inflation lead to fluctua- 
tions in the gauge-invariant quantity ‘X. -4s a particular length scale passes outside 

of the Hubble radius. the fluctuations are “frozen in” because ‘R is constant outside 
the Hubble radius. ii-hen the length scale reenters the Hubble radius in the RD 01’ 

MD era, fluctuations in R appear as energy density fluctuations. 

Sow R is related to the observationall?; determined power spectrum. The first 
step in developing the relation is to expand K! in terms of Fourier modes ‘7Crtr; 

‘?ax) = J (1% -'RI:(r) ex (2;;)"'" 
Now following the usual procedure. if we form (R(xja(xj)‘? where (. . .) indicates 
the spatial average, we find that it is proportional to J /?IRkl”d/~/k. so k”/‘lRk / i: 
the power in R per decade of k. If the curvature perturbation is independent of k. 
then the **power-per-decade” is constant. and [‘%&.I x X: -3!2. Putting in the factors of 
27r, we define the scalar spectrum .4.5(k) by” 

5 (%Tt;) = ; A;.(k) 6”(k - I), 

where a4,(~) is the primordznl scalar density perturbation power spectrum. If Tt i: 
independent of scale outside of the Hubble radius. then .4s(X-) will be independent 
of Jc. The primordial poner spectrum. -AS(~). is related to Ps(k), the power spec- 
trum observed in large-scalp structure (LSS) surveys and cosmic background radiation 
(CBR) experiments. 

‘The exact constant of proportionalitv is a matter of convention. SW L*I<CBX. 



TO find the relation between -A.?( k ) and Ps( k) . it is important, to appreciate that 
.As(k) is the amplitude ivhen a scale k crosses the Hubble radius. i.e.. Lvhen k = IIH. 
SOW if we specify the perturbation spectrum on a particular spa<:e-like hypersurface, 
rather than as each scale crosses the Hubble radius. V,Y have to realize that ive are 
specifying a gauge-dependent quantity beyond the Hubble radius. \Te ivill denote the 

perturbation defined this nay its (dp//l)k. In the s>-nchronous gauge and in the co- 
moving gauge, the density perturbation of wavenumber k grows as (6/3//jjk ‘CXC (aH)-:! 
for k < aH in both the AID and RD eras. So for scales Al olltside the Hubble 
radius. (d^p/p)k x [~S/(crHi~].-l.~(i~). so that n-hen OH = k. (o‘p/p)k = .-t,y(/;). 

For scales inside the Hubble radius the s>vnchronous gauge and the conloving 
gauge coincide. and (dp//lik is approsimately constant in the RD wa and grows as 
(dp/p)k x (uH)-’ in the AID c’ra. So ,just around the time of matter domination. 
on scales smaller than R H (i.e.. I; > (rrH)E~j. (6p//j)i; has the approximate value it 
had when it crossed the Hubble radius. 50 iRp/p)k - .4,s(k) for k > (OH’),,. .\fter 
matter domination id/~/o), grows as (clH)-’ - (1 x t’.!” on all scales. so (6p/p)~, will 
continue to have the shape it did ,just after matter domination (at least in the regime 
of linear evolution). 

The transition between scales larger than R H at t EQ and scales smaller than 
RH at tEQ can be encoded in a “transfer function” T(k). by Ivriting (Sp/p)k = 
(,k/~H)~T(k),4~(k) (see ~.g.. Liddle and Lyth. 1993). In order to reproduce the 

behavior discussed above. the function T(k) must have the limiting forms T(k) i 1 

for k << aH and T(k) -+ k-’ for k >> clH. 

Sow the power spectrum P,(k) is defined by (6p/p)i x k”Z’,~(k). so in terms of 

the primordial spectrum .-l.?(k) and the transfer function T(k). PC(k) is given by 
ps( k) x kT2( k)Ai (I;). Sate that if the primordial spectrum is independent of scale. 
i.e.. if .4:(X:) is independent of k-the Harrison-Zel’dovich spectrum. then P.,(k) x k 

for k < (OH) EQ and P,:(k) x k-’ for k >> (oH)~~~. If \YP write .-l.<(k) as a pov,w 
lag. .-l:.(k) = .-~~.(k~~(k/X-,,)“-‘. then ps nil1 be a power law also: P,,(k) x k”. with 

