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Abstract. Quasi-isochronous a-like bucket can be important in providing ultra 

short bunches. The instability of a bunch inside the bucket is found to be severely 

affect,ed by rf phase modulation. The synchrotron t,une drops to zero at the 

bucket edge very rapidly, indicating the possibility of a t,hick chaotic layer due to 

overlapping of resonance islands. The approach to chaos comes from a sequence of 

bifurcation into 2: 1 parametric resonances. When quant urn excitation is included 

in addition to radiation damping, the instability is worsened. The steady-stat,e 

part,icle distribution in the longitudinal phase space is Gaussian in the phase 

coordinate and non-Gaussian in t*he momentum coordinate, unless the bunch is 

small. The size of the bunch is governed only by the “thermal Energy” Eth = 
D2/2A. where D and A are. respectively, the normalized diffusion and damping 

coefficients. The quantum lifetime of the part.icle bunch, for the D and A that 

have been enhanced by the smallness of t,he phase-slip factsor, is studied and 

turns out to be much longer than expected. Phase modulation tends to enhance 

quant,um diffusion at high frequencies. but leads to stochastic resonances instead 

at low frequencies. 

I INTRODUCTION 

Sub-millimeter electron bunches can be important in time-resolved exper- 

iments, next generation light sources, coherent synchrotron radiation, and 
damping rings in future linear colliders. One method to achieve such small 

bunch length is to lower the phase-slip factor 17, which is defined as 

AT 
- = 76, 
TCI 

(14 

where To is the revolution period of the synchronous particle around the stor- 

age ring and AT is the increase in period for a particle with a fractional 

l) Operat,ed by the Universities Research Association, Inc.. under contract with the U.S. 
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momentum offset 6. The phase-slip factor is momentum dependent and can 

be expanded as 

‘I = qo + q16 + r/d2 + - - - . (1.2) 

When ]qo] is reduced to a small enough value, the first order term 716 be- 

comes important. The Hamilt,onian governing the motion of a beam particle 

is therefore 

1 1 
H = 5h’los2 + Qhrp53 + 

eVrf 

2Tp2E [ co+$, + Ad) + Ad sin A] . 
0 

(1 3) .* 

where Ad, canonical to 5: is the rf phase offset from the synchronous phase 

ds, Vrf is the rf voltage, Eo is the energy of the synchronous particle and /8 its 

velocity with respect to the velocity of light. At large 1170/r/r 1, the Hamiltonian 

represents two series of pendulum-like buckets. As ]qo/qi ] decreases to a point 

when the values of the Hamiltonian through all unstable fixed points are equal, 

the two series merge. N;hen [l] 

l+j<{T~f~~E [(~-0,)sino,-I-osd,]}li2 , (14 

the buckets becomes a-like and the storage ring is said to be quasi-isochronous 

(QI). By the way, the right-hand side of Eq. (1.4) is just fi times the half 

bucket height when the ql term in the Hamiltonian is absent. By the deploy- 

ment of sextupoles, the contribution of ql can be eliminated, and the next 

order r/2 will restore the bucket to pendulum-like, even if the zeroth order 70 

vanishes. However, the a-like QI bucket has its own merit of being much nar- 

rower than the pendulum-like bucket. Therefore, if one needs an ultra short 

bunch, such a bucket may become indispensable [l-8]. 

The kinematics of the QI bucket are reviewed in Sec. II. Phase modula- 

tion is studied in Sec. III when radiation damping is included. The critical 

modulation amplitude for the stable 1:l parametric resonance is computed 

and also the threshold of bifurcation into the 2: 1 parametric resonance. It 

is then demonstrated that global chaos is the result of a series of bifurcation 

into 2: 1 parametric resonances. Quantum excitation is included in Sec. IV. 
The steady-state particle distribution inside a bunch is found to follow the 

contours of the non-perturbative Hamiltonian that does not contain damping 

and excitation. When the bunch is small, it is bi-Gaussian in shape with 

the rms spreads governed by the “thermal energy” EtfL = D2/2A, where D 
and A are the normalized diffusion and damping coefficients. The quantum 

lifetime is next studied. Although D and A for the QI system have been heav- 

ily enhanced by the vanishingly small phase-slip factor, the quantum lifetime 

turns out to be very much longer than expected. When phase modulation 

is introduced, we find that the situation of global chaos becomes worsened. 
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For small modulation amplitudes, the steady-state distribution remains bi- 

Gaussian and is still determined by the same Yhermal energy” Eth. At high 

modulation frequencies, quantum diffusion is enhanced and t’he lifetime short- 

ened. However, at low modulation frequencies, stochastic resonances develop. 

Touschek scattering is discussed in Sec. V, where we find that beam loss will 

be enhanced because of the smaller momentum aperture in the QI bucket. 

Finally, conclusions are given in Sec. VI. 

