B. Product Components

The product was broken down into the following components:
— data storage
— data management
— data access
— archiving
— data display.

C. Concept

Data logging is based on the concept of logging groups which cover a number of similar measurements to be logged in
a similar way, such as humidity from different regions of the LEP tunnel. All measurements within a logging group have,
by definition, the same parameters (logging period, retention time, start and end dates). Logging groups are identified by
a unique number. This organization of data is transparent to the user selecting measurements for display, where they are
presented according to the equipment systems and subsystems to which they belong.

D. Environment

The database is currently running on a SUN SPARC 2000 station. The logging and archive programs, written in C
and Pro*C, run on an HP-UX workstation. The user interfaces may run on any X-terminal that can connect to the control
network.

1. PRODUCT DESCRIPTION

A. Data Storage

An ORACLE database was chosen as the repository for all logged data, following the analysis done by the SL control
group. The structure of the tables, as well as the storage method used, was that devised by the above group, i.e. the
use of a set number of pre-filled time slots for each group of measurements read, whose corresponding rows are updated
sequentially with time stamps and measurement values [1]. This strategy was adopted to facilitate future attempts at data
correlation.

A set of tables is used to store data for a logging group; this consists of one table for logged data, one for the time
stamp, and one for the time slot management. There are as many sets of tables as there are logging groups. A strict naming
structure of the tables is used: Tx_LOG for logged data, Tx_TIME_SLOTS for time slot data, and Tx_TIME_MAN for

time slot management data, where x is the logging group identifier.

B. Data Management

This enables users of the data-logging system to specify the measurements to be logged and to set the logging param-
eters according to their needs. A logging group can be created by choosing measurements from the reference database
on a form-based user-interface. In a similar way modifications to a logging group’s parameters can be made. A desig-
nated table on the logging database is then updated with the logging group number in order to inform the creation and
modification handler that a change has been requested.

For measurements that are managed by services other than the TCR and which are therefore not described in the
STRefDB, the previous facility cannot be applied. For these, a set of scripts has been developed in order to allow for the
creation of a new logging group and for the modification of logging parameters. These scripts are run by the data-logging
specialist, as no tool has been developed to handle data validation, program malfunction, or communication with the
logging programs.

One module of this component then builds or alters the logging tables required for a logging group according to
the chosen parameters. The TCR reference database is accessed in order to obtain the logging system parameters. The
required table sizes are calculated using the number of measurements to be logged, the logging frequency, and the retention
period. Control tables in the logging database are updated with the logging parameters of the system so that the data
access programs can determine what to access and where to store the data. There are two contro] tables, one which holds
the parameters relating to the logging groups, the other which contains the parameters (physical address, conversion
factor) relating to the measurements in each logging group. Any errors in the table manipulations are signalled and can

be recovered.

C. Data Access

This component is responsible for obtaining the measurement values from their source, and for storing them in the
database. There exists only one program, the logging black box, which is used to read any type of equipment whose
access method has previously been determined. One instance of this program is run for each logging group. These
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programs are launched by a logging server which then monitors their behaviour (Figs. 1 and 2). This server must always
be running.

of logging period "—I
abeent _|start logging -
sorver mm: " I'M
present f § - 7y
test presence of
server check file
Sbeent L kil server
present *
test pressnce of
database
connection file
sbeert mall TCR
operator '
abeent
check other
of *equio® "\ present processing
Figure. 1.  Checks on the logging server program Figure 2. Server checks on logging processes

In order to determine how many logging black boxes to run, the server program reads the logging control tables.
Once a black box program has started, it must first determine what kind of equipment it will be accessing, since data from
different sources are read and interpreted differently. It will then determine which data elements to access and where
the data will be stored; this is done once again by consulting the control tables. Should access to the database become
impossible, the data is written to the file system and will be written to the database once the latter is available (Fig. 3).

D. Archiving

Since data is kept online for rapid access for typically one to two months, it is archived regularly to the file system.
This is done for each logging group by the archive program, which determines the number of logging systems running
and their data retention periods by reading the control tables. Archiving consists of exporting the table data to the file
system and compressing the data. The name of the compressed file contains the logging group code and the archive date,
thus permitting the data to be automatically restored should this be required.

CERN has a legal obligation to keep a 10 year record of the pH and temperature of the water which it discards into
the local rivers. For other data, the archive retention policy is in the process of being determined.

In addition, the archive program also updates summary tables for groups that require them.

E. Data Display

Once the data is stored on the ORACLE tables, it is publicly accessible by any tool that interfaces with the database,
e.g. EXCEL can be used to retrieve data and display it graphically. However, since such tools do not present a sufficiently
well-tailored interface to the user for selecting the measurements for display, and also lack functionality such as zooming,
a specific module was developed to satisfy these goals.

The data display module is divided into two parts, one for managing the selection of measurements, the other for
handling the graphical display. The data selection part consists of a menu-driven user-interface which guides the user
by presenting the available measurements using names with which he is familiar rather than the table and column names
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themselves. The information on which the menus are built is obtained once again from the logging control tables. Once
the required measurements have been selected, the graphical display program is called with the appropriate display
parameters. The display program uses in-house graph templates built on top of the Xplore package, allowing the use of
XRT Motif widgets without the need for X-Windows programming. The graph displayed can be updated with new data
if so requested. Should the data required for display not be available online, the archive is searched for a file referring to
the data requested. If the file is found it is restored to the database and the request is processed accordingly.

This program uses the X-Window protocol for data display and thus must be run on an X-Window emulator if used

on PCs and Macintoshes.

IV. PERFORMANCE, PROBLEMS, PERSPECTIVES

The logging programs are generally reliable, though certain problems have been experienced during the evolution of
the product over the past two years.