17 = 1 correspondin, rr to the value for constant amplitude pertllrbations at Hllbble 

radius crossing. 
Finally, we must understand the relation between wavenumber k and fielc! value 

0. During the evolution of the scalar field the background value of cj changes in 
time. Now associated lvith a particular value of d is a length scale with comoving 
\\ravcnumber k crossing the Hubble radius at the time the scalar field value is O. The 

easiest relation to find is the differential form found from the expression k = wH: 

clln k H., CL., H.b 4~ H 
-=- 

do 
+-=---- 

H u H m;, H., ’ 
(8) 

where the last equalit>- follows from Eq. (A), 
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3. Scalar Perturbations from Inflation 

.9.1. Textbook Treatment 

In the standard textbook treatment one expands fluctua 
a Fourier expansion 

.tions of the inflaton field in 

((jo') 182 = 
dk 

1 . 

T k" liji,12 if% 

Then one identifies (do)k = k”“~n‘ok/ as the fluctuation in the inflaton on the length 
scale k/k. One knows that a scalar field has quantum fluctuations in desitter space. 
or more precisely. the quantum fluctuations of a scalar field in desitter space differ 
from the quantum fluctuations of a scalar field in flat space. The quantum fluctuations 
of a field in desitter space at Hubble radius crossing (i.e.. on scales k = uH. where k 
is the comoving wavenurnbcri wsult in (o‘o)k;=,,+ = H/2;;. 

Sow in the I_’ = 0 gauge. using the above result for the scalar field fluctuation 

gives ‘R = (H/&,)(c~o)~=~~ - H’/&. Sow we can express H’ and 0” in terms of 

the inflaton potential and its derivative. The background equation of motion from 
Section 2.3 in the slow-roll limit (ignoring the 0 term) gives 0 - Iv.,/3H. and the 
Friedmann equation relates H and lP(o): H2 = 8i-rp/3m& - 1,.(o)/m$,. Substituting 
V and V., gives the familiar result for the perturbation spectrum first found in this 
manner by Bardeen. Steinhart. and Turner (1983). 

p/277 
Lk ‘v &(/q b 1 L~‘“i2(o). 

1723p/ 1 :* 
(lo! 

Since the scale factor increases so rapidly during inflation. all astrophysical scales 
of interest correspond to a rather narrow range of inflator1 field \-alws. For flat 
potentials. 1 -co) and I *.,,(o) tloes not change ~nuch clurin g inflation. 50 one espects 
.4,5(k) to be roughly independent of k. This is the reason for the often repeated 
“result“ that inflation leads to an approximate Harrison-Zel’dovich spectrllm of Scala1 
density perturbations. 

3.2. The Three Step Program for Better Predictions 

The calculation of .4s(k) in Eq. (10) was sufficiently accurate for a decade. But even 
with present-day data. and especiallv looking forward to t,he lvealth of information 
expected in the near future. such as the angular power spectrum of CRIB fluctuations 
up to multipole number of more than 10”. more accurate predictions are required. 

Xs the result of considerable effort. in the past few years some progress has been 
made in improving the accuracy of the calculation of the density perturbation spec- 
trum. Let, me describe three basic steps in the road toward better accuracy: 

1. a better treatment of the background classical dynamics bp use of Hamilton- 
.Jacobi formalism. 
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” a better formalism of quantum corrections t,. use of the I-ariational approach. -. 

and 

3. the calculation of the spectra in terms of slow-roll parameters. 

I have already discussed the advantage of treatin g H as fundamental, and pa- 
rameterizing its evolution by o rather than time. In principle. the Hamilton-*Jacobi 
formalism enables one to treat the dynamical evolution of the scalar field exactly. 
at least at the classical level. In practice. however. the separated Hamilton-Jacobi 
equation. the first line of Eq. i-4). is rather difficult to solve. On the other hand. 
the analysis can proceed straightforwardly once the functional form of the expansion 
parameter H(4) has been determined. This suggests that one should view H(o) as 
the fundamental quantity in the analysis (Lidsey 1991b. 1993). This is in contrast 
to the more traditional approaches to inflationary ~osmolog~~. whereby the particle 
physics sector of the model - its defined by the sprcific form of the inflaton potential 
V(d) - is regarded as the input parameter. 