Most of the material in this presentation is taken from three previous articles 

[9-l 11. 

II KINEMATICS 

The independent “time” variable in the Hamiltonian of Eq. (1.1) is 8 which 

increases by 2n in one turn. Xow we use t = v,0 as the “time variable”, which 

increases by 27r during one synchrotron period To/v,, where 

is the synchrotron tune at small amplitude. Changing to the new canonical 

variables, 

s=-?~ 
dX 

rlo : 
P=p 

the Hamiltonian is transformed to a universal form 

x2 x3 H’$iT-y. 

(2.2) 

(2 3) .? 

The “energy” E, or the value of the Hamiltonian, is a constant, of motion and 

varies between 0 and i from the center to the edge of the QI bucket. We have 

made the assumption that Ad is small when Eq. (2.3) is derived. However, a 

a-like QI bucket is always narrow in rf phase extent. Therefore Eq. (2.3) does 

represent an excellent approximation to the Hamiltonian for such a bucket for 

any synchronous phase Q~. 

At fixed “energy” E: the equation of motion is 

2 
2x3 =-- 

3 
x2+2E. (2.4) 

which becomes the Weierstrass equation [12,13], If we further make the sub- 

stitutions t = JSU and x = 493: 

= 4(p - el)(p - e2)(p - e3) + (2 5) .’ 
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The 3 turning points are, respectively, 

1 

e1 = 5 + cos E ’ 

1 27T 
e2 = 2 + COS (- 7 . 

( > 
(2.6) 

1 27r 
e3 = 5 + cos (+ 7 , ( > 

with 

E = $ cos-‘( 1 - 12E). (2-V 

For particles inside the separatrix or bucket, the discriminant, A = 648E(l - 

6E) is positive, and the Weierstrass p function can be expressed in terms of 

the Jacobian elliptic function. We have therefore 

x(t) = e3 + (e2 - e3) sn2 (p+m) ’ 

e2 - e3 

slnf 

c 
m=-= 

e1 - e3 sin([ + :) ’ 

(2.8) 

(2.9) 

It is worth pointing out that, contrary to the usual custom, the variable 

x has been used to denote momentum spread while the canonical conjugate 

p has been used to denote phase. This notation is used because we can talk 

about a “potential well,’ of c’(x) = $x2 - $x3 in this way, and Eq. (2.4) or 

Eq. (2.5) just describes the motion of a particle in the potential well. This 

potential well has a barrier separating the stable bucket from the unstable 

part of the phase space. This barrier is located at the unstable fixed point 

(UFP) through which the separatrix passes through. The separatrix orbit, 

which corresponds to m = 1. is given by 

x,,(t) = 1 - 
3 3 sinh t 

cash t + I’ pSZ(t) = (cash t + 1)” . 

The action J can be readily derived, 

(2.10) 

(2.11) 

where F is the hypergeometric function [12,13], and so is the synchrotron tune, 

z&(E) = dE y-j- = vs (2.12) 

where K(m) is the complete elliptical function of the first kind. This syn- 

chrotron tune is shown in Fig. 1 as a function of the energy E along with the 
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FIGURE 1. Normalized spnchrotron tune inside the o-like bucket as a function of ampli- 

tude of oscillation. Note that the drop is very abrupt at t,he bucket, edge corresponding t.o a 

normalized Hamiltonian of value H = 1. For comparison, the normalized synchrotron tune 

inside the usual pendulum-like bucket is shown in dots. 

synchrotron tune for the usual pendulum bucket. We note particularly that 

the synchrotron tune decreases to zero very sharply near the separatrix. Be- 

cause of the sharp decrease in synchrotron tune, time dependent perturbation 

will cause overlapping parametric resonances and chaos near the separatrix 

[ 14-161. 
The conjugate angle ITariable is 

(2.13) 

which is obtained from the generating function 

F2(x; J) = 1’: pdx . 
e3 

(2.14) 

III PHASE MODULATION 

In the presence of rf phase noise of tune v,, the Hamiltonian becomes time 

dependent, 

x2 x3 
II=<+;,---+umRTcosW,,,t. (3.1) 

where w, = v,,/v, is the normalized modulation tune, and B, the normalized 

modulation amplitude, is related to the rf phase modulation a in the original 

(A+, 6) coordinates by 
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FIGURE 2. Poincare surfaces of section for a &I Hamiltonian with B = 0.003 and 

urn = 0.96 (left) and B = 0.00.5.5 and U, = 1.97 (right). Here B and w, are rf phase 

modulation amplit,udes and tunes respectively. The separatrix trajectory is shown in this 

case for marking the boundary of stable motion of the unperturbed Hamiltonian. In reality, 

the separatrix is destroyed by the harmonic modulation. 

