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Fermi National Accelerator Laboratory,’ I? 0. Box 500, Batavia, IL 60510 

ABSTRACT 

Whether the higher-order terms in the momentum-compaction 
factor, crl and cua, can be obtained reliably from lattice codes is 
an important issue for some quasi-isochronous rings. A FODO 

lattice consisting of thin quadrupoles, dipoles filling all spaces, 
and two families of thin sextupoles is solved and cri and CXU~ are 
derived analytically, We find accurate agreement with SYNCH 

for (Y~ but not (~a. Possible error in SYNCH is examined. Some 
methods of measurement of ‘pi and crz are discussed. 

I. INTRODUCTION 

The high luminosity of the recently proposed 2 TeV-2 TeV 
muon-muon collider [l] calls for a colliderring of circumference 

co - 8OOOmwithanrms bunchlengthof3mm(lOps)andrms 
momentum spread of 0.15%. The short bunch length, as well as 

a reasonable rf voltage, limits the slippage factor of the collider 
to 171 5 1 x 1O-6 for every particle in the muon bunch [2, 31. 
This implies that the spread of 11 as a function of momentum off- 

set 6 needs to be less than -1 x 10e6 also. 
The slippage factor and closed-orbit length C of an off- 

momentum particle can be expanded as power series in momen- 

tum offset 6, 

17=710+1716+77262+ “‘. (1.1) 

c = Ca(1 + Lyo6 + (ui62 + cu# + ” ‘) ) (1.2) 

where mi is the ith-order term of the momentum-compaction 
factor. For a 2 TeV muon having y-* = 2.73 x lo-‘, which 
is very much less than the required [ 71, it can be readily shown 
that q1 E n1 and q2 z cr2 [3]. 

With so tiny a value of 1170 1, the contributions of the higher- 
order term of the momentum-compaction factor can bring in a 
large spread in the slippage factor. To satisfy the zeroth-order 
momentum-compaction factor aa, the collider lattice can be de- 
signed rather easily, for example, using flexible momentum- 

compaction modules [4]. The first order ~1 brings in momen- 
tum asymmetry of the rf bucket and will lead to severe longi- 
tudinal head-tail instability [5]. Fortunately this instability can 
be avoided by reducing or eliminating the contribution of crl 
through the deployment of sextupoles [3]. However, the second 
order term cya will come into play. 

For lattice structure that is as complicated as the flexible 
momentum-compaction module, analytic computations of cyl 

and ~2 are almost impossible. The other design tool that we can 
rely on will be lattice codes such as the more common SYNCH 

[61 and MAD [71. An obvious important question to ask is how 
reliable are these code-generated results, when higher orders of 
the momentum-compaction factor are concerned. 

*Operated by the Universities Research Association, Inc., under contract 
with the U.S. Department of Energy. 

In this paper, we look into a FODO lattice consisting of thin 

quadrupoles, dipoles filling all spaces, and two families of sex- 
tupoles. When the exact solution is compared with the results 

from SYNCH, we find that SYNCH does not provide the cor- 
rect 02. The source of error is investigated in Section III, and 
some possible ways to measure cyz experimentally are discussed 
in Section IV. Section V is devoted to remarks and conclusions. 

II. SIMPLIFIED FODO LATI-ICE 

A. Momentum-Compaction Factor 
P’ 

)D 

Figure 1: A FODO half cell with thin F- and 
D-quadrupoles and a dipole filling all spaces. 