It proves convenient to express the scalar and tensor perturbation spectra in terms 
of H(Q) and its derivatil-es. The slow-roll approximation is an expansion in terms of 
quantities derived from appropriate derivatives of the Hubble expansion parameter. 
Since at a given point each derivative is independent. there are in general an infinite 
number of these terms. but only the first few enter into any expressions of interest. 
The first three are defined as 

1 
-1 

(11) 

J](O) s -5 = m;, H.,,(o) mpI E.,> 
HO -4~ H(o) --yEis 

02) 

m’p, 
I(Q) = z (13) 

One need not be concerned as to the sign of the square root in the definition of <: it 
turns out that only <‘. and not < itself. will appear in our formulae. 1S’e emphasize 

that the choice 0 > 0 implies that fi = -,/GH.,/H. 

One can show that inflation ends when E = 1. The slow-roll approsimation. as 
I use it here. involves assuming {E. q. <} are all less than unity. This is somewhat 
more restrictive than just saying that H changes slowly enough for inflation to occur: 
that only requires t < 1. 

Probably the most important advance is the development of the hlukhanov for- 
malism for the perturbation calculation. Recall that the action for the Einstein-scalar 
field system is 

.s = - s rllr fi 4 %R - ;(To)’ + 170) . 1 (11) 
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wit,h gpu = gFvRLv + ciy,,(.-l. B. I-‘. E) and o = 00(r) + &o(x. r). 
Before quantizing the system. one must express the theory in terms of the AD1\1 

variables. expand to second order in the perturbations. apply the background field 
equations. and integrate 1,~ parts n-hen judicious. Sow the procedure is quite long 
and tedious. Details can be found in the review article of 1lukhanov. Feldman. 
and Brandenberger (1992). ii-hen the dust settles. the variation of the action can 
be expressed in terms of the tlvnamical 17ariable II = tr (do + ~31 C/R) = :R. where 
.z = no;/Y-L = IL&/H: 

&S = ; A- 
1 ( 

-11 
1P - d-zJll., Il., -t-u’) 

,’ i 
(15) 

Now this is really remarkable. because the complicated dynamics of scalar field per- 
turbations coupled to metric, perturbations can be cast into the dynamics of a system 
we know well: a scalar held (1 in flat spacetime n-it11 (time-dependent and negative) 
mass m2 = --,“‘/z. 

Now scalar field theory in flat space is well understood. So we can use the tool of 
scalar quantum field theory as a sort of hammer to pound out the answer. Of course. 
we have to make sure we have the right tool. because as the saying goes. %hen you 
have a hammer in your hand. ei-ervthing ~-011 see looks like a nail.” 

3.3. Quantization 

The yuantization of the action in Eq. (15) is really rather straightforward: From the 
scalar field u(x, r), form the coir,jugatc momentum ~(x. 7). and form the Hamilto- 
man from u(x, 7) and 7(x. 7). Then promote the c,lassical field anti its conjugate 
momentum to operators. cc(x. Tj + ii(x.r). and rix. 7) + 7ijx.r) and impose the 
canonical equal-time commutation relations [Ei(x. 7). C(y. r)] = [?(x. 7). ?(y. 7-)] = 0. 
and [ri(x, 7): +?(y, r)] = io‘“(x - y). 

If one expands the field operator in Fourier modes associated with creation and 
annihilation operators r?: and (21;. then the field becomes 

6(x, 7j = (h-312 J [ d3k ~~(~)ii~e’~X + u;(T)$-~~.X] 

The field equation for uk is the familiar Klein-Gordan equation 

-.‘I 
11; + ii2 - 1 ul& = 0. 

( :) 

(16) 

Of course we must specify the boundary condition. In our case. we lvant II~>;~!{ + 
,-lkT/1;1/2: i.e., plane-wave solutions. 

It is pleasing to note that any solution to Eq. (1’;) will have the feature that well 
beyond the Hubblc radius. ‘Rk will be constant. Sote that in the limit k -+ 0 the 
field equation becomes U: - (Y’/z)u~ = 0. which obviously has solution uk x 2. Son 
since Rk = ,uk/c. on scales much larger than the Hubble radius ‘RI, + constant. 