As a. result, the modulation is very much enhanced for the QI storage ring due 

to the vanishingly small value of ~0. The perturbed part of the Hamiltonian 
can be easily expanded as a Fourier series in the angle variable +: 

Cc 
xcosbJ,t = ~g,cosnu~cosw ,t = $ &7n[COS(nq!5 - u,,t) + cos(n$ + L&t)]. 

n=O n=o 

(3 3) * .* 

which exhibits the n:l resonance when the normalized modulation tune w, is 

close to the integer n. Here, the modulation strength g, for n # 0 is given by 

mmnudti = 
2x2(el - e3)(-1)"ng" 

K2(m) 1 - q2" 7 (3 4) * . 

with q = exp[-di”(m)/K(m)]. For th e usual pendulum-like bucket, because 

of the symmetry between positive and negative momentum spread, only res- 

onances corresponding to odd n occur. Here. such a symmetry is absent, we 

have resonances corresponding to both odd and even n. For example, Fig. 2 
shows separately Poincare surfaces for 1:l and 2:l resonances, respectively. 



A Radiation Damping 

Electrons emit radiation which leads to synchrobron radiation damping. The 

equation of motion from the Hamiltonian of Eq. (3.1) will be modified to 

xl’ + Ax’ + x - x2 = --a, B cos w,t , (3 > 5 . .I 

where the normalized damping coefficient is given by 

A KIJE 
A=---= . 

us 27rEou, 

Here, X is the damping decrement, U0 the energy loss per turn: and JE the 

damping partition number. Note that, due to the small synchrotron tune of 

the QI system, the normalized damping coefficient is again enhanced. Some 

typical damping parameters for storage rings are listed in Table 1. Thus7 in 

our study here, it is necessary to allow A to reach - 0.5. 

TABLE 1. Typical parameters of electron storage rings 

LEP HERB APS CESR ALS 

EO (GeV) 55 9 7 6 1 .5 

Uo/Eo ( 10-3) 4.8 0.39 0.78 0.32 0.074 

Q,O( 10-4) 3.9 24.4 2.4 152 14 

us 0.085 0.05 0.0066 0.064 0.0082 

A (damping) 0.018 0.0024 0.037 0.002 0.003 

fo @Hz) 11.2 136 283 390 1524 

fsyn @Hz) 0.956 6.8 1.9 2.5 12.5 

B 1:l Parametric Resonance 

In the presence of damping, the stable fixed points of the Hamiltonian of 

Eq. (3.1) become attractors, towards which the Poincare sections spiral. The 

attractors are periodic solutions of the Equation of motion (3.5). An approx- 

imate solution can be obtained using the method of harmonic linearization. 

For the 1:l resonance, we use the ansatz 

x = ,710 + x1 cos (w,t + ,& ) . (3 7) * . 

Substituting into Eq. (3.,3) and neglecting all higher harmonics, we obtain 

w;B2 = A2u;X: + w2 ( m-&q2x:. (3 8) * . 

x0==; 
( 

l-J1-2x: 2x;,, 
> 

(3 9) * . 



(3.10) 

It is obvious that a maximum amplitude Xi = 2-*12 exists. which lead t,o a 

maximum tolerable modulation amplitude for the 1: 1 parametric resonance of 

B cr.l:l = w, 2 1 . (3.11) 

The existence of a critical modulation amplitude is a result of the potential 

well in the Hamiltonian of Eq. (3.1). Wh en the modulation is too strong, 

particles spill over the potential barrier and get lost. 

C Bifurcation and chaos 

When the modulation tune is reduced to w rrL 5 2: bifurcation takes place be- 
cause of the presence of the 2: 1 parametric resonance. We extend the previous 

analysis by adding a perturbation y(t) to ansat,z in Eq. (3.7): 

x = x0 + s1 cos (wmt + Xl) + y(t) * (3.12) 

Neglecting higher harmonics? we find y(t) satisfies the damped Nathieu equa- 

tion, 

TJ’ + Ay + [l - 2X0 - 2X1 cm (w,t + x~)]y = 0 . (3.13) 

and the solution can be written as 

y(t) = x1/2 cos (&?J + Xi) ? 

where Xii2 - est with s 5 0. Jlathieu instability then implies 

(3.14) 

(3.15) 

from which the threshold X1(2:1) can be solved as a function of A and w,. Sub- 

stituting the solution in Eq. (3.8) g ives the threshold modulation amplitude 

B2:1 = B2:1(&(2:1), A, wm) for bifurcat’ion into the 2:l parametric resonance. 