Accessing a remote database requires that the unavailability of the machine running the database, or the database
server itself, must be correctly handled. The product uses a number of standard tools, either provided commercially
or made in-house. Each new release of a tool may lead to incompatibilities or may imply a modification of some part
of the logging application. These can sometimes be overlooked and cause problems that are not immediately detected.
Access to the measurements, which are distributed over a wide area across a number of networks, may not always be
possible. Errors in obtaining data are now logged themselves in a separate file for each logging group; these can then
be analysed to determine whether equipment is functioning correctly. The expansion of the application to cover more
than the originally planned number of measurements to be logged led to changes in the configuration of the machine
running the logging programs and to an optimization of the files used for error reporting and archiving. Original design
weaknesses are gradually being corrected. Our experience leads us to conclude that the use of one single facility for SL
and TCR does not permit optimization for both parties; it is envisaged to create two independent set-ups.

The product has been of significant use to many different services at CERN and as a consequence is constantly
evolving. For example, new requests for logging different data sources mean adaptation of the data access modules.
Though diagnostics on the logging processes have steadily been improved, better treatment of data access errors is
overdue. Moreover, with the advent of new control software [3] in the technical services domain, 2 move towards more
event-driven logging will be made, and this will of course have a significant impact on the product.
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WWW FOR INFORMATION ON CERN ENERGY CONSUMPTION

H. Laeger and S. Lechner
CERN, Geneva, Switzerland

Abstract

The electrical energy consumption at CERN and the related costs are of concern for several reasons, not least for
their impact on the budget. It is believed that the availability of information on the consumption and the cost of distinct
sectors to those who can influence them, i.e. a large part of the CERN population, will stimulate individual initiatives
for reductions in consumption and cost. A method has been developed whereby logged data is retrieved from a database
and presented in comprehensible histograms. Data can be viewed either as variations over standard periods (day, week,
month) or as integration over standard periods. Specific solutions have been devised giving a rapid response time, as
well as for generic scaling with optimal resolution for data which may vary over several orders of magnitude. Access to
global data is available only to the management and is password-protected, whereas access to all the distinct sectors of
consumers is granted to everybody on the CERN site. The implementation is made using the hypertext technique and a
WWW server. This paper describes the main graphical tool, the concept of data preparation for instant reply, implemented
reliability procedures and some initial experience with its use. .

I. INTRODUCTION

By the very nature of its installations CERN is a big consumer of electrical energy, mainly for the accelerators, but
also for the basic technical infrastructure. The energy cost is high and represents close to 10% of the CERN material
budget.

Since the 1973 oil crisis particular efforts have been made with good results to reduce the energy consumption of
someof the larger installations by the introduction of energy-saving operation modes such as pulsing beam transfer lines
and tightly adjusting the length of the SPS beam energy flat top to actual beam requirements.

Information on electrical energy consumption, be it for the whole of CERN, for the respective share of its two national
suppliers (French EDF and Swiss EOS), or for individual accelerators, technical services or laboratory areas, has in the
past been available only to a restricted number of people and only as integrated monthly figures.

A first step towards wider and deeper information for improved energy management, and in particular to ensure the
correct response to contractual restrictions on consumption on some critical days in winter time was made a few years
ago by putting the actual consumption of larger users at the disposal of all CERN control rooms. This information was
then rapidly accessible via the LAN and could thus be consulted by all PC users connected to it.

Following suggestions from the community of physicists, the CERN Energy Management Panel expressed the desir-
ability of extended information such as:

— access to information on energy consumption for the entire CERN population (so far, users of Macintoshes and
X-terminals outside the control rooms have been excluded)

— presentation of consumption in the form of histograms and integrated values over time

— presentation of cost, again in the form of histograms and integrated values

— a structured overview of the actual consumption of all larger installations.

It is expected that the availability of useful real-time information on energy consumption and cost, sufficiently detailed
that the contribution of individual systems can be spotted, will lead to adaptations and finally to reductions in consumption

and in cost.

. REQUIREMENTS AND CHOICES

A. Software Development Strategy

The procedure adopted for the creation and implementation of this tool was based on interactive progressive proto-
typing. The reason for this is that the subject is of high sensitivity and rapid reactions from a test group of people were
thought vital to verify acceptance of procedure, form and content.

B. Use of World-Wide Web

The need for access on any platform pointed right away to the use of a WWW server since WWW browsers exist for
any platform. However, as this information is only intended for the CERN population, the server has to be invisible from

outside CERN.
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Moreover, as it was requested that some global data concerning contracts with the two national suppliers of electrical
energy to CERN should be made available only to a limited number of management staff, a mechanism of password
control had to be implemented.

C. Data Retrieval

The required data for these displays can readily be retrieved from a database that is filled by an existing data-logging
system [1]. For reasons of response time and reliability, the real-time data is also retrieved from the database and not
directly accessed from the equipment. In the present context it is considered acceptable that data which may be up to a
. few minutes old should be declared ‘real-time’.

D. Response Time

A fundamental requirement for any human-computer interface for rapid response time led to the adoption of pre-
processed and stored graphs, ready for instant display upon a user call. The price to be paid for this essential advantage
is disk space, nowadays not expensive.

III. DESCRIPTION AND ORGANIZATION

A. Reference Data for Configuration

For correct configuration of the system, reference information is needed on electrical energy consumers, such as
technical identification and addresses which uniquely identify the measurements in the data-logging system, is needed.
Furthermore, the energy supplier (EDF or EOS) to which each consumer is connected as well as consumer tariffs are
relevant for cost plotting.

The password for full information display is treated as part of the configuration.

