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Abstract 

We extend the phuc #pace slicing method to allow for heavy quarks and 
fragmentation functionr. The method can be wed to calculate dSerential 
cross rection in which any particular particle (massive or maaalcs8) is 
trgged. 

CERN-TH/96-230 

FERMILAB-CONF-96/306-T 

‘Talk givm by S. K. at the DPF96 Conference, Minneapolis, MN, August 10-15,1996, to 
appear in the Proceedingr 

4s Oporrtod by Universities Research Association Inc. under contract with the United States Department of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof nor any of their employees. makes any 
warranty. express or implied, or assumes any legal liability or responsibilic for the accuracy. completeness 
or usefulness of any information. apparatus. product or process disclosed. or represents that its use would 
not infringe privately owned rights. Reference herein to any specific commercial product, process or service 
by trade name. trademark. manufacturer or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation or favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof 

Distribution 

Approved for public release: further dissemination unlimited. 



A next-to-leading order calculation has well known advantages compared to 
a leading order calculation: it reduces the normalization uncertainty, it starts to 
reconstruct the parton shower, and it tests the convergence of the QCD pertur- 
bative expansion. Over the last few years the emphasis has been on constructing 
Monte-Carlo programs that include ail Q, corrections and are fully differential 
in the final state particle momenta, such that any experimental cuts can be im- 
posed. One such method is the so-called “phase space slicing” method. The for- 
malism for this method developed by Giele, Glover and Kosower [l] introduced 
a high degree of automation by using the following ingredients: decomposition 
of the amplitude according to the color structure into colorless subamplitudes, 
factorization of the phase space and of the colorless subamplitudes in the soft 
and collinear region, and the generalization of crossing to NLO. We have ex- 
tended this particular formalism to allow for heavy quarks and fragmentation 
functions. In this short contribution, we briefly review the different aspects of 
the method, full details will be presented elsewhere [2]. The method has been 
used in Ref. 3 to calculate the QCD corrections to W+ heavy quark production 
at the Tevatron. 

The QCD corrections consist of virtual and real corrections. The virtual 
corrections are the interference between the LO and all the one loop diagrams 
and must be calculated in n = 4 + e dimension in order to regularize the singu- 
larities. Coupling constant and mass renormalization take care of the ultraviolet 
singularities, and require the introduction of the renormalization scale. At the 
end, some collinear and soft singularities remain as l/c and l/ra poles. The real 
corrections are those contributions with one more parton than the LO and have 
soft and/or collinear singularities. One begins by considering the processes were 

all the quarks and gluons are in the final state, e.g., V -, qq + n gluons, where 
V stands for an electroweak gauge bosom such that all the singularities cancel 
without having to do mass factorization. The basic idea of the phase space 
slicing method is to separate the phase space in two regions using the invariants 
Sij = 2 Pi.Pj, where the Pi are the momentum of the final state particles. The 
hard region is defined so that all the Sij are bigger than a theoretical cut-off 
Z&in. In this case, the calculation can be done numerically in n = 4 dimensions. 
The collinear and soft region is defined such that one or two Sij are smaller than 

&in. In this case, the calculation must be done analytically in n = 4 + e di- 
mensions. If Sm;,, is small enough, the soft and collinear approximation can 
be used such that the integration in n dimensions is greatly simplify. We have 
generalized the soft approximation to the case where the particles involved are 

massive. In the collinear region, the mass regularizes the singularities and the 
calculation can be done numerically. The l/e and l/c’ poles that remain after 

the integration over the soft and collinear region cancel with the corresponding 

poles of the virtual contributions. At the end we are left with a “K” factor, 
proportional to the born cross section and dependent on Smin, the finite part of 
the virtual contribution, and the real corrections in the hard region, that also 
depends on Smin. An important numerical test is that any observables should 
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be independent of Smin. 
The generalization of crossing to NLO is done through the use of the so- 

called “crossing functions”. Let us consider the process: pp -+ V + n jets. The 
basic idea here is that we do not want to redo the cancellation of ail the poles, 
but rather use the “K” factor already derived for V + (n -t 2) jets. First, the 
usual crossing for all the matrix elements is done, along with the crossing of 
the finite terms of the virtual piece and the crossing of the “K” factor with 
appropriate analytical continuation. Then two corrections must be applied in 
n = 4 + c dimensions: 1) subtraction of some collinear singularities included in 
“K” that are not present when the born is crossed, 2) add some initial state 
collinear singularities not yet included in “K”. Along with mass factorization, 
all these corrections give terms that are proportional to the Born cross section: 

Q, ~J~~~jd+lC~‘~~che”‘(2~)f~(Zp)~~~(=~,.~). (1) 

0 

f,” is the distribution function of parton a inside of the hadron H, and the CF 
are the factorization scheme dependent crossing functions: 

CH~‘cham’(z, p$) = At(z) ln(* 0 (2) 

where PF is the factorization scale. The crossing function are universal and 
only need to be calculated once for a given set of parton distribution functions. 
A: and Bf are convolution integrals of splitting-like functions with different 

parton distribution functions. 
To add fragmentation functions to the formalism we adopted the same idea 

as in the crossing case: we want to use the “K” factor already calculated. Let 
us consider the process: V --, H + (n - 1) jets. First the NLO calculation 
for V + n jets is convoluted with all the appropriate fragmentation functions. 
Then, corrections must be applied in n = 4 + l dimensions. When the collinear 
contribution from a parton h splitting to parton i and j is calculated for the 
“K” factor, the phase space is not only integrated over Sij up to Smin, but also 

over the momentum fraction of i compared to h. This last information is needed 
to properly add the fragmentation functions and should not be integrated over. 
Furthermore, this contribution is convoluted with the parton h fragmentation 
function, instead of i or j. The corrections for both of these effects are, along 
with mass factorization, proportional to the Born cross section: 

dt &Lo TH,=h- 
h h (2) . (3) 

The Tf are the factorization scheme dependent “tagging functions”, they have 
the same properties and functional S,,,i,, dependence as the crossing functions. 
In the massive case, there is no collinear contribution included in the “K” factor 



of the calculation without the fragmentation functions. We derived the heavy 
quark tagging and crossing functions that implement the variable flavor num- 
ber scheme [4] (it defines the heavy quark factorization scheme). This takes 
care of large logarithms involving the heavy quark mass. leads to collinear safe 
quantities in the sense that when the mass of the heavy quark tends to zero 
the massless result is recovered, and makes our formalism applicable at any 
transverse energy. 
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