This threshold B 2:1 is plotted in Fig. 3 versus w, for different damping pa- 

rameters. Also plotted is the critical 1:l modulation amplitude Bcr,l:l, which 

meets B zT1 at a cusp. This point corresponds to the bifurcation threshold of 

the 2:l parametric resonance on top of the limiting stable orbit of the 1:l 

parametric resonance. 3ote that the threshold tune of the 2:l bifurcation is 

lowered as the damping becomes heavier. 
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FIGURE 3. The Arabian boot shaped curves correspond to the threshold modulation 

amplit,ude Bz:i for the 2:l parametric resonance with damping parameter A = 0.05,0.2,0.5 

respectively. The critical modulation amplitude B,,,r.l for the 1: 1 parametric resonance is 

also marked on the figure. The intercept of Bz:i and BcrSi.i, forming a cusp, corresponds 

to t,he bifurcation threshold of the 2:l resonance on top of the limiting stable orbit for the 

1: 1 paramet,ric resonance. 

Next tracking is done to locate the critical modulation amplit,ude B,, so 
that all the particles inside the bucket are lost or global chaos occurs. This 

instability boundary is shown in Fig. 4 as thin solid curves in each of the 2 

plots. 

We note that the 2:l bifurcation threshold is very close to the stability 

curve in each situation of Fig. 4: indicating that the 2:l parametric resonance 

plays an important role in the stability of the QI system. We increase the 

modulation amplitude B at fixed modulation tune ~3, = 1.97.5 for damping 

parameter A = 0.2. According to the lower plot of Fig. 4, we should first see 

a 2:l bifurcation, then chaotic behavior, and then back to stability. Detail 

tracking results in Fig. 5 actually show a first bifurcation into 2:l parametric 

resonance at B - 0.29 and another one at B - 0.66. The sequence of 2:l 

bifurcations continues until B - 0.73 when the resonances overlap and chaos 

results. However, when the modulation amplitude is increased to B - 1.05, 
stability is restored through a reversed sequence of period-two bifurcation. 

We next study the stability at modulation tune w, = 2.0 and damping 

parameter A = 0.2. The first 2:l bifurcation takes place as the modulation 

amplitude increases to B - 0.30, as shown in the top plot of Fig. 6, and the 

second bifurcation at B - 0.75. However, as is indicated in the lower plot 

of Fig. 4, there is no global chaos. We therefore see the attractors recombine 

in sequence back to the 1:l resonance. Similar situation applies when the 
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FIGURE 4. The critical phase modulation amplitude I?,,. (thin solid lines) obt,ained frorn 

numerical simulations is shown as function of U, for A = 0.2 (lower plot) and A = 0.5 (top 

plot). The lines joining triangular symbols are I?,, obtained from the hlelnikov integral 

metShod. Circle dots are B,, 1 1 and B2 1 for the 1:l and 2:l parametric resonances. Note 

that the cusp in B,, observed in numerical simulations is due to the transition from t,he 2:l 

to t,he 1 :l parametric resonances. 

modulation harmonic w, = 2.1 as indicated in the lower plot of Fig. 6. 

It is worthwhile to point out that these detailed bifurcations and instability 

boundaries are not obtained from the usual turn by turn tracking using a small 

synchrotron tune. Instead. a fourth order symplectic integrator has been used. 

In other words, this represents the solution of the differential equation (3.5). 

To further demonstrate the important role of the 2: 1 parametric resonance 

towards global chaos, a study has also been made by fixing the modulation 

amplitude at B = 0..5 with damping parameter A = 0.5 (the top plot of 

Fig. 4). By decreasing the modulation tune, we see in Fig. 7 t,he first period- 

two bifurcation at w, - 1.52 and a second one at w, - 1.4.5 The bifurcation 

sequence continues until global chaos is attained. 

The positions of the attractors are also followed in Fig. 8. At, w, = 1.,540, 
there is only one attractor shown as a diamond, which has bifurcated int,o two 
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FIGURE 5. 5. The coordinate x of the Poincare surface of section is plotted as a function of 

the modulation amplitude B at LU’, = 1.975, ,4 = 0.2. A sequence of period-two bifurcations 

is observed leading to global chaos. 

FIGURE 5. 5. The coordinate x of the Poincare surface of section is plotted as a function of 

the modulation amplitude B at LU’, = 1.975, ,4 = 0.2. A sequence of period-two bifurcations 

is observed leading to global chaos. 
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FIGURE 6. The coordinate 2 of the Poincare surface of section is plotted as a function of 

the modulation amplitude B at tiVL = 2.0 (upper plot) and 2.1 2.1 (lower plot) wit,h A = 0.2. 