As all the dynamic data to be retrieved are stored in an ORACLE database, the obvious way of storing static reference
information was in ORACLE tables. For this purpose four tables were created: one describing consumer information,
one each for EDF and EOS tariffs and a fourth one for valid passwords. In addition, one SQL-forms interface was built
for easy updating of the tariff and supplier tables.

PRE-PROCESRING
GRAFPH PROGRAM

connuer, period, praph type

Figure. 1. Data flow diagram for graph selection, production and display

B. Data Management

The graph data (time and value) are retrieved from an ORACLE database (Fig. 1) already filled by an existing
data-logging system. A set of routines written in Pro-C (SQL-like syntax) permits the retrieval of data for a particular
consumer whose description was read before in the configuration tables.
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For cases where data acquisition problems occured at data-logging, with consequent gaps in the database, the data
retrieval rontines will fill these gaps with the last-available set of data.

Owing to the limited size of the graphic display and the large number of data, some data reduction needs to be
performed. The treatment consists in replacing all individual data with the same x-axis values (pixel granularity for time)
with their average. The resulting set of points constitutes the final vectors to be plotted.

C. Graphics

The selected graphical library used to plot data is Thomas Boutell’s library ‘gd’ [2]. This library provides low-level
functions such as pixel drawing, line drawing, string writing on a graph, as well as graph saving in gif format. It had to
be enhanced by a few specific routines (vector plots, legend display, automatic scaling).

D. Scaling

One of the main problems to tackle when displaying data which may vary over several orders of magnitude is that of
scaling, all the more since in our case an automatic scaling scheme was desirable.

For horizonta! automatic scaling a limited number of natural periods have been selected, i.e. one day, one week, one
month. Major subdivisions are then chosen: two-hour periods for a day, six-hour periods for a week, and one-day periods
for a month. The C routine built for this scaling task is straightforward.

In the vertical axis, for ease of readability, only a limited number of pre-defined scales are used. These scales are
based on multiples of 10" of the rounded linear V2 progression (1, 1.4, 2, 3, 4, 6, 8). The extremities of the scales can
only have these values; furthermore if the minimum value is below 25% of the scale maximum, the scale minimum will
be set to zero. For scale subdivisions, the same scheme has been adopted with multiples of 10” of 0.5, 1, 2, and 4 for
major units, with a minimum number of 4 and a maximum of 10 major units presented.

The implementation of the above algorithm is simple. Once minimum and maximum values of the vectors to be
plotted have been found, the scales are selected from the set of pre-defined authorized values. The same routine is
applied to the consumption and to the cost scales.

E. Graph Layout

The general layout chosen for all graphs has been fixed to a 750 x 400 pixel display, which fits most computer screens
and WWW browsers. Pre-defined areas are dedicated to scales and to legends. Graph borders and time-scales are drawn
in black, energy consumption scales and plots in red and cost scales and plots in blue. In order to make the plots also
readable on black and white screens as well as on printouts, consumption and cost are distinguished by different line
styles. The graph title is set with consumer name and graph dates.

The whole graph appears with a transparent background on a WWW browser.

F. Plotting

The resulting vector after data retrieval and treatment is directly plotted as a histogram using a step-function drawing
routine. For integrated values, the same drawing function is used but the vector is integrated beforehand by a C routine.
Scaling and plotting are treated separately.

G. Pre-Processed Graphics

Initial prototyping showed that the response time was unacceptably long when the user has to wait for the time it takes
to access the database, to retrieve the data and to build the graph. Typical response time for a ‘day’ graph with about 10
000 data couplets was 5 seconds, 15 seconds for a ‘week’ with about 70 000 couplets and 45 seconds for a *'month’ with
250 000 couplets. We therefore opted for a procedure with pre-processed graphs, which reduces the response time to
that required for the connection to the server and for the transfer, decoding and display of the graph. Normally, the user
gets the requested display within a few seconds. The ‘real-time’ data, and the graph of the actual day are not prepared in
advance and there the response time is higher (an average of 30 seconds and 10 seconds, respectively).

The global strategy is to store graphs of the last five weeks, of the last 31 days excluding the current day and of all
past months including the last 31-day period.

The program written to create pre-processed graphs begins by reading configuration tables and tries to process all
60 graphs in sequence (last day, current week and last 31-day period for every defined consumer). However, in case of
problems (ORACLE unavailability essentially) no graph is stored at all. Graphs are processed at a given time at night;
afterwards verifications are done periodically to look for missing graphs in which case processing is reinitiated. Assuming
ORACLE data retrieval problems remain for a whole day, only the graphs for the last day will be missing and current
week and month graphs will show incomplete data.

Since the defined policy is to keep the last 31 days and the last 5 weeks, older ‘day’ and ‘week’ graphs are deleted in

order to minimize the disk space used.
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H. User Interface Entry Page

The entry page (Fig. 2) into the system called ‘Energy Consumption and Cost Estimation for CERN Accelerators and
Experiments’ displays all selection points as hypertext links that lead to the corresponding graph page for the display of
histograms.

It was initially intended to display the real-time data as well as the hypertext selections for the individual users. For
reasons of response time, we opted for a more rapid display of the selection points which now contain an additional button
for access to the actual data.

Energy Consumptipn and Cost Estimation for CERN
Accelerators and Experiments

| acual data J{Pmcesmg time about 30s)
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Figure. 2. Part of the entry page with real-time data

Moreover, as access to information on the global energy consumption of CERN was not to be displayed to everybody,
a mechanism of password access for a limited number of management staff had to be implemented in the form of an
additional button on the entry page.

Finally, a hypertext link called ‘Comments’ at the bottom of the page allows users to address mail easily and directly
to the project administrators.

L. Graph Page

The graph page (Fig. 3) used for different selection points and graph types (histogram or integration) is the same
except for the page title.