11 



4. Tensor Perturbations 

In addition to the scalar pcrtlnbations in Eq. (<%). the most general metric contains 
perturbations that transform like a tensor on the spatial hvpersurfaces. These tensor 

pertiirbations enter the metric as 

&.’ = (l’(T) 
[ 
dT2 - (d,, + h,,)d.~‘d.d 1 08) 

As can be seen by explicit calculation from the Einstein equations. the metric prrtur- 
bation h,, does not couple to the stress-energy tensor. but describes the propagation 
of gravitational waves. The gravitational waves are not important for large-scale 
structure. but they do have an effect of the C’AIB. at least for small multipole num- 
ber. 

Since by construction h,, is a transverse. traceless tensor. it has two degrees of 
freedom. usually denoted as II , and /I, i From the quantum view. gravitational ivaves 
are the propagating part of the gravitational degrees of freedom. corresponding to a 
massless spin-two particle. \vhich of course has two degrees of freedom.) 

Now just as was done for the scalar degrees of freedom. one substitutes the metric 
Eq. (18) into the EinsteinHilbert action. and expands to quadratic order in IL,,! with 
the result 

drd’.r O’(T) L@‘,iYh,l. (19) 

Since our goal is yuantization. and we know how to quantize scalar field theory. we 
want to make 62s look as much as possible like the action for a scalar field. To this end. 
it is very convenient to define the resealed variable P,(x) = jln~1/32~)1”irj~)h’, (L). 

In terms of PzJ (.r). &S becomes 

n‘,s = i Jc~Tc~:j.i- [ (aT~l 1) (oT~zj) - cj”ln (amp, ‘1 c~,~P’,) + cPl ;Pl,] (20) 

This may be interpreted as the action for two scalar fields in 1Iinkowki spacetime. 
each with effective mass squared -CI,,/CL. \Ve can now proceed with quantization 
exactly as in the scalar case. 

Again. just as in the scalar case for 77.. we perform a Fourier decomposition 
of P”,. But since there are two degrees of freedom. we must include a polariza- 
tion tensor c’,(k: A). which satisfies the conditions E,] = eJ,, tii = 0. PE,, = 0 and 
c’,(k, X)Q*(k, A’) = Rx,,. The analysis is further simplified if we cl~oosc F,] (-k. A) = 

c:,(k. A). The Fourier decomposition can be lvritten as 

In terms of 2.k; the spectrum of gravitational waves. .4r(k). is defined as 

A;(k) o^‘“‘(k - 1) (22) 
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Sow returning to the yuantization of the perturbations. in momentum space the 
tensor perturbation action is 

(23) 

\F’e can now quantize l’k,A in the usual way. promoting the field to an operator with 
canonical yuantization conditions. 

The mode equation for l’i becomes 

!l’l’J,. I, 
- + k” _ c1 l’k = 0. 
dr2 ( 1 Cl CW 

This equation can be compared to the mode equation for scalar perturbations. Eq. 
(17). The mode equation is somewhat simpler than the scalar case because u”,/u = 
k’H’(1 - F/2) .. is generaliv a Gmpler function than z”/:. 

5. A Variety of Models (Some Realistic, Others Illustrative) 

5.1. Solution Procedure 

The procedure is simple (in principle): solve Eq. (17) for uk, then find TLk = Q/Z to 
give -As(k), which together with a transfer function. yields the power spectrum which 
can be compared to observations. Then solve Eq. (24) for z-k, to give -AT(~). 

The trouble is that exact solutions to the wave equations are hard t,o find, partly 
because the mass terms are so complicated: 

,” 3 1 
- = 1 :! 

1 + F - 2q + t2 - kl+ $ I $ 

(lfl 
I 

. 

- = 
u 

(25) 

where the T dependence of H. cl 17, and < are found from their dependence upon 
4. In fact, only two exact solutions of Eqs. (17) and (24) are known. The first is a 
power-law solution found by Stewart and Lyth (1993). and the second. yet unnamed. 
has been found by Easther (1996). 