A simplified FODO lattice with only thin quadrupoles and 
with dipoles filling all spaces is soluble analytically @I. Con- 
sider a half cell shown in Fig. 1. The half F-quadrupole is at 
F F’ while the half D-quadrupole is at DD’. In between lies the 
dipole of bend angle Qn. The designed orbit in the half cell is 
the arc FD and is of length to = poQ0 with radius of curvature 
pa, while the off-momentum closed orbit corresponding to 6 is 

the arc F’D’ and is of length I, radius of curvature p, and bend 
angle Q = fJ/l~. Passing through the thin half F-quadrupole, the 
off-momentum orbit acquires, according to the bending due to 
the Lorentz force, an angular change of 

where 

(2.2) 

(2.1) 

is the integrated strength of the quadrupole and B’ the field gra- 
dient. The off-momentum orbit then turns through an angle Q 
inside the dipole and another 

SD s Ad, XY --- 
lo 1+6 

(2.3) 



through the half D-quadrupole to complete the half cell. In the 
above, fi and D represent the values of the dispersion function 
at theF- andD-quadrupoles, respectively. The total angle turned 
is obviously On. Therefore, 

S6 0-D 
O=Oo--- 

1+6 lo 
(2.4) 

Since the two orbits are in the same dipole field, their radii of 
curvature are related by p = pn( 1 + 6). Combining Eqs. (2.4) 
and (2.5), we have for the two orbit lengths exactly 

t=,o[l+i(l-~~)] (2.5) 

We can also include two families of half thin sextupoles of 

strengths 

S, = 
s 

B; 
dtz S, = 

s 

B; 

~BOPO 
d!D 

2Bopo ’ (2.6) 

placed, respectively, on each side of the F- and D-quadrupoles. 
The angle the off-momentum orbit turns at the half F-quadrupole 
and F-sextupole will change from Eq. (2.1) to 

sbs 
Ad, = 1$6+ 

S,b2b2 
1+6 

Similarly, Ad, of Eq. (2.2) will change to 

SD6 s 02ti2 
A+~J,=-=+~ 

1+6 

(2.7) 

(2.8) 

Equation (2.5) should also bechanged accordingly. Note that the 
E. has been removed since we have simplified the notations by 
measuring all lengths in terms of it. 

With the expansions 

b = 0, + 016 + i&s2 + S(b3) , (2.9) 

D = i)o + Dlb + 0262 + S(b3) , (2.10) 

for the dispersion function D, and EZq. (1.2) for the orbit length 
C, we arrive at each order of the momentum-compaction factor, 

cro = 1 _ s@o - Do) 

00 

‘yl = -S(i)1 - D1) SF@ SD@ --_ 
00 00 QO 

Q2 = -s@2 - &) 2s,o,o, 2s,i)oLii - - 
00 00 00 

, (2.11) 

which are exact to all orders of Oo. 

B. A Geometric Solution 

The off-momentumclosed orbit F’D’ is an arc of a circle with 
radius p = po( 1 + 6). The equation of the arc contains only two 
constants plus fi and B. However, this arc is constrained by its 
positions and slopes at the dipole’s entrance and exit. Therefore 
the two constants together with fi and D can be determined. 

Consider OF’ of Fig. 1 as the y-axis and 0 the origin. The 
z-axis is on the dipole side of OF’. The point F’ is (0, po+i)6) 

and the arc F’D’ is at an angle Ab, given by Eq. (2.7). The 
equation of the arc F’D’ is therefore given by 

[z + psin Ad,]’ + [y - pn - OS + pcos ad,] ’ = pa 

(2.12) 
Now rotate the z- and y-axes by an angle $0, so that the new y- 
axis passes through the center of the dipole. In terms of the new 
axes, the equation of the circular arc becomes 

2 

zeos$+ysin$+psinA0, + 1 
-ssin~+ycos~-pll-ijh+pcosAd, 1 

2 = p2 
(2.13) 

We can also start with OD’ as the y-axis. The angle at D’ is 
now Ad, as given by Eq. (2.8). The axes are then rotated in the 
opposite direction by iOo so the the equation of the arc F’D’ 

becomes 
2 

zeos$-ysin$+psinAc, + 1 
2.6in~+yCas~--o-i)F+pcosAm, 1 

2 = p2 
(2.14) 