FIGURE 6. The coordinate 2 of the Poincare surface of section is plotted as a function of 

the modulation amplitude B at tiVL = 2.0 (upper plot) and 2.1 (lower plot) wit,h A = 0.2. 
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Modulation frequency 

FIGURE ‘7. Coordinate p of the attractor in the Poincare surface of section is plotted 

as a function of the modulation frequency (tune) w, near the region of global chaos for 

parameters A = 0.5 and B = 0.5. the attractor bifurcates into two at the modulation tune 

of about 1.515, then follows a series of period-two bifurcations before reaching global chaos. 
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FIGURE 8. In the phase space. a single attractor (diamond) with A = 0.5, B = 0.5 

at w, = 1.54 associated with the 1:l parametric resonance bifurcates into 2 attract.ors 

(rectangles) related to the 2:l parametric resonance. Attractors (triangles) are unambigu- 

ously identified as the second period-two bifurcation into t.he secondary (2:l) parametric 

resonances within the primary (2: 1) resonance islands. Dots correspond to the strange 

attractor with global chaos at U, = 1.39. 
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(rectangles) at w, = 1.480, and into four (triangles) at w, = 1.436 The system 

has become globally chaotic when w, = 1.390, where many bifurcations have 

taken place. There are many attractors (dots) located along a curve but 

close to each other. In the turn-by-turn Poincare map, we see a particle jump 

from one attractor to the other ramdonly. If there were no damping, we would 

expect the particle jumping over everywhere in the Poicare map. This ramdon 

jumping among the attractors is also demonstrated by the Fourier transform 

of the steady-state solution, which is plotted in Fig. 9. At w, = 1.390, besides 

the line of the modulation tune, we see a noise-like structure. 

It is interesting to see that some of the bifurcated attractors in Figs. 7 and 

8 fall outside the QI bucket with IpI > l/a. This is because damping has 

been included, which makes the basin of stability larger than the QI bucket. 

I 
I I I 

/ 
I I 

I 
I I 

- mm q 1 .39000 

05 LO 1.5 

i 

I 

2.5 

FIGURE 9. FFT spectrum of steady state solution with parameters A = 0.5, B = 0.5, 

and w m = 1.39 is plotted. 

IV STOCHASTIC BEAM DYNAMICS 

Electrons emit photons randomly, so there are quantum excitations. Equa- 

tion of motion in Eq. (3.5) becomes 

d2x dx dll’ 
- + AZ + d17: = -w,B cos (w,t + 4) + D[(t) : 
dx2 

where r(t) is a Langevin force which has the propert,ies t’hat 

(I(t)) = 0 : (mw)) = Q - f’) * 

(4.1) 

(4.2) 
Here U(X) = $x2 - $x3 is the same “potential” we used before and D is the 

diffusion coefficient. 
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A EQUILIBRIUM DISTRIBUTION 

With quantum excitations, particles will not be damped to attractors. In- 

stead, they spread around an attractor as a bunch. The distribution @(p,x) 

in the longitudinal phase space is governed by the Fokker-Planck equation, 

d!P d d 8 D2 d2 3 

3t= 
-pz + A;I~I-P + (x - x2)% + yap:! + Bw, sin(u,,t + d)G 1 \3[, . 

(4 3) .* 

which is associated with the Langevin equation of Eq. (4.1). In the case of zero 

phase modulation (B = 0) i th e solution of the Fokker-Planck equation gives 

the normalized steady-state distribution of a bunch containing :V paricles, 

d:l’ N -=- 
dE Et/i 

e-E/&h 
7 (44 

where the ‘(energy” E is the value of the unperturbed Hamiltonian, and “ther- 

mal” energy Eth is given by the Einstein relation, or the fluctuation-dissipation 

theorem 

(4 5) .f 

It is worth noting that the iso-density contour of distribution function follows 

the equi-energy line of the unperturbed Hamiltonian, in spite of the presence 

of damping and random excitations. The distribution is therefore Gaussian 

in phase but is only Gaussian in momentum spread provided that the bunch 

or Eth is small. Since the rms momentum spread for a small electron bunch 

is given by 

(4.6) 

for an isomagnetic storage ring. where p is the bending radius, C, = 3.84 x 

lo-l3 m, and JE is the damping partition number, the diffusion parameter is 

given by 

Here? the quantum fluctuation coefficient D of the QI dynamical system is 

also enhanced by the smallness of 170 1. 

The rms phase space area A of the beam distribution is given by 

-ar( x)var(p) - (covar(x. p))” , (4.8) 
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where 

\-ar(x) = ((x - (x))2), 

~-4P) = KP - (P)>‘h 

CovarJx, p) = (xp) - (x>(P>- 

Here (. . .) d enotes an alTerage over the beam distribution. In the small bunch 

approximation, the (x3) term is small and the rms phase space area is equal 

to rEth. Detailed simulations verify the distribution of Eq. (4.4) and also the 

rms bunch area. 