The first step is to express the conformal time. dr = &/u(t) in terms of nH and 
the slow-roll parameters. In general the result is 

s da 1 
T= - 

a’H 
x--+ 

aH s 
2-- da. 
a’H 

If E is constant. then 7-i = --cl H( 1 - F) ( 7 is negatil-e during inflation. with r = 0 
corresponding to the infinite futurej. If E is not constant. then integrating by parts 
an infinite number of times. one can obtain 

1 1 2ec j-=------ 
CLH~--t (LH 

+ expansion in slow-roll parameters < etc. . (27) 
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where < = t - II> and t can now have arbitrary time dependence. 
In the next section I n-ill review the exact power-law solution. and and the section 

after that I will discuss how to use that exact solution to construct perturbative 
solutions for other models. 

5.2. Power-Law Inflatzon 

In the power-law model the Hubblr parameter is expressed in terms of the Planck mass 

and a parameter p: H(o) x exp v’lz2JFg. which results from a scalar pot,ential of 

the form I/‘@) rx e” (.\bbott and IVise 1984. Lucchin and llatarrese 1985). Obviously 
this type of potential is not a fundamental. renormalizable scalar potential. but it is 
the type of effective low-energ). potential for dilaton-like degrees of freedom in string 
theories and Iialuza-Klein theories. 

For H(d) x eO. F. 11. and < will be equal and constant: F = rl = < = pl. 
Now one can proceed to find :” /: and u”/u. with the result ?‘/I = iv’ - 1/4)/r’ 

and CL”/U = (p2 - l/A)/?. .h ~1 ere v = (3/2) + (p - l)-’ and i-1 = (3/2) + (y - 1)-i 
(For power-law inflation v and /( coincide. though in general they do not.) 

For power-law inflation the mode equations are simply a Bessel equation: 

[ 

(p 
-+k’- 

Y2 - 4-l 

cl+ T2 Uk = 0 1 
[ 
2 $+A-?- L12 _ J-1 

T2 1 L’k = 0. (28) 

which for the boundary conditions n-e impose are solved by Hj,l) ( - kr) and HL’) c-k). 
Hankel functions of the first kind of order L/ and p. 

VVe are interested in the asymptotic forms of uk/: and ~‘k for k << OH. \vhich are 
easily found to be 

Uk 
--) ~r(v-1/2)T/‘.)Y-3/2 

g$&(-kTj-“-L” 

’ ck -+ above with v i 1-1 09) 

which yields As(k) x H”/IH’I and .-tT(k) x H. with both espressions evaluated at 
k = uH. Now using the fact that at Hubble radius crossing H(6) x k”p from Eq. 
(8), we find a power-law spectrum .-l.?(k) and -AT(~) proportional to k-‘/J’. 

The scalar spectral index is defined as n(k) - 1 = clln .-1:/din k. VVriting ,4:.(k) rx 
k-‘/P the above power-law spectrum gives 12 - 1 = -2/p, a departure from the n = 1 
Harrison-Zel’dovich result. Defining the tensor spectral index. CT(~) as nT(k) = 
d ln &-/cl ln k, for power-law inflation 71~ = -2/p. 

5.3. General Potentials 

.ifter working hard to find an exact solution. we can now make an expansion about 
it for general potentials. The power-law inflation case corresponded to the slow-roll 
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parameters being equal. and hence exactly constant. In general they can be different,. 

which means they will pick up a time dependence. 
,Assuming that E. as well as < = E - r7 are small, then Ey. (27) can be approximated 

to give 7 = -(l + 15)/(0H). 
Having this expression for 7. lve can now immediately use Ey. (2.5). ivhich must 

also be truncated to first-order. This gives the same Bessel equation Eq. (28). but now 
with v given by v = 3/2 + 2~ - 11 and p given by ~1 = 3/2 + t The assumption that 
t,reats E as constant also allows ~1 to be taken as constant. but crucially. c and 11 neecl 
no longer be the same since we are consistent to first-order in their difference. The 
differences between further slow-roll parameters and E lead to higher order effects. 
and so incorporating E and ,7 in this manner is applicable to an arbikary inflaton 
potential to next-order. The same solution Eq. (29) can be used with the new form 
of V. but for consistency it should be expanded to the same order. This gives the 
final answer. which is true for general inflation potentials to this order. of (Ste1var.t 
SL Lyth 1993) 

where C = -2 + In 2 + y =Y -0.73 is a numerical constant. y, being the Euler constant 
originating in the expansion of the Gamma function. Of particular interest is the 

ratio 
c f$.$ = f(O) [l + 2x40) - ‘l(O))] 
s 

(31) 