Equations (2.13) and (2.14) are exactly the same because they 
describe the same arc F’D’. By equating coefficients, we obtain 
with t = t,an fO0, 

psinA4, - 
[ 
pcosA4, - i)6 - p. t = 1 

psin Ad, + [p cos Ad, - Db - po] t , (2.15) 

tpsin Ad, + [pcos Ad, - DS] = 

-tpsin A&, + pcos Ad, - l% 
1 1 t (2.16) 

The other relations are redundant. Thus, we can solve for B and 
D in terms of 00 and 6 exactly. Since we are interested in solu- 
tion up to the second order in 6 only, Eqs. (2.15) and (2.16) can 

be expanded and simplified. We then obtain for the zeroth order 
in 6, 

(i -:) (l~~L30) = (4 1) (l”2Do) 3 

(2.17) 
for the first order in 6, 

(: -:)( 
srj, + s, 0; 

-;s2i); - BObI )= 

(-: ;) ( so, - s, 0,” 
-+s2i); - OOi)l ) ! (2.18) 

and for the second order in 6, 

(: -:)( 
so, - 1s303 + 2s b,i, $2 0,” - &jo~lo- o,;() - s;, 0; > = 

2 



(2.19) 

Solving Eq. (2.17), we obtain 

(2.20) 

which are the usual expressions for the dispersions at the F- 
and D-quadrupoles of a FODO cell. The zeroth order of the 

momentum-compaction factor is, according to EZq. (2.1 l), 

cyo=l- 
2s2t 

Oo(S” + 0,‘) 
(2.21) 

Solving Eq. (2.18), we obtain the first order dispersion, 

fi = -s”b,2(StZ + 2oot - S) s30;(1+ 12) 
1 

4qs2 + 0,“) - 4f(S2 + 0;) 

s,bg2st - oot2 + 0,) S,O,20,(1+ t2) - 
2(S2 + 0;) - 21(S2 + 0;) 

, (2.22) 

D = S”@(l +t’) sq(2oof + s - SF) 
1 

4t(P + 0,“) - 4t(P + 0;) 

S,@O,(1+ t*) -2 - 
2t(P + 0,“) - 

sD D”;;;s; yj2; Oot2) (2.23) 
0 

The first-order term of the momentum-compaction factor can 
now be obtained from Eq. (2.11). It can be simplified to 

~1 = -s4qs2t2 + 3002) 

Oo(S2 + 0;)3 
- (S, 0; + s, D,,“) . (2.24) 

We see from Eq. (2.24) that crl can be reduced or eliminated by 
suitable deployment of sextupoles. 

In the situation of a very large ring where 00 << S, the above 
equations reduce to 

(2.25) 

(2.26) 

Solution of Eq. (2.19) gives 

0, - B2 = Ls”Lj3 
s - too l$3i)3S+tOo 

6 
O s2 + 0; 0 S? + 0; 

+;s”(o; - D;) - s2(D;01 - i)jj&) 
 ̂  ̂ s - too 

-2S, Do D1 ___ - 
s2 + 0; 

-S(S, 0; + s, D;) . (2.27) 

Substituting into Fq. (2.11) will give LYE. As is seen in 
Eqs. (2.22) and (2.23), L& and fii are linear in S, and S,, CY~ 

will have quadratic terms in the sextupole strengths, indicating 
that the sextupoles talk to each other in their contributions to the 
second-order term of the momentum-compaction factor. 

In the large ring approximation, 0: << 1, EQ. (2.27) can be 
simplified considerably. In the absence of sextupoles, we obtain 

where we have included the c3[(O/S)4] term because the 
0[(O/S)2] term happens to have canceled out. Note that ‘JYO. ai 
and a2 are all of order 0:. Therefore, it may be more convenient 
to quote their ratios instead; i.e., 

~-;(;~W), ,a-%i:-g 

(2.29) 

C. Comparison with SYNCH and MAD 

A numerical comparison of LUG had been made in Ref. 8 with 
the theoreticalresults of a simplifiedFOD0 lattice with only thin 
quadrupoles and with dipoles filling all spaces. A ring consisting 
of 150 equal FODO cells and another one consisting of 15 equal 