Users can choose between one of the last 31 days, one of the last 5 weeks, or any month including the last 31-day
period. Once an option is selected, the requested graph is displayed on the same page just below the menu options. Every
graph page presents a direct link to the entry page and to the other graph type (histogram or integration) for the same
point. If another option for the same point is requested, the resulting graph replaces the previous one.

Whatever options are chosen it is always possible to get information on energy cost and cost estimation since the
graph page title contains an hypertext link called ‘Cost Estimation’.

From any position, a direct link to the CERN home page is present for new navigations starting at this point.

J. Implementation of the User Interface

Entry and graph pages treat data input from the user (button pushed, value selected) and have therefore been imple-
mented as Common Gateway Interface (CGI) [3] C scripts. Much effort was put into obtaining an application compatible
with most browsers especially NSCA Mosaic and Netscape and their different versions.
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Figure. 3. Example of graph

K. Entry Page

The default call to this page displays all information mentioned above using the C basic print function. When real-
time data are requested a call to ORACLE is made for the last logged values for the selection points and the result is
displayed on the screen. For access restriction, the entered password is compared with the valid one and, if correct, full

information is displayed (Fig. 4).

L. Graph Page

The graph page is called by the entry page which sends information such as the requested point and the graph option
to the WWW server. Once the user requests a particular graph, additional information such as day, week, or month and
their corresponding dates is available and the graph is plotted. If the requested graph exists as a stored gif file it is just
redisplayed, if not, it is built in real time. When several graphs are requested one after the other, the selection point and
the type of graph remain as hidden parameters and the other options are changed by the user.

To avoid use of multiple submit buttons on the same page which may not be recognized by all browsers, each button
has been replaced by a small gif image representing the button. These images, linked to the HTML command ‘input

type=image src=...", act as buttons.

IV. EXPERIENCE AND OUTLOOK

The tool is currently in its final testing phase. Availability is very high, limited essentially by the fact that the WWW
server is installed on a HP-UX machine which runs a multitude of development programs. This can be improved by
installing the application on a more appropriate machine.

Response time is now close to optimum:; it remains to be seen if the delay of ‘real-time’ and ‘actual-day’ data is
accepted by the users.

User comments are so far only available from the limited number of test persons; they are essentially positive and
welcome the availability of the information in the proposed form. The application has been built for easy adaptation to
new user requirements and it is expected that once it is used by the entire CERN population we will need this facility.
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Figure. 4. Navigation overview

The data-logging system which has been in operation for a two years sets different intervals for data-taking according
to individual preferences. For energy measurements some are set to one minute, others to five minutes, most to ten
minutes. Because of the ‘real-time’ use of this data by the present application, all intervals for energy measurements have
now been set to two minutes. The subsequent increase in the number of equipment calls and in storage capacity required
for the database is well within system capacities and so far has not presented particular problems. The diskspace required
for the pre-processed graphs for all ‘day’, ‘week’, and ‘month’ graphs for a year amounts to about 20 Mbytes.

The intensive testing during the prototyping phase of the energy displays revealed a relatively high number of gaps
of different duration where data was not logged by the data-logging system. This stimulated efforts to increase the
reliability of the data-logging system. A Technical Data Server [4] to be used for the supervision and control of the
technical infrastructure of CERN has been defined to also serve this purpose.

V. CONCLUSION

The tool described in this paper provides an easy and reliable way to distribute information on CERN energy con-
sumption and cost all over the site, whatever the computing platform used. The final testing stage has shown that it is
reliable and that changes can be made easily. All of its constituent modules proved to be well interfaced and, to a large
extent, they can be changed independently.

Clearly, the mechanism for the display of information on CERN energy consumption and cost is only a tool. However,
it may stimulate individual actions and together with other management incentives may achieve the basic aim of the

reduction in energy consumption and cost.
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Control of VEPP-4M Magnetic System
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Abstract

The use of BINP-designed intelligent controllers for high-stability magnet power supplies allows us to solve
successfully the problem of beam acceleration in the VEPP-4M collider. There are two versions of the controller.
The first has sixteen-output sixteen-bit DAC; the second has a nineteen-bit DAC, an error amplifier and a shunt.
Both versions have digital linear interpolation and MIL/STD-1553 interfaces. The aspects of the magnetic system
control concerning hardware and software are described. Results of a field behavior study in magnetic elements with
the use of these distributed intelligent controllers are presented.

1 INTRODUCTION

The VEPP-4M collider provides experiments with electron-positron beams, back-scattered compton y-quanta and
synchrotron radiation. The circumference of the accelerator is 366 m. The beams in the ring are guided by more than
100 dipole magnets, quadrupole lenses and steering magnets.

The collider is an accelerator with an energy range of from 1.8 GeV at injection to 6.0 GeV. Therefore, a
simultaneous rise of the magnetic fields by a factor of 2.5 - 3 is necessary for performance of high-energy physics
experiments within a range from 4.7 GeV to 5.4 GeV. This beam energy rise is controlled by the Intelligent
Device Controllers (IDCs) based on microprocessors.

Control of the IDCs is performed by the CAMAC-embedded ODRENOK computer [1], which is integrated into the
VEPP-4 control system [2]. ODRENOK loads predetermined settings into IDCs and controls them by commands
via a MIL-1553-B multidrop data bus.

2 MAGNET STRUCTURE CHARACTERISTICS

The magnet system of VEPP-4M consists of arc cells (FODO), dipoles, quadrupoles, sextupoles and octupoles.
Auxiliary coils in dipoles, arc cells and steering magnets are used for beam orbit correction. Moreover, quadrupoles
have built-in coils for gradient correction. The VEPP-4M magnetic structure is symmetrical relative to the
collision point. Table 1 gives an overview of the magnetic system.

