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ELECTROWEAK RESULTS FROM D�

Kathleen Streets
(for the D� Collaboration)

New York University, New York, NY 10003, USA

Abstract

The D� experiment collected � 15 pb�1 in run 1A (1992-1993) of the Fermilab
Tevatron Collider using p�p collisions at

p
s = 1:8 TeV and � 89 pb�1 in run 1B (1994-

1995). Results from analyses of electroweak interactions are presented including the W
and Z production cross sections and the W width measurements. From the run 1A
data sample of W ! e� and Z ! ee decays, the W boson mass was measured to be
80:350 � 0:270 GeV=c2. Analyses which measured di-boson production are presented
together with limits that were placed on the coupling parameters.
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1 Introduction

Results are presented from data collected by the D� experiment that test the Standard
Model (SM) of electroweak interactions1). Measurements are presented of the W and Z boson
production cross sections, the W decay width and the W mass. Triple gauge boson couplings
are studied through measurements of di-boson production and limits are set on anomalous
couplings.

2 The Detector

The D� detector was designed to study a variety of high transverse momentum (pT ) physics
topics and has been described in detail elsewhere2). It does not have a central magnetic �eld,
making possible a compact, hermetic detector with almost full solid angle coverage. The
detector has an inner tracking system which measures charged tracks to a pseudo-rapidity
� < 3:2, where � = � ln tan �

2
and � is the polar angle. The tracking system is surrounded by

�nely-segmented uranium liquid-argon calorimeters (one central and two end-caps). Electrons
and photons were identi�ed by the shape of their energy deposition in the calorimeter and
a matching track (for electrons). The energy (E) was measured by the calorimeter with a
resolution of � 15%=

p
E (GeV). Muons were identi�ed and their momentum measured using

magnetized iron toroids that are situated between the �rst two of three layers of proportional
drift tubes. The muon momentum resolution is �(1=p) = 0:18(p� 2)=p2� 0:008 (p in GeV/c).
Neutrinos were not identi�ed in the detector but their transverse momentum was inferred from
the missing transverse energy in the event: ~E= T = �PiEi sin �, where the sum i extends over
all cells in the calorimeter.

The leptonic decay modes, W ! l�; Z ! ll with l = e; �, are used to identify the gauge
bosons cleanly in most of the analyses, since it is more di�cult to separate the hadronic decays
of W s and Zs from the large background of QCD interactions. These decays are characterized
by a high-pT lepton and large E= T for W s and two high-pT leptons for Zs. For W ! e�
decays, the resolution in E= T was � 3 GeV and was dominated by the measurement of the
energy recoiling against the W . For W ! ��, the muon momentum resolution dominated the
E= T resolution.

3 W and Z Production and W Width

The rate of W s and Zs observed is proportional to the production cross section times the
leptonic branching fraction. For this analysis, electrons were restricted to a region j�je < 1:2
or 1:5 < j�je < 2:5 and muons to a region j�j� < 1:0. The W ! e� events were selected
by requiring the transverse energy of the electron Ee

T > 25 GeV and E= T > 25 GeV and
the Z ! ee events were required to have two e's with ET > 25 GeV. The W ! �� event
selection required pT (�) > 20 GeV and E= T > 20 GeV and the Z ! �� selection required
pT > 15; 20 GeV for the two �'s. The number of events observed and the product � �B from the
run 1A data3) are shown in table 1. The results are consistent with the SM predictions3;4;5;6)

of �W � B ! l� = 2:42+0:13�0:11 (nb) and �Z � B ! ll = 0:226+0:011�0:009 (nb). The predictions use
CTEQ2M parton distribution functions (pdf). Also shown in the table are statistics from the
preliminary run 1B analysis.