It is useful once again to point out that the o ti k connection is made through 
Eq. (8): which can be n.ritten in the form 

(32) 

Forthespectralindiccs n(k)-1 _dln.-L~(k)/dlnkandn~(k) ~dln,4~(k)/rllnk. 
it is easy to show that 

n(k) = 1 - 4~ + 2r7 - [8(C + 1)~~ - (6 + 10C)tq + 2c’<‘], 
q-(k) = -2E[l + (3 + 2C)F - 2(1 + C)lj]. (33) 

Obviously: the usual HarrisonZel’dovich result 12 = 1 is obtained if the slow-roll 
parameters {E: q. <} are all much less than unity. But recall that E = 1 defines the 
end of inflation. so there is no reason to assume that the slow-roll parameters must 
be much less than unity .50 e-folds from the end of inflation. 



obser\-able 
i 

-4; (ko 1 

Agk”) 

A;(ko)/A;ik, i 

Md 

1 - tdk()) 

lo\vest-order 

Hbo) 

Hbo). 400) 

400) 

+oj 

EROS). fjboj 

- I 
r 

next-order 

Hfoo). +o) 
HCo,,j. ~(001. +,I) 

fioo). qio0J 

F(Ooj. qloo) 

E(00). ~l(Ooj- ((00, 

Table 1: The observables. -4;. -AT.. II. and 11 T at the point k. may be expressed in 

terms of H and the slow-roll parameters at the point ~0. This table lists the inflation 
parameters required to predict the observable to the indicated order. 

5.4. The Consistency Relntlon 

Before turning to specific models. it is important to recognize a “consistency” relation. 
The overall amplitude is a free parameter determined by the normalization of the 
expansion rate H durin g inflation ior equivalently the scalar field potential Ii). On 
the other hand. the relatix-e amplitude of the two spectra is given to lowest order bv 

(34) 

Thus. to lowest order in the slowroll parameters. there exists a Ample relationship 
between the relative ;amplitude and the tensor spectral indes: 

(35) 

This is the lowest-order consistency equation and represents an extremely distmctive 
signature of inflationary models. It is difficult to conceive of such a relation occurring 
via any other mechanism for the generation of the spectra. 

Since it is possible for the spectra to have different indices. the assumption that 
their ratio is fixed can be true only for a limited range of scales. but. the correction 
enters at a higher order in the slow-roll parameters. 

5.5. Other Models 

Here I briefly give some results to bwest order in the slowroll parameters for the 
spectral index in a couple of well-studied inflation models. I will iv-or-k out polynomial 
chaotic inflation in detail. and only describe the other models and give the results. 
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Sow in this section we are treating the potential as input. so it is useful to have 

the lowest-order results for the slow-roll parameters in terms of 1,‘. These were studied 
by Iiolb and \‘adas j1994). with the result 

and (36) 

I will use the lowest-order result II = 1 - 4~ + 2~7 and --1c/.A:. = --177/Z = E. 
Sow of course the slow-roll parameters are a function of o. which implies they are 

a function of k. But since WP are working to lowest order. we can assume that the 
spectral indices are constant. and the values associated with Hubble radius crossing 
about 50 e-folds from the end of inflation. Generally we will have to find the value of 
the field 50 e-folds from the end of inflation. 1Ye will denote this as o,~~. 

The end of inflation is defined by F(O) = 1. and the definition of the number of 
+folds from the end of inflation is 

,y(& = J H dt = J (37) 
a 9 

5.5.1 Polynomial Chaotic Inflation 

Probably because of its simplicity, the most popular inflation model is polynomial 
chaotic inflation. where the potential is assumed to be r,-(o) = #. -A potential of this 
form has been championed b>r Linde. 

With the potential in this form. the first two slow-roll parameters are 

rn& 12 
c=16;T2 

m?,, 11% 
and /I=-- 

m& pip - 1) 
-+- 

16~ o’ Q7i *2 (38) 

The end of inflation is found by setting c = 1. which gives o~,,Jm& = $/lG~. For 
this model .V(q5) = 47r(02 - oznd)/pm$,. 

and r7 = (p - 2)/(p + 200). 
which gives E = pm$,/16~o~, = p/(p + 200,). 