B Quantum Lifetime 

Particles that go outside the bucket through quantum excitation may be- 

come lost. The quantum lifetime can be obtained by using the condition of 

flux conservation. The flux that enters the contour E = El at any time t is 

given by 

dN( t ) dN( E, t) dE 

dt EI = dE I --I El ’ dt El ’ 

(4.9) 

where dN/dE is given by Eq. (4.4): and the damping rate dE/dt can be 

obtained from integrating Eq. (4.1) with 

(4.10) 

Here, (x3) is again neglected in obtaining the last approximate identity. Sub- 

stituting Eqs. (4.10) and (4.4) into Eq. (4.9) the quantum lifetime of the 

bunch is given by 

1 

or 

Eth 

3 = 2w,AE1 
eEIIEth turns, 

(4.11) 

(4.12) 

which is inversely proportional to the damping paramet.er A. This formula 

is commonly used in estimating the quantum lifetime for nominal non QI 

electron storage rings: where the parameter A is small. 

Figure 10 shows the quantum lifetime obtained from numerical simulat)ions 

versus damping parameter A for a constant Eth = 0.03872. The solid line in 

Fig. 10 shows the quantum lifetime calculated from Eq. (4.12) with El = $ 
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corresponding to the separatrix. This result agrees reasonably well with that 

obtained from numerical simulations only at the small damping limit of A 5 
0.01. The quantum lifetime from simulations is considerably larger than the 

prediction of Eq. (4.12) at th e medium damping of A 2 0.01. This can be 

understood by the fact that the effective bucket area for a moderate damping 

system is larger than that of a weak damping system. 
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FIGURE 10. The quanturn lifetime in number of revolutions obtained from numerical 

simulations is plotted versus the damping parameter A for a fixed &h = 0.03872. Theo- 

retical results are in solid for the weak damping limit, dots for the Kramers’s formula, and 

dashes for the BHL formula. 

In the moderate damping regime: there is the Framers-Chandrasekhar 

time formula [17,18] shown as dots in Fig. 10, 
1 

%KC = (4 

ife- 

13) 

where w,,, is the natural frequency of the potential at the stable fixed point 

cSFP), and w,,, is the imaginary frequency at the UFP. There is also the 

Biittiker-Harris-Landauer (BHL) lifetime [19] formula based on the study of 

an underdamped Josephson-junction circuit, 

%BHL = 
[(I + ~&~/Af~~)1’2 + 112 27~ 

-e 
El,Eh t 

4 W 
SFP 

(4.14) 

Here f = 7.2 is the factor relating the separatrix energy to the separatrix 

action for the QI dynamical system. The BHL formula reduces to Eq. (4.12) in 
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the small damping limit with a linear oscillator approximation where f = 2~. 

We see that the BHL formula. shown as dashes in Fig. 10. provides a fair 

agreement with numerical simulations. 

V STOCHASTICITY AND PHASE MODULATION 

Now let us come back to Eq. (4.1) and study the effect of phase modulation 

in the presence of stochasticity. Again harmonic linearization is used with the 

ansatz 

x = x0 + 1471 cos (w,t + 0) + u ! ( 1) 5. 

where u represents the quantum fluctuation and satisfies a Alat hieu-Langevin 

equation, 

u” + Au’ + 1 cos (w,t + CL) u - u2 = DE(t) . ] (ri.2) 

This provides Mathieu instability to the SFP of the 1:l parametric resonance? 

and the instability is the bifurcation into the 2:l parametric resonance. Even- 

tually, global chaos will be reached through a sequence of period-two bifurca- 

tions similar to our discussion in Sec. III. 

A Equilibrium Distribution 

The Fokker-Planck equation associated with the \Iat,hieu-Langevin equa- 

tion (.5.2) for distribution function Q(u! v, t), where 2) = u’. is given by 

m 
- = at [ 

r3 
Lo - 332x1 cos(w,t + a)u) q . i 1 (.5.3) 

Here Lo is the time independent differential operator, 

(3 (3 
Lo = -%v + z (Av + d-u - u2 

> 

D2 a2 

+2c31,2- 
(5.4) 

The solution of time independent Fokker-Planck equation is 

1 
@a=---exp 

+ Ji53u2 3 
Eth 2 

(L5) 

Note that the potential well around the SFP of 1:l parametric resonance is 

lowered by the amplitude Xi of the attractor solution. When Xi + 1 t’he 

potential well disappears and the system becomes globally unstable. With 

the time-dependent term, the distribution can he solved by perturbation. A 
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FIGURE 11. The top-left plot shows the equilibrium distribution function at a Poincarg 

surface of section with pararneters A = 0.2. B = 0.4,~~ = 2.1 and D = 0.009. The projec- 

tion of the equilibrium distribution function onto the u and v axes are shown respectively 

in t,he bottom-left and top-right plots. The bottom-right plot shows the relative position of 

the beam bunch in the QI bucket. 

simulation of the steady-state distribution inside a 1:l parametric resonance 

island is shown in Fig. 11 with A = 0.2, B = 0.4, in, = 2.1 and D = 0.009. 
From the projections onto the phase and momentum axes, the rms widths 

gU and gV can be determined, and are found to be nearly equal to D/J2A 
predicted by the solution of Fokker-Planck equation. 