The ratio of the W and Z production cross sections can be used to measure the leptonic
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branching ratio B(W ! l�) and the W width (�W ). From the measured width a limit may
be placed on unexpected decay modes of the W . Many common systematic errors, including
the luminosity error, cancel in the ratio:

R =
�W �B(W ! l�)

�Z �B(Z ! ll)
=
�W
�Z

�(W ! l�)

�(Z ! ll)

�Z
�W

Using the run 1A results above for � �B and combining the electron and muon measurements,
we obtain R = 10:90�0:49. The leptonic branching fraction of theW may then be calculated,
B(W ! l�) = B(Z ! ll)(�Z=�W )R = (11:02� 0:5)% using the measured value of R, B(Z !
ll) = (3:367 � 0:006)% from LEP5) and the �W=�Z = 3:33 � 0:03 from the SM prediction3;4).
The total width of the W is then obtained from this measurement of B(W ! l�) and the SM
value3;6) for �(W ! l�) = 225:2 � 1:5 MeV. The result �W = 2:044 � 0:093 GeV, is in good
agreement with the SM prediction3;6) of 2:077�0:014 GeV, and when combined with previous
measurements3;7) gives a new weighted average of �W = 2:062 � 0:059 GeV. By comparing
this value to the SM prediction, a 95% con�dence level upper limit of ��W < 109 MeV is
placed on unexpected (non-SM) decays of the W .

W ! e� Z ! ee W ! �� Z ! ��

# events (1A) 10388 775 1665 77
� �B (nb) 2.36 � 0.15 0.218 � 0.016 2.09 � 0.25 0.178 � 0.032
� # events (run 1B) 60000 5700 7700 500
luminosity analysed (1B) 76.5 pb�1 89.0 pb�1 55 pb�1 55 pb�1

Table 1: Statistics and production cross section times branching ratio for W and Z bosons.

4 W Mass

The gauge sector of the SM of electroweak interactions contains three fundamental param-
eters. These may be taken to be �, GF and sin2 �W , all measured to < 0:01%. They precisely
de�ne the W mass (MW ) at the tree level. Higher order diagrams introduce a dependence on
the top quark mass and the Higgs mass. Measurements of the W and top quark masses then
serve to test the SM and constrain the Higgs mass. Previous experiments8) have measured
MW with an uncertainty of � 0:2%.

In the analysis presented here, a sample of W ! e� events from run 1A were used to make
a new high precision measurement of the W mass. The calorimeter is not calibrated indepen-
dently to the precision needed and therefore the ratio of the W to Z masses was measured
and then scaled to the precisely known (< 0:01%) LEP/SLC Z mass. Many systematic errors
cancel in the ratio.

Experimentally, the remnants of the interaction p�p ! W (! e�) + X, where X is due
to the recoil of the W plus the underlying event, were detected. The energy of the electron
(we use E � p) and the ~E= T , which is identi�ed with the neutrino transverse momentum
~pT (�), were measured. Because the longitudinal momentum of the � is not measured, the W
invariant mass cannot be constructed. Instead the distribution in transverse mass: MT (W ) =
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q
2pT (e)pT (�) � 2~pT (e) � ~pT (�) is used to obtain the W mass. For Z decays, the energies of

both electrons are measured and the invariant mass is reconstructed.
The W ! e� events were selected by requiring an isolated electron with Ee

T > 25 GeV,
W transverse momentum pT (W ) < 30 GeV=c and E= T > 25 GeV. The Z ! ee events were
selected by requiring two isolated electrons with Ee

T > 25 GeV. Electrons were required to
be in the region j�j < 1:2. In this analysis, the electron angle was determined from the
shower centroid of the energy cluster in the EM calorimeter and the center-of-gravity of the
corresponding track. The uncertainty in determining this angle results in an uncertainty of
50 MeV=c2 in MW .

The mass of the W was determined by a maximum likelihood �t of the measured MT (W )
distribution to Monte Carlo (MC) distributions which were generated for 21 values ofMW from
79:4 to 81:4 GeV=c2. This fast MC simulation used a theoretical prediction of W production
and decay and a parameterized model for the detector response. Z events were treated in an
analagous fashion. Below is a discussion of the determination of the parameters in the MC.