FODO cells were considered. The half-cell length was tixed at 
1, = 27r m, and the half quadrupole strength was varied from 
S = 0.020 to 0.999. The first-order momentum-compaction 
factor cyl was extracted from SYNCH in each case and was com- 

pared with the analytic expression derived above. The agree- 
ments had been excellent, up to at least 3 significant figures. A 
comparison had also been made with the addition of two families 

of sextupoles. The agreement had also been excellent, thus veri- 
fying the validity of Eq. (2.24). This does not, however, exclude 
the possibility of a disagreement of ai with lattice consisting of 
thick quadrupoles and thick sextupoles. This is because the ex- 
act integration of the particle trajectory inside a quadrupole or 
sextupole is tedious and time consuming, and lattice codes usu- 
ally resort to approximations. 

Here, we continue to use a lattice consisting of 150 equal 
FODO cells to study the second-order term of the momentum- 

compaction factor a~. The half sextupole strength is chosen to 
beS=ioraphaseadvanceofp=2sin-l$=;. 

What we obtain from SYNCH are the transition gammas yt’s 
at various momentum offsets, with yt defined as 

(2.30) 

which can be expanded as a power series in momentum offset 6, 

-2 
Yt = a0 + a16 + a# + (2.31) 

Comparing with the power expansion of the closed-orbit length 
in Eq. (1.2), the various orders of the momentum-compaction 
factor are obtained: 

020 = (10 , 

201 = a1 - a0 + cl;, 

3’yz = a2 - a1 + a0 + &Ja, - ;u; + ;a; (2.32) 

When the 7; 2 ’ s from SYNCH for momentum offset varying 
between ~tO.0004 are fitted by a polynomial of degree two as 
indicated in Eq. (2.31), we obtain the three coefficients: a0 = 
0.00171503, ai = 0.00705748, and a2 = 0.00853026. The 
corresponding orders of the momentum-compaction factor are 
extracted according to Eq. (2.32) and are listed in Table I along 
with the analytically computed values of Eq. (3.11). The results 

of MAD were obtained in exactly the same way. Notice that the 

3 



approximate expressions of Eqs. (2.25), (2.26), and (2.28) for 

the cu’s are pretty accurate. It is obvious that a2 has not been 
given correctly by SYNCH and MAD. We also tried to fit the 
yt2’s obtained from the codes to polynomials of degree 3; the 
first three N’S do not change in their first 4 significant figures. 

Table I: Comparison of SYNCH and MAD with 
theoretical results for the simplified FODO lattice. 

SYNCH MAD Theory 

a0 0.00171503 0.00171503 0.00171518 

@I 0.00267272 0.0026742 1 0.00267273 

a2 0.00105371 0.00064879 -0.00009099 

III. SYNCH AND MAD COMPUTATIONS 

In a lattice code, the usual way to compute Tt for an off- 

momentum particle is (1) to compute the off-momentum closed 
orbit and (2) to compute the derivative in Eq. (2.30) by offset- 
ting the momentum slightly. The second step seems to be fine, 
because both SYNCH and MAD give us the correct Yt for the 

on-momentum particle. 
As for the off-momentum closed orbit, SYNCH [6] first tracks 

an initial “first guess” particle state vector VO through one com- 
plete revolution so as to produce a new state vector Vi. These 
state vectors are 7-element vectors; for example, 

V = (z, s’,y. y’, -ds, 6. 1) (3.1) 

where the first 4 entries are for the horizontal and vertical devi- 
ations and slopes, the 5th denotes the shortening in orbit length, 
the 6th momentum offset, and the 7th is reserved for misalign- 
ment calculation. The transfer matrices of the ring’s elements 
are then linearized about this initial single-turn trajectory, gen- 

erating new transfer matrices, R, and a linearized single-turn 
transfermatrixT= RNRN-I...R~R~. 