B St ability Limits 

In the presence of white noise. we expect that the resonance islands will be 

smeared and the global chaos will be enhanced. The plots of critical modula- 

tion amplitude B,, versus modulation frequency w, in Fig. 3 becomes Fig. 12. 

We see that white noise effectively smooths out the cusp near w, ==: 2 as a 

result of the 1: 1 and 2: 1 parametric resonances. Furthermore: the quantum 

fluctuation can effectively reduce the parametric space where the period-two 

bifurcation occurs. In other words! quantum fluctuation enhances the onset 

of global chaos. 
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2: 1 resonance 

2: 1 resonance 

FIGURE 12. The critical phase modulation amplitude B,, (thin solid lines) obtained from 

numerical simulations is shown as function of w, for A = 0.2 (bottom plot) and A = 0..5 

(top plot). Circle dots are B,,,i 1 and B:! 1 for the 1:l and 2:l parametric resonances. Note 

that. the cusp in B,, o btained from numerical simulations is due to the transition from the 

2:l t,o the 1:l parametric resonances. Including the quantum diffusion. the critical phase 

modulat.ion amplitude B,, is reduced. where B,, for D = 0.03 (open circles) and D = 0.05 

(solid triangles) are obtained by numerically integrating the stochastic differential equation. 

C High-Frequency Modulation and Enchancement of 

Quantum Diffusion 

For the Mathieu-Langevin equation (5.2), which describes the motion of the 
quantum fluctuation u about the attractor solution, we can write an equivalent 

Hamiltonian around the SFP: 

H1:1 = id2 + ; [JcTrf - 2x1 COS(+J + a) u2 - ;u3 . 1 (5 6) ’ . 

Therefore, with phase modulation, we have an equivalent potential well around 

the SFP of the 1:l parametric resonance. 

dc!zf - 2x, cos (L&J + a) 
> 

u2 - $2 . (5 7) * . 
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For very high modulation tune U, >> 2, the time-varying part can be averaged 
to obtain the effective potential [20]: 

&(u) = ; (JrTf+ ,+yJ u2 - $u” - 
1 

The potential difference between CFP and SFP becomes 

(5 8) * . 

(5 9) ’ . 

Thus, there is a reduction in depth of the potential well, implying that larger 

quantum diffusion leads to easier particle loss. When A\& is substituted for 

Er in BHL lifetime formula. the enhanced loss rates shown in Fig. 1.3 agree 

with simulations. 
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a 4.0 
E 

8 

2 
c 

ti 3.0 
a 

5 

2 tii 2.0 

u 

D=O. 1, A=0.2 

D=0.15, A=0.2 

0.00 0.10 0.20 0.30 

Xl 
FIGURE 13. The triangles and dots show the escape rate enhancement as a function of 

t,he attractor amplitude X1 for A = 0.2, D = 0.1 and D = 0.15. The solid lines are obtained 

from t,he BHL formula with Ei replaced by the separat,rix energy AVS,, of Eq. (5.9). The 

pararneter B is varied to obtain appropriate Xi for a given modulation tune w, = 4. 

D Low-Frequency Modulation and Stochastic 

Resonances 

For low-frequency modulations, the time dependent term in the potential 

well of Eq. (5.7) cannot be averaged. Thus the depth of the well, or the 
potential difference between CFP and SFP, 
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l/ l/ I I \3 \3 

Aye;=; \/1-2?1’:-2X1cos(w,t+cu) 
t J 

; (5.10) 

oscillates according to the modulation frequency and so there will be the beam 

loss. The upper plot of Fig. 14 shows the particle escape rate obtained from 

a numerical simulation as a function of time with parameters 27rv, = 0.04, 

A = 0.1, B = 0.5, V, = 0.2 and D = 0.075. Note here that there are major 

peaks separated by Ah’ = I/(v,v,) turns. The solid line in the top plot shows 

the time dependent decay rate of the BHL formula with Er replaced by AL&, 
of Eq. (5.10). The lower plot of Fi g. 14 shows the phase of the centroid of the 

beam bunch as a function of time. It is clear that when the centroid of the 

beam bunch is near the UFP, particle loss is greatly enhanced. The occurrence 

of the periodic beam loss can therefore be associated with the enhancement 

due to the 1:l parametric resonance. This periodic enhancement of diffusion 

is called the stochastic resonance. Occasionally, this t,ype of enhancement may 

occur in a stochastic dynamical system with an algorithm of white noise that 

is not sufficiently random. 
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FIGURE 14. Particle escape rate (l/~~) is plotted (upper) versus the turn numbers for 

27~1, = 0.04, A = 0.1. B = 0.5, urn = 0.2 and D = 0.075, to be compared with the BHL 

formula shown in solid. The phase of the bunch centroid is shown in the lower plot. 
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VI TOUSCHEK LIFETIME 

In rest frame of the synchronous particle of the bunch, the longitudinal 

momentum spread of an off-momentum particle is reduced by the Lorentz 

relativistic factor ^f, 

1 
6, = -Slab . 