The W production is modelled by the double di�erential cross section in pT (W ) and rapid-
ity calculated at next-to-leading order by Ladinsky and Yuan9) and using the MRSA10) pdf.
Accounting for correlations, the uncertainty in the modelling of the pT (W ) spectrum and in
the pdf leads to an uncertainty of 65 MeV=c2 in MW . The W resonance is generated by a
relativistic Breit-Wigner, skewed by the mass dependence of the parton luminosity. The W
width is set to 2:12 � 0:11 GeV and its uncertainty results in an uncertainty of 20 MeV=c2

in the measured value of MW . The decay products are generated in the W rest frame, with
an angular distribution that respects the production polarization of the W , then boosted to
the laboratory system. Radiative decays (W ! e�
) are generated according to Berends and
Kleiss11).

The EM calorimeter energy scale was set using J= ! ee, �0 ! 

, and Z ! ee events.
From test beam studies, it was determined that a linear relationship between the true and
measured energies could be assumed: Emeas = �Etrue + �. Making the requirement that
the peak of the Z mass be at the LEP/SLC value12) �xes the scale �. The value of � is
constrained by the J= and �0 data. Allowing a quadratic term in the energy response,
to account for nonlinear responses at low energies, leads to the systematic error on �. The
allowed values determined for � and � are � = 0:9514 � 0:0018(stat:)+:0061�:0017(syst:) and � =
�0:158�0:015(stat:) +:030

�:210(syst:) GeV. We note that if � = 0, the ratioMW=MZ is independent
of the scale �, since it enters only through terms involving �. The error in the EM energy
scale introduces an uncertainty in the MW of 160 MeV=c2 and is dominated by the statistical
error in determining the Z mass.

The EM energy resolution was parameterized as �=E =
q
C2 + (S=

p
ET )2 + (N=E)2 for

the central calorimeter. Test beam data were used to set the sampling term, S = 0:13 (GeV1=2),
and the noise term, N = 0:4 GeV. By constraining the width of the Z invariant mass
distribution in the MC to that from the data, the constant term was set to C = (1:5 +0:6

�1:5).
The uncertainty in the energy resolution leads to an uncertainty of 70 MeV=c2 in MW .

The recoil against theW was modelled assuming it's a single jet. The hadronic energy scale
relative to the EM scale was measured using Z events by projecting the vector sum of recoil
transverse momentum, ~pT (rec), and the pT of the Z measured by the two electrons, ~pT (ee),
along the bisector of the electron directions, de�ned as the �̂ axis. To ensure an equivalent
event topology, Z events in which one electron is in the forward region were included in this
study. Fitting the distribution of the pT -balance (� [~pT (ee) + ~pT (rec)] � �̂) versus ~pT (ee) to
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Error �(MW ) MeV=c2

Statistical 140
EM energy scale 160
Systematic (shown in detail below) 165

EM energy resolution 70
hadronic energy scale 50
hadronic energy resolution 65
# minimum bias events 60
input pT (W ) distribution & pdf 65
electron angle determination 50
W-width 20
underlying event 35
non-uniform response 10
backgrounds 35
trigger & uk e�ciencies 30
radiative decays 20
�t error 5

TOTAL 270

Table 2: The statistical, scale and systematic errors on the measurement of MW determined
from a �t to the MT (W ) spectrum are given.

a straight line, gave ~pT (rec) = (0:83 � 0:04)~pT (ee). The �0:04 uncertainty in the recoil scale
leads to an uncertainty of 50 MeV=c2 in MW .

The recoil energy was smeared using the jet energy resolution determined from the test
beam with a sampling term of S = 0:80�0:20 (GeV1=2). The underlying event was modelled by
superimposing theW event onto a minimum bias event obtained from the data. The minimum
bias events were selected from a library in the same distribution of luminosity as the W event
sample. The resolution in the W recoil measurement is dominated by the underlying event.
The width of the pT -balance distribution constrained the number of minimum bias events
needed to simulate the W underlying event to be 0:98 � 0:06. This uncertainty leads to an
error on MW of 60 MeV=c2.

Biases in the event sample due to detector and reconstruction e�ects were modelled in
the MC simulation. The trigger e�ciency was measured as a function of pT (e) and E= T and
its uncertainty leads to an error on MW of 20 MeV=c2. Radiative decays caused electron
mis-identi�cation due to shower shape and isolation requirements, depending on the 
 and e
separation. The uncertainty on the measured MW due to radiative decays is 20 MeV=c2. The
recoil of theW also a�ected the electron identi�cation due to the recoil energy overlapping the
electron energy cluster. A measure of the bias is given by the variable uk = ~pT (rec) � ê which
is de�ned as the projection of the pT of the recoil in the electron direction. The e�ciency of
event selection as a function of uk was determined from the W events using the shape of the
electron isolation distribution and veri�ed using Z events in which one electron was free of any
biases. The uncertainty in this uk e�ciency gives an uncertainty in the MW of 30 MeV=c2.