Most of the elements are controlled by their own power supplies. All the magnets and power supplies have been
developed at BINP. The total number of power supplies is about 330.

All arc cells and some of the dipoles are powered by the same power supply. Quadrupole coils
(F and D) in the arc cells are used for control of the tunes. The coils of the same type in all arc cells are energized
by the same power supply. The ring chromaticity is mainly regulated by the sextupole coils in the arc cells. These
coils are powered by four supplies.
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Fig.3 Block diagram of single-output DAC.
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Table 1- The VEPP-4 magnetic system

Magnet type Number of Lo s (A) Hy., » kGs)
magnets / pow. suppl.

arc cell (DO, FO) 66/3 6400, 550,170 5.3

dipole 4/2 1600 6.6
2/1 ‘ 1100 14.5
8 / arc cells 6400 9.5

quadrupole 2/1 1500 6.7

‘ 2/1 1700 7.5
14/17 200 - 400 2-4
8/2 1350 8.1

sextupole arc cells/ 4 500 - 700

wiggler 2/2 2700

snake 2/1 2000

sextupole 6/6 25

octupole 2/2 8

steering magnet 21/21 8

skew-quadrupole 6/6 25

3 CONTROL SYSTEM ARCHITECTURE

There are four data buses: two are connected to 16-output IDCs, the others are connected to siane-output IDCs.
Such a configuration permits the use of common commands for IDCs of each type. For example, the “write in”
command has a different format for IDCs of different kinds. Thirty remote modules may be connected to each bus.

CAMAC embedded controllers developed at BINP are used to control the data buses. The controllers are located in
aperipheral crate connected to ODRENOK through a 1.6 Mbit/s serial link driver and controller [3].

Derivation boxes without protective resistors are used to couple the stubs to the data bus (Fig.2). The length of the
stubs is less than 1 m.

The length of the buses is about 300 m. They pass over all the power supply control rooms around the collider.
. The transmission rate is 1 Mbit/s. Each bus has a 50 ochm matching resistor at the end.

4 HARDWARE

To control the collider magnetic system, two types of IDCs are used. The first is based on the Intel 8086
microprocessor. It has 16 analog output signals produced by an integrated circuit DAC. These modules are used in
order to control low-current power supplies. Fig.2 shows a functional block diagram.
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The second type is based on the Intel 8035 microcontroller. It has one control output, which provides an amplified
error signal. This type is used for the control of middle- and high-current power supplies. A functional block diagram
is shown in Fig.3.

Both versions have static internal RAM. A sequence of up to 80 so-called "rows' can be loaded into the RAM. Each
“row ” consists of 16 settings (or one setting for single-output IDC) and one time setting. There exists the
possibility of decreasing the time scale by a factor of 16. That enables control of the "fast" magnetic processes. An
example output signal is shown in Fig.4.

In addition, the microprocessor calculates a duration in “tick-portions” for each “row” as a "calculate interpolation"
command comes. Sample-hold output circuits are controlled with a frequency of 256 Hz. "Start", "stop" and
"continue" commands are simultaneously sent to all IDCs connected to the same data bus for the synchronization of

magnet control.

Table 2
Main features of IDCs

Version of IDC 16-output single-output
Scale (binary) 14 + sign 19
Output voltage (V) *6.5 8.192
Eror 01% 001%
LSB 400 mV 15 mV
Interpolation time between two settings:
“fast” scale 64ms - 4s
full scale 1s - 63s
Power +V 2A 25A
consumption  +24 02A 02 A
v 005 A 005 A
-24
\Y

5 MAGNET CONTROL

To operate the magnetic system (handling, cycling, beam energy rise) different programs use the Resident Executive
Program (REP) [2]. REP loads tables or single settings into the IDCs and sends control commands to IDCs via
MIL-1553-B.

All of the magnets are made of non-laminated low-carbon iron. Magnetic field to coil current ratio changes during
the energy rise for two reasons. The first is a saturation of magnet yokes. This saturation may be corrected by a

corresponding correction of the current. The second reason is associatesd with a delay of magnetic flux penetration
into the iron during the process of the energy rise. The deviation of the ratio is determined from the equation (1).
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where
H is the dynamic magnetic field,

H

5 is the static magnetic field at the same current.

A deviation larger than 0.2 may cause the “death” of the beam. This factor limits the speed of the beam energy rise
to 10 - 15 MeV/s, so that it takes 5 - 6 minutes to increase the beam energy from 1.8 GeV to 5.3 GeV.

The use of IDCs allows us to reduce the required time by a factor of 3 - 5. Supplementary intermediate settings are
loaded into the IDC’s memory to correct individual peculiarities of magnets. These intermediate settings may be
defined for each magnet from prior measurements. The magnetic field of each magnet is measured with the use of the
same Hall-probe. An example of such a correction for one magnet is shown in Fig.5.
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1- linear rise of the current

2 - delay of the dynamic magnetic field (H) relatively to static (Hst)

3 - correction of the delay by addition of four intermediate points
between initial and final points

x - correction points

Fig.5 The magnetic field behavior with coil current rise in EM3 dipole.
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The PIAFE Project - Command and Controls of PIAFE Phase 1.
The PIAFE Collaboration, presented by Solveig ALBRAND,

Institut des Sciences Nucléaires, IN2P3-CNRS/Université Joseph Fourier, 53 avenue des Martyrs,
F-38026 GRENOBLE Cedex, France.

THE PIAFE PROJECT.

What is PIAFE ?

Atomic nuclei with a large excess or deficit of neutrons with respect to stable nuclei are known as "exotic". Such
nuclei are highly unstable and thus radioactive with short lifetimes. The study of exotic nuclei will be one of the
main topics of research in nuclear physics in the coming years. Indeed, several projects are already being studied or
are already being built around the world in order to produce accelerated beams of exotic ions.