One may now track a particle vector X0 in a small neighbor- 
hood of VO so that X0 = VO + ZO. After one revolution, this 
vector becomes Xi = VI + Z1, where Zi = TZo. If X0 is a 
closed orbit, we must have X0 = Xi, or 

Therefore, 

x0 = vo + zo = VI + z, (3.2) 

x0 = v, + TZO = v, + T(X, - V”) , 

or the closed orbit is 

(3.3) 

x0 = VI + (I - q-yv1 - I/o) ) (3.4) 

where I is the identity matrix. Then X0 is used as the new guess 
vector, and the iterations are repeated. The exact off-momentum 
closed orbit should then be available. 

Let us examine this closed orbit for the simplified 150-cell 
FODO lattice discussed above. We read out the maximum and 
minimum dispersions from the SYNCH and MAD outputs for 
different momentum offsets and fit polynomials of degree 3 to 
extract the different orders of the dispersion. The results are 
listed in Table II. Some numbers from MAD are omitted, be- 
cause the D’s are given to 3 figures only and are not accurate 

enough to do a polynomial fitting. We see that only the zeroth 
orders agree with theory. 

Using the SYNCH results of 0, and Di, we cannot arrive at 

the correct value of Lyi via Eq. (2.11) as listed in Table II. In fact, 
SYNCH computes yt separately using the derivative dC/d6 ac- 
cording to Eq. (2.30). Since (~1 from SYNCH agrees with the- 
ory (see Table I), we can conclude that the bi--Di from analytic 
calculation is correct and those from SYNCH and MAD are in- 
correct. It is not impossible that there will be error in SYNCH 
when the off-momentum closed orbit is computed. In fact, it is 
non-trivial to propagate an off-momentum particle through lat- 
tice elements having magnet field 

B = Bo+B’(oz+$B”loz2+..~ = Bopo 
[ I 
;+z<z . (3.5) 

where 1: is the horizontal deviation from the designed orbit. Al- 
though the zeroth and first order differential equations for 2 are 
simple, the exact one is very complicated [8], 

Po(l::lPo) + (I + 3 [l+!l+:;po)‘] x 

$-& ,l+(l+~~yoj2]1~+pn)(~+z~~)~ 
Since only the zeroth order off-momentum closed orbit is cor- 

rect in SYNCH, 7; a computed using Eq. (2.30) can only be cor- 
rect to the first order in 6. This explains why a2 has been com- 
puted wrongly by SYNCH and MAD. 

Table II: Comparison of SYNCH and MAD with 
theoretical results for the dispersion function. 

SYNCH MAD Theorv 

Do 0.65683 m 0.65683 m 0.65683 m 

Do 0.39409 m 0.394 m 0.39409 m 

D1 1.70435 m 1.70236 m 0.52278 m 

0 1.44461 m 1.463 m 0.52348 m 

02 4.61014 m 0.98741 m 

D2 4.88449 m 

i&D):! -0.27435 m 0.00002395 m 

IV. MEASUREMENT OF cxl AND a2 

Since cya is not predictable with lattice codes and is difficult 
to calculate theoretically for a real accelerator consisting of, for 
example, low-beta insertions, flexible momentum-compaction 
modules, and dispersion suppressors, we must resort to mea- 
surements [9]. The slippage factor can be inferred by the syn- 

chrotron tune of a particle in an off-momentum orbit. This can 
be done by altering the rf frequency from frf by an amount Afrf 
so that the synchronous particle is in a different closed orbit of 
length CO + AC at a momentum p. + Ap = po(l + ho). The 
phase equation per turn for a particle with momentum offset 6 is 

dA4 _ 
- = 27rq(6)(6 - So) 

dn 
(4.1) 

This is because the synchronous particle which is at 6 = do 
should have zero phase slip. With A6 = 6 - ho, IQ. (4.1) can 

be rewritten as 
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T = 27~ \TJ(&)A~ + q’&)A5” + $“(&)A6” + . ] 