Backgrounds to theW event sample were included in the �tting procedure by including the
shape and fraction of background events. The largest source of background in the W sample
is QCD multi-jet production. This background contributes 1:6 � 0:8% to the W sample and
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shifts the MW by +33 MeV=c2. The other background considered was Z ! ee events where
one electron is not identi�ed. This background contributes 0:43�0:05% to the W sample and
its e�ect on MW is negligible. The uncertainty in size and shape of the backgrounds gave an
uncertainty in MW of 35 MeV=c2. Events in which W ! �� ! e���� are indistinguishable
from W ! e� decays and were therefore modelled in the simulation.

The MT (W ) distribution is shown in Fig. 1a together with the distribution from the best
�t value of MW from the Monte Carlo simulation. There were 5982 events included in the �t
of the data over a region 60 to 90 GeV=c2 and the result for the W mass is MW = 80:350 �
0:140(stat:)� 0:160(scale) � 0:165(syst:) GeV=c2 which gives a total error of �270 MeV=c2.
The errors on the W mass are given in table 2. Another measure of how accurately the MC
describes the data is shown in Fig. 1b which shows the mean uk as a function of pT (W ).
Excellent agreement between the data and MC simulation is seen. Combining the new D�
result with previous measurements8) and taking into account the correlated errors gives a new
world average of MW = 80:33 � 0:15 GeV=c2.

As consistency checks, the pT (e) and pT (�) spectra were also �t to determineMW as shown
in Fig. 1c and 1d. The �t to the pT (e) spectrum gave MW = 80:300 � 0:190(stat:) GeV=c2

and the pT (�) �t gave MW = 80:045 � 0:260(stat:) GeV=c2 with 5520 and 5457 events in the
�tting region from 30 to 45 GeV=c respectively. It should be noted that the systematic error
on the �t to the pT (�) spectrum is large compared to that from the MT (W ) spectrum.

5 Anomalous Couplings

Gauge boson self-interactions are predicted due to the non-Abelian nature of the SM.
The tri-linear couplings can be tested through study of di-boson production. The direct and
precise measurement of the couplings are of interest since deviation from SM predictions (i.e.
anomalous couplings) is a signature for new physics.

5.1 WW
 and WWZ Couplings

The WW
 and WWZ couplings can be measured through directly produced W
, WW
and WZ events. The SM prediction13) involves the variable gV1 and ��V and �V (V = 
; Z)
which are CP -conserving coupling parameters. At the tree level, the SM predicts �� = � = 0.
Non-SM coupling parameters result in an increase of the production cross section and a change
in the kinematic distributions. To avoid unitarity violations due to non-zero couplings, ��
and � are parameterized as form factors with scale �: ��! ��=(1 + s

�2 )
n (n = 2):

D� has directly measured14) the WW
 coupling through the study of W
 production
using p�p ! l�
 +X events where (l = e; �). W
 events were selected by requiring a lepton
with pT > 25(15) GeV=C and E= T > 25(15) GeV for the e(�), respectively, and an isolated 

with pT > 10 GeV=c. A total of 23 events in both channels were observed in the run 1A data
sample, with an expected background of 6:4�1:4 events. In an analysis of the partial 1B data
sample (55:2 pb�1) in the e channel, 36 events were observed with a background of 8:4 � 1:7
events. Figure 2a shows the pT spectrum for the data with the SM prediction and background.
Limits on the coupling parameters were obtained by performing a maximum likelihood �t of
the measured ET spectrum of the 
 to the sum of the prediction plus background. Preliminary
results for the run 1A and 1B combined data, using a form factor � = 1:5 TeV, results in the
95% con�dence level (CL) limits of �1:42 < �� < 1:39 (� = 0) and �0:41 < � < 0:40 (�� =
0) from W
 production.
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WW production, with both W s decaying to leptons (ee; e�; ��) was measured15). One
event was observed with an expected background of 0:56 � 0:13 events in the run 1A data
sample. Using a form factor scale of � = 900 GeV, limits of �2:6 < �� < 2:8 (� = 0) and
�2:1 < � < 2:1 (�� = 0) were set on the coupling parameters.