The opportunity that SARA, the heavy ion accelerator of the Institut des Sciences Nucléaires (ISN) is adjacent to the
high flux reactor of the Institut Laue Langevin (ILL) has been taken in the proposal PIAFE [1] ("Production,
Ionisation et Accélération de Faisceaux Exotiques") for the production of beams of neutron-rich ions with masses
between 80 and 150, with a particularly high intensity. An ion source consisting of a target of a few grams of
uranium 235 would be placed close to the reactor core of the ILL. The resulting fission products would be ionised and
accelerated to 30 keV. After mass separation the ion beam would be transported in a few milliseconds to SARA via a
400 meter tunnel, for further acceleration. Energies between 2 and 14 MeV/amu could be attained.

Further information is available at http://isnwww.in2p3.fripiafe/piafe.html.

The Scientific Interest of PIAFE.

Beams of exotic ions permit the observation of nuclear reactions which cannot be otherwise obtained. These reactions
offer many new and exciting possibilities to nuclear physicists, in particular the validation of the current models of
the atomic nuclei very far from the stability line. Other areas of physics are also concerned, such as the study of
nucleo-synthesis in astrophysics and several aspects of solid-state and surface physics. Radioactive beams can also be
used in the production of radio-isotopes for medical physics. Studies of the transmutation of radioactive waste are also

proposed.[2]
The Main Points of Phase 1 of the Proposal.

The first phase of the project will verify the operation of the source. The beam produced will contain singly-charged
ions at 30 keV, so low energy physics of exotic ions will be possible, such as measurement of ground state masses,

moments and the spectroscopy of radioactive nuclei.
Figure 1. shows the overall layout of the installation.

The uranium ion source, placed in a "glove finger" beam tube of the reactor is designed to produce a current as intense
as possible, conform to security requirements. The target, 4 g. of *** U in the form of uranium carbide, is dispersed
in a matrix of porous graphite. It is submitted to a flux of on average 3. 10 neutrons per square centimeter per
second to obtain 10™ fissions per second. The fission products are slowed by the graphite and the power dissipated
will heat the source up to about 2400 °C. This temperature represents the best compromise between the
maximisation of the diffusion of fission fragments out of the source and the elimination of heat from the source by
radiation. A higher temperature would tend to evaporate the graphite and thus reduce the source lifetime. The source is
placed in a container which will probably be made of rhenium. The container must be able to withstand heat,
chemical attacks from the constituents of the source and of course resist the aggression of the neutrons. A second
container in the form of a metallic grill completes the heat shielding and mechanical protection of the reactor beam
tube. The source also contains electrodes which will ionise the fission products and accelerate them to 30 keV.
Uranium ion sources of this type have functioned since 1967 in Sweden [3] although at a much lower neutron flux.
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The installation includes a mechanism for the introduction and removal of the source from the reactor and also must
provide for the loading of a new source and the disposal of a used radioactive source into a disposal bin.

After extraction from the reactor the ions must be transported to the experimental beam lines. The beam line contains
2 dipoles (bending magnets) 2 quadrupoles and 2 electrostatic lenses for focusing and 2 slits. The beam line also
contains 5 beam diagnostics of various types. The ensemble consisting of the first lens LE], the first dipole (D1) and
the slit F1, acts as a pre-separator. Only ions with a mass of = 4% of the reference mass will pass the slit F1. Many
unwanted isotopes will be stopped here, and this part of the beam line will be the most active, so it is housed in a
separate bunker. D1 must also have a special structure (large gap) to permit the passage of the source and its trolley.
For the same reason, LE1 will be mounted on a jack to permit vertical movement. The rest of the beam line is more
classical: the beam is transported to the spectrometer from where it is dispatched to the physics areas.

The presence of highly radioactive gases close to the source also determines the techniques which must be used for the
pumping. In addition to the usual electromagnetic valves closed during primary pumping, the beam line will be
divided into zones in order to attenuate the gas flow during operation. In the beam direction the contamination of the
transport line by radioactivity must be limited and in the other direction the source must be protected from an
accidental pressure increase, for example, from an experimental area. To achieve this, separation diaphragms will be
placed after each slit. The opening of each diaphragm will be slightly larger than the slit to avoid irradiation, and their
length will be at least 150 mm. Each zone will possess its own dedicated pumps. No conventional pumping is
however possible in the source, but the average vacuum must be better than 2 10 mbar in this zone.

Current Status of the Project.

Preliminary studies for PIAFE began in Grenoble in 1992. The project quickly aroused international interest and the
PIAFE collaboration is at present composed of 11 different laboratories (5 French, 2 German, 1 Belgian, 1 Swedish,
1 Danish and 1 Russian). The scientific interest and the originality of PLAFE have been recognised by an independent
committee of international experts (D, F, GB, NL, USA). They have recommended support and rapid realisation for

the project.

At present an 18m. beam line exists at the ISN as a model for the transfer of singly charged ions at 30 keV from the
ILL: the first results are very encouraging. Good progress has also been made in the development of the ECR source
which will capture these ions and render them multi-charged.[4] Both of these studies concern PIAFE phase 1.

Although the Scientific Committee of the ILL is favourable to PIAFE, the Board of Directors has yet to give its
agreement to the project. A report has been submitted to this committee and the formal decision should be taken
during the month of November 1995. If this decision is positive, financial support for PIAFE phase 1 should become
available from the various supporting government agencies. PIAFE phase 2 will of course be considered only if
phase 1 is successful in attaining radioactive beams with the required intensities.

CONTROL AND COMMAND OF PIAFE PHASE 1.

Introduction.