7 

Here, both 6, and 6 lab are measured with respect to the synchronous momen- 

tum ~0 in the laboratory frame. Due to radiation damping and quantum 

excitations, we have 

(bb)‘>‘/’ >> ((2;)“)“” ==: ((SC)‘)‘/2 j (6.2) 

where X; and ,z; are the slope of the horizontal and vertical betatron oscil- 

lations. Since the horizontal momentum spread of the beam is much larger 

than the longitudinal momentum spread in the rest frame of the synchronous 

particle, large-angle Coulomb scatterings will transfer horizontal momentum 

into longitudinal momentum, leading to beam loss. The limited lifetime as a 

result of this mechanism is called Touschek lifetime [al]. 

For the QI bucket. 6 lab = ]vo/vi ] is small, so that Touschek lifetime will be 

much smaller than usual. This lifetime can be deri\Ted straightforwardly from 

the differential cross-section of hl6ller scattering. The Touschek lifetime 7T is 

found to be 

7-l 
1 ClfV Nric x--y 

T 
21’ dt 

I I 

TJ- 3 D(f) ? 

8~~7~~s 70 
(6 3) . . 

where 

with 

(6 > 5 .t 

and G,, at, and gs are the rms bunch widths in the horizontal, vertical, and 

longitudinal directions, and (gP)r& is the rms longitudinal momentum spread, 

all measured in the laboratory frame. This expression is illustrated in Fig. 1.5, 
where the number of particles ,V allowed in a bunch for a 10 hour Touschek 

lifetime is plotted as a function of ]qo/qi 1: the momentum acceptance of the 

QI bucket. The bunch is chosen to have a rms length of gs = 1 ps and 
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FIGURE 15. The expected number of particles per bunch in the QI storage ring limited 

by t.he Touschek lifetime of 10 h for electron beam energy of 2 GeV and 7 GeV respectively. 

unnormalized rms transverse emittances of E, = 1 nm: E, = 0.01 nm assuming 

a beta function of 10 m. For example, at 7 GeV, with lva/qi 1 = 0.005, such a 

bunch can accommodate only - 6 x lo6 particles. To accommodate a higher 

intensity beam: ~1 must be reduced. For other bunch parameters. the tolerable 

beam intensity can be scaled from Eq. (6.3). 

VII CONCLUSIONS 

We have studied the kinematics of the o-like QI bucket and found that the 

synchrotron frequency drops to zero at the edge of the bucket very abruptly. 

As a result, parametric resonances induced by time-dependent perturbations 

will overlap one another and give rise to chaos. In fact. the stability of the 

bucket is strongly affected by harmonic phase modulation. Because the QI 

bucket does not possess symmetry between positive and negative momentum 

spreads, the 2:l parametric resonance is possible. We have shown that global 

chaos in this system is a result of a sequence of period-two bifurcations into 

2: 1 parametric resonances. 

Both the normalized radiation damping paramet,er A and quantum diffu- 

sion parameter D are enhanced in the normalized equation of mot’ion for the 

beam particles. Although the approach to chaos becomes worsened, the parti- 

cle distribution in the longitudinal phase space turns out to remain Gaussian 



in the phase direction but non-Gaussian in the momentum direction unless 

when the size of the bunch is small. The rms spreads in both projections 

are governed by the ‘thermal energy” Eth = D2/(2A) according to Einstein’s 

relation. In spite of enhanced damping and diffusion, the quantum lifetime 

of a bunch in the QI bucket is longer than expected. Phase modulation will 

enhance diffusion and thus shorten the quantum lifetime if the modulation 

frequency is high. At low modulation frequency, however, particle loss oscil- 

lates at the modulation frequency whenever the bunch is near the unstable 

fixed point, producing a phenomenon called stochastic resonance. Because of 

the small momentum acceptance of the o-like QI bucket. particle loss due to 

Touschek scattering becomes more severe. The tolerable bunch intensity for 

a fixed Touschek lifetime has been computed. 

Voltage modulation can also affect the stability of the QI bucket. However? 

its effect is much smaller than that of the phase modulation. and therefore 

the discussion has been omitted. It is also interesting to point out that the 

potential-well distortion of the bunch due to the coupling impedance of the 

vacuum chamber will not be affected by the enhancement of the damping 

parameter and diffusion parameter. 

It appears that the a-like QI bucket may become indispensable in producing 

ultra short bunches. Therefore. its detailed study has become rather impor- 

tant. Experiments should be performed to confirm some of the predictions 

given in this presentation. 
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