The production of WW and WZ was studied by selecting events with W ! e� and two
jets16). From a preliminary analysis of the run 1A data, 84 � 9:2 events were observed with
an expected background of 12:2 � 2:3 events due to QCD fakes and 62:2 � 8:2 events due to
W+ � 2 jet events. A �t to the measured pT (W ) spectrum (from W ! e�) compared to
predictions with non-SM couplings was performed. Using a value of � = 1:5 TeV, the coupling
parameters were found to be �0:9 < �� < 1:1 (� = 0) and �0:6 < � < 0:7 (�� = 0) at a
95% CL.

The results from theW
;WW , andWZ production analyses from the run 1A data samples
were combined to obtain limits on the WW
 and WWZ anomalous couplings. The prelimi-
nary results, which used � = 1:5 TeV, set 95% CL limits at �0:71 < �� < 0:89 (� = 0) and
�0:44 < � < 0:44 (�� = 0) as shown in Fig. 2b. By combining the results from di�erent
analyses, tighter limits were placed on the parameters than when using increased statistics
from one channel (as seen in the combined 1A and 1B W
 production results).

5.2 ZZ
 and Z

 Couplings

The ZZ
 and Z

 couplings are not allowed in the SM, since the Z and 
 do not couple to
each other. Limits are set on their existence by measuring the direct production of Z
 events.
The couplings are described using the CP -conserving parameters hV3 ; h

V
4 with V = Z; 
. The

couplings are regulated by a form factor with scale � to preserve the unitarity bound.
The production of Z
 ! ee; �� was measured17), by selecting events with two high-pT

leptons and a high-pT photon. In the run 1A data sample, six events were found in both
channels with an expected background of 0:48 � 0:06 events. This is consistent with the SM
prediction of 5:1� 0:5 events. The observed ET spectrum of the 
 was �t to MC predictions
(with � = 500 GeV) plus background to set limits on the coupling parameters. The 95% CL
limits were set at �1:8 < hZ3 < 1:8 and �0:5 < hZ4 < 0:5.

From preliminary results of a partial sample (48 pb�1) of the run 1B data, 16 events
were observed in the Z
 ! ee
 channel with an expected background of 1:2 events. This is
consistent with the SM prediction of 11:5 events.

6 Conclusions

D� has collected � 100 pb�1 of data in runs 1A and 1B of the Fermilab Tevatron Collider.
Results of electroweak studies are presented from a partial data sample. The W and Z
production cross sections were measured and the W width was measured to be �W = 2:044�
0:093 GeV. From a sample of W ! e� and Z ! ee decays, the mass of the W boson
was measured to be MW = 80:350 � 0:270 GeV=c2. Di-boson production was observed and
limits were placed on the coupling parameters. No deviations from the Standard Model were
observed. The analysis of the full data sample is in progress.
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Figure 1: (a) The MT (W ) distribution from data and the MC simulation at the best �t value
of MW . The �t had a �2=dof = 18:6=30 from 5982 events over the region 60�90 GeV (shown
in shaded region of histogram). (b) Comparison of the mean uk versus pT (W ) from data
and the MC simulation. (c) The comparison of the pT (e) distribution from the data and MC
simulation at the best �t value of MW . The �t had a �2=dof = 26:6=30. (d) The comparison
of the pT (�) distribution from the data and MC simulation at the best �t value of MW . The
�t had a �2=dof = 38:0=30.
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Figure 2: (a) The pT (
) spectrum from W
 events compared to the MC plus background
prediction (open histogram) and to the background (shaded histogram). (b) Contour plot in
� versus �� showing the limits obtained from the combined run 1A results from W
, WW ,
and WZ production. The inner contour is the 95% CL limit and the outer contour is the
unitarity limit.
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