The control and command part of PIAFE phase 1 has just entered into the requirements gathering stage. Only a
general description can be given at this time. The proximity to a nuclear reactor, coupled to the fact that highly
unstable particles will be extracted from the PIAFE source itself, impose particular constraints on the control system
hardware architecture as there will be zones where it is not possible to place active material. It seems fairly certain
that the overall architecture will be based on a "standard model" LAN of PCs because both of the main participants in
the collaboration (the ISN and the ILL) have experience with this hardware and also because budget constraints imply
that there must be low-cost solution. In fact it is hoped that some ageing PCs in each laboratory may be recycled as
data-servers; high performance machines are really only needed for the user interfaces. It is also certain that industrial
PLCs will control the vacuum. Here also it is possible that the actual system used at the ILL could be extended to

include PIAFE.

Four functional subsystems can be distinguished and are described in the following sections.
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Beam Transport and Diagnostics. Beam Tuning.

Apart from the constraints of radioactive protection mentioned above, the beam handling and diagnostics control
should be completely standard.

¢ Control of the power supplies of the magnets and other elements (a precision better than + 10 is required)
¢ Supervision of certain elements with an automatic action in the case of detection of abnormal incidents.
e Control and command of diagnostics for the beam tuning - movements and current acquisition.

In addition the system must exchange information with the reactor control system and be designed to allow easy
extension to PIAFE phase 2 in the future.

There will be a central control position, but some decentralised control may be required.

Command and Control of the Uranium Fission Source.

When the uranium source is in place permanent surveillance will be imperative. A malfunction would be potentially
dangerous for the reactor. On the other hand the action which would be taken after the detection of such a malfunction
is of such consequence that the system must not raise false alarms. Several methods are proposed and they may, and
indeed must, be used simultaneously to permit a majority vote.

e Optical methods : Monitoring of the temperature of the central part of the source will monitor its comect
operation and position. A metallic mirror will be lowered into the beam line on the vertical axis of the source,
between the valve V1 and the magnet D1 (see figure 1). Note that the beam never passes in this part of the tube
which serves uniquely to manoeuvre the source. Light from this mirror will be analysed by a 2 wave-length
pyrometer.

e Beam Analysis ;: The presence of 2 beam is a very good test of the comect functioning of the source (the source
well placed, electrical isolation in place etc.). Once the beam is correctly established and passes the pre-separator
(ensemble D1-F1), a destructive measurement of the beam taking a few milliseconds every few seconds could be
used, just downstream from the slit F2.

o Electrical Methods: When the reactor is stopped neither of the two previously mentioned methods can be used as
the source will be cold and there will of course be no beam. When no accelerating voltage is applied to the source
the conductors could be used to verify its correct insulation. When this voltage is applied, control of the currents
will permit the detection of possible short-circuits or defects in the electrodes.

The Manipulation of the Source.

The source will be manoeuvred on a trolley by a rack-and-pinion steering drive. Collinear with the source, at the
exterior of the reactor, is an area known as the "trolley station". It is housed in a separate bunker and serves as its
name implies, as a parking place for the trolly during the experiment and also for its introduction. Just in front of the
trolley station, the beam line is traversed by a vertical chamber which will be used for the introduction of a new
source and the removal of a used source. This chamber will house an articulated robot arm equipped with a pincer.
During the manipulation of the source the electrostatic lens must be displaced to allow the trolley to pass. D1, as
mentioned above, will have a large enough gap to permit the passage of the trolley.

Figure 2. shows the sequence which will be followed to place the source in the reactor beam hole.

A) The source will be mounted in its container and placed manually into the introduction chamber (above the beam
line) on a rolling support.

B) The support will move the source under the robot arm, which will then take it up.
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C) After withdrawal of the support into the lock chamber, the door of the introduction chamber will be closed, and
the lock chamber will be pumped out. When the vacuum allows, the valve V5 will be opened, and the robot will

lower the source onto the trolley waiting below.
D) The trolley will then be moved and the source placed in its operating position.

The source will stay in position for 3 reactor cycles (90 days). After use it must be removed from the reactor and
allowed to cool for several months.

Figure 3 describes the procedure for source removal.

A) The trolley will take the source out of the reactor and move it to the position above its "dustbin". The robot will
grasp the source and raise it to allow the trolley to regain the station.

B) After removal of the trolley the robot will turn the source through 90°.

C) The robot will lower the hot source into the disposal container which can then itself be isolated and removed to a
protected zone.

The trolley manipulation is an adaptation of the system currently used for the Lohengrin experiment at the ILL

The Vacuum Control System.

The vacuum system control will resemble that of SARA. Elements will be controlled using an industrial PLC with
the user interface on a PC. The PLC will supervise the system and will take action if an incident is produced,
although certain security related actions will of necessity be hard-wired. The philosophy will be to keep the
commands as flexible as possible whilst preventing forbidden manoeuvres by the pre-programmed logic.

The opening of the security valve (see figure 1) is particularly delicate as on the one hand permission will be required
from the reactor control system and on the other hand no pumping is possible in the beam tube itself.

Another particularity of the vacuum system is the series of reservoirs required to stock the pump exhaust gases,
which will be radioactive. Three reservoirs are planned:

e One will be in use.

e One will contain gas in course of deactivation; three months storage should be sufficient.

e The third will be to stock the gases from the primary pumping cycle, i.e. before the beam is present. These
exhausts will contain only radioactive dust which will be filtered. After monitoring, this gas can be released into
the atmosphere. This third tank will also act as a back-up.

Much of the vacuum system equipment will become radioactive and must be housed in controlled zones. This means
that the maintenance of the pumps (oil-changes) must be telecommanded. If a pump breaks down it will simply be
replaced.