Finally, the above Ivalues of E and q give 

n = l-4E+27j=l- 
4+2p _Jl_pf’ 

p + 200 100 

&-I; = E = P 
p + 200 (39) 

This gives a flavor of the calculations that can easily be done for the other inflation 
models discussed in the following subsections. The results are given in Table 1. 

.5.5.2 Power Law Inflation 

PVe have already discussed the power-law inflation model. In that model E = q = l/p. 

Of course the fact that E is a constant means that some other machinery must be 
introduced for the highly desirable result of an end to inflation. 
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model 

- - 

power-law: 

exp 4167ro?/prn& 

p = .j 

p= 10 

polynomial chaotic: 

dp 

1,=2 

p=4 

natural 

1 f cos(o/f) 

f* = .jm$,/S;i 

f’ = .Y~m&/lG;i 

R" 

{ 1 - exp[-(167r/3m&)“‘o]}” 

CDM (V = ?7??) t 

1 - 2/p VP 

0.6 0.2 

0.8 0.1 

1 - (p + q/100 PnP+200) 

0.96 0.01 

0.94 0.02 

1 - m~2/Stf (222G1/16;7f’) exp(-13m$/27;f2) 

0.8 6 x lo-' 

0.6 ,3 x 10-12 

0.96 0.96 I I lo-" lo-" 

1 I 0 

Table 2: IVell studied inflation models to lowest order. The result -4$/.-I: = (1 - rzj/2. 
true for power-law inflation. is often (incorrectly) used as a general result. The relative 
contribution to tensor modes to the CUB power spectrum for small multipole number 
is approximately 6..5&-/--I’,. 
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5..5.3 Natural Inflation 

Satural inflation is a local Fermilab favorite (Freese. Frieman. and Olinto. 1990). In 

this model the potential takes the form of the potential for a pseudo-Sambu-Goldstone 
boson: 

Y(o) = .I4 [l Zt cos(d/f)] . (40) 

where :\ and f are mass scales. The mass scale f corresponds to the scale of the 

breaking of the original L-Cl) symmetry. and .\ is the mass scale associated with an 

explicit breaking term. It is attractive to consider f to be of order rnp~ and :I of order 
the GUT scale. 

Natural inflation is a great example of a model with a non-renormalizable scalar 
potential. Even though the underlying theory may be renormalizable. there is no 
reason to expect that the effective low-energy inflaton potential should be restricted 
to be of a renormalizable form. 

5.5.4 R* Inflation 

R* inflation is actually the first model for inflation iStarobinskJ7 1980). In this model 
the inflaton potential is not a fundamental scalar field. bt has an origin in the gravity 
sector. If one adds a term quadratic in the Ricci scalar to the Einstein-Hilbert action. 

(41) 

then by means of a conformal redefinition of the metric the R2 term can be elimi- 
nated. Or. more precisely. the extra degree of freedom can be rewritten to look like 
:a minimally coupled scalar field with action 

where 

V(0) = 3m2p,aU2 

32~ 
{ 1 - exp [-j16~/3m’pij112~]}2. (43) 

Here is an example of an effective inflaton potential where the scalar field need 
not be regarded as a fundamental scalar field degree of freedom. This suggests that 
t,he scalar field analysis described in this paper may be useful for a class of models 
larger than just scalar field models. 

6. So What’s Your Point? 

In this lecture I have tried to make several points: 

1. In one-field: slow-roll models of inflation it is possible to make sufficiently accurate 
predictions of the observable parameters such as .-ls. -AT. .Y. and nT. 
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2. The restriction of “one-field. slow-roll” may not be as restrictive as first imagined. 
because many models of inflation can be written in this way even if they do not 

involve a fundamental scalar field to start with. 

3. Different models make different predictions for the observables. Soon it will be 
possible to sort through the models and start weeding out those not in agreement 
with observation. 

4. There is a consistenq. relation for these models. although it may be difficult, to 
check observationall>-. 

5. -Although not discussed in this lecture. with a little work one can ren~ork the 
expressions for the observables to express the potential in terms of the observ- 
ables. Therefore. one might be able to glean some information about a scalar 
field potential at energ>* scales of about 10’6C:e1V from astronomical observations 
(Copeland et al. 1993a. 19931~. 1994: Lidsey et al. 1997: Turner 1993a. 1993b). 
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