Thus the synchrotron tune, V, = ~.,~dm, becomes 
(4.2) 

u,=u,o l+$oo+ (&&)G+...] ) (4.3) 
[ 

where vso is the synchrotron tune for the on-momentum particle 
when 17 = qo, and the vi’s with i = 1,2: are the higher-order 
expansion terms of the slippage factor as given by Eq. (1.1). 
From Eq. (1.2), the momentum offset can be written in terms of 
the orbit-length offset, 

“o=&.pq~)2+... 
‘YO 

(4.4) 

Since AC/Co = -Afrf/frf, substituting Eq. (4.4) into 
Eq. (4.3), we arrive at 

Vs=V30[l-$($$($-Kkj ($r)l+...] ) 

(4.5) 

The maximum momentum spread of the designed muon bunch 

isbmax = 0.003 and 11 z 1 x 10m6. Therefore a variation of the 

rf frequency by A frf/ frf x 3 x lo-’ will be required. Since 
the figure of merit of a superconducting cavity can easily reach 
Q = 1 x log, such an rf frequency variation should be possible. 

A low-intensity proton bunch with small momentum spread 
is injected into the muon collider for the measurement. The 
on-momentum synchrotron tune will give qa. The higher or- 

ders 71 and 71~ can be inferred by measuring the synchrouon 
tune as a function of Afd/ frf. If no asymmetric variation of 
the synchrotron tune is observed when A frf/ f,.f varies between 
f3 x 1 O-‘, we can conclude that the 71 contribution is insignifi- 
cant in this collider lattice. Furthermore, if the synchrotron tune 
remains flat during the variation of Afrf/frf, the q2 contribu- 
tion is also insignificant. The bucket will then be qo-dominated. 
However, if we see a symmetric parabolic dependency of V, ver- 
sus A frf/ frf, we can tune the machine so that q. becomes zero. 
The bucket will then be 72-dominated and the magnitude of r/2 
can be determined easily. 

Strictly speaking, Eqs. (4.3) to (4.4) are not valid when the 
contribution 70 is small. Under that situation, we can write 

u, = (4.6) 

and solve for 60 in terms of AC/Co exactly from Eq. (1.2). 
Here, h is the rf harmonic, V the rf voltage, E the energy of the 
synchronous particle and p its velocity divided by the velocity 
of light. After substituting theresult into Ekl. (4.6), we will then 
obtain v,, in terms of A frf/ frf which is valid for all values of qo, 
~1, and 72. For example, when the contribution of q2 overshad- 
ows those of q. and ~1, we have, 

v, = (A!&$ py , (4.7) 

except when Afd/frf is very close to zero. Similarly, for an 

asymmetric m-like bucket [lo], 

V. CONCLUSION 

A simplified FODO lattice consisting of thin quadrupoles and 

sextupoles with dipoles filling all spaces has been solved and an- 
alytic expression for cry? has been presented. Comparison with 

the results of SYNCH gives agreement with cyi but not ‘~2. 
We have examined the way SYNCH and MAD compute the 

transition gamma for off-momentum particles, which consists 

of computing the off-momentum closed orbit and then the -yt 
around the closed orbit using a derivative. We have compared 
each order of the dispersion with theory and found that only the 

lowest order is accurate. The error appears to come from the in- 
accurate tracking of an off-momentum particle across a quadru- 

pole and/or sextupole. With the closed orbit only accurate to first 
order in 6, it is obvious that SYNCH and MAD cannot provide 
the correct value for cy2. 

[$+ (!&#] (4.8) 

Some experimental measurements of GUI and CYZ have been 
suggested. The method consists of offsetting the closed orbit of 
the synchronous particle by altering the rf frequency and mea- 
suring the change in synchrotron frequency. Since a supercon- 
ducting cavity can have a figure of merit as high as Q = 1 x lo”, 
accurate measurements of r_ui and CYZ should be feasible. 
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