People, Money and Time.

It seems unrealistic in a research environment to define the manpower needed for this project. Rather one should
consider the manpower available, with its acquired expertise and include these factors as criteria in the system design.
It is to be hoped that various groups from the different members of the collaboration will undertake the parts of the
work for which they are most suitable. In particular the manipulation of the source should be done by a team with
experience in this domain.

The latest estimate for the total cost for PIAFE phase 1 is 12 MFF (about 2.5 M$) not including salaries. The
controls and commands budget is expected to be 1.75 MFF. including all the robotics and the beam diagnostics.
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1t is hoped that the first beams could be delivered for physics in the second half of 1998.
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VEPP-4 Control System

A.Aleshaev, A.Batrakov, S. Belov, A.Dubrovin, Yu.Eidelman, A.Kalinin, S.Kamaev, M.Kollegov,
V.Kozak, E.Kuper, A.Ledenev, B.Levichev, Sv.Mishnev, A.Naumenkov, G.Piskunov,
I.Protopopov, D. Shatilov, E.Simonov, V.Smaljuk, A.Smirmov, S.Tararishkin, Io.Zaroudnev
Budker Institute of Nuclear Physics
Prospekt Lavrentjeva, 11, Novosibirsk, 630090, Russia

Abstract

The VEPP-4 control system includes twelve CAMAC-embedded 24-bit in-house developed ODRENOK computers
(CC24) 1], interconnected in a star network. The central node provides the boot for the peripheral computers, intertask
communications between them and file server functions. Real-time intercommunications between some of the
computers are based on point-to-point interfaces. Equipment control electronics is mostly CAMAC (nearly 60 crates).
A real time multitasking OS permits running up to 10 tasks with fast dynamic change of core image. Control of VEPP-
4 is accomplished by the simultaneous performance of more than 50 tasks. PCs are used as operator consoles, data
proces sing computers, printer servers and back-up systems. '

1 INTRODUCTION

The VEPP-4 accelerator facility [2] is composed of a 6 GeV collider VEPP-4M of 365 m in circumference, a 2
GeV multi-purpose storage ring VEPP-3 and a 350 MeV electron/positron injector. The injector consists of a 50 MeV
LINAC and a 350 MeV B-4 synchrotron. The LINAC RF is supplied by pulsed GIROCON generator. There are pulsed
transfer lines from the LINAC to B-4, from B-4 to VEPP-3 and from VEPP-3 to VEPP-4M (Fig.1).

Fig.!1 VEPP-4 facilities and control computers layout.

The collider provides the experiments with electron/positron beams, back-scattered Compton g quanta and
synchrotron radiation. VEPP-3 is an injector into VEPP-4M and is used simultaneously for experiments with

synchrotron radiation and a polari zed gas intemal target.
The up-to-date control system has been developed since 1986 at the same time as the upgrading of the VEPP-

4M main ring. All hardware and software have been developed and produced in the Budker Institute of Nuclear Physics.
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2 ARCHITECTURE

2.1 Structure

The control system has three levels: the central node, the local computing layer and the equipment layer.

The local computing layer is composed of 11 intelligent CAMAC crates containing ODRENOK computers
which are interconnected in a star network. All computers are connected to the central node via 250 kbit/s serial -links.
The node provides for the initial downloading of the computers, file service and “slow” interprocess communications via
a mail box. Special point-to-point 1.5 Mbit/s serial-links are employed for high-speed intertask communications in
different local computers.

Usually each subsystem of the accelerator facility is controlled by its personal ODRENOK. An overview is
shown schematically in Fig.2. All the active crates and the central node are located in a control room, except for the
computer which controls the VEPP-3 magnet system. Table 1 presents the up-to-date configuration.

The front end electronics is mostly distributed among passive CAMAC crates connected to the active crates
through serial -link drivers and controllers [3]. The distance between the active and the passive crates is up to 150 m.
Special serial controllers are employed for connections with non-CAMAC electronics, used for control of the RF-
systems and for beam diagnostics in the transfer lines. Coaxial cables are used for all links. The equipment control layer
is dispersed around the facility.

The magnetic system of the VEPP-4M ring is controlled by distributed intelligent controllers [4] connected
with CAMAC by MIL-1553-B links (Fig.2). The use of these controllers gives us improved control of the magnet
system during the rise of the beam energy from 1.8 GeV to 6 GeV.

IPO
I&’
i
UPO
<&
=) &>
- T T Ethernet
;_q | g E ]\
MIL-I% ,oomohm Control Room environment
v — — e
oo — peripheral CAMAC crates _ i di
— = ﬁ | mmmcnucem p——
] 1.6 Mbit/s serial links
—  local terminsls
_ CC-24 computer _ pg’iphn:lno_n—CAL_{AC.:elemniu
ODRENOK. R with .25 Mbit/s serial links -g —  console PC
— .25 Mbit/s serial links
local point-1o-poin: connections = knobs pmel
-— = with 1.5 Mbit/s serial links ‘

Fig.2 VEPP-4 control system architecture.
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Table 1
VEPP-4 control system configuration.

Number of
ODRENOK Allocation CAMAC CAMAC outputs inputs
name crates modules

1 MSV4 control of VEPP-4M 12 70 370 950
2 BEAMV4  beam diagnostics at VEPP-4M 9 50 280
3 MSV3 control of the magnetic system of VEPP-3 5 49 125 290
4 RFV3 control of the RF system of VEPP-3 2 21 30 15
5 BEAMV3  beam diagnostics at VEPP-3 4 32 100
6 UPO control of the pulse injector 9 75 135 30
7 PO pulse injector monitoring 4 47 10 110
8§ CHAN control of VEPP-3 - VEPP-4M transfer line 8 65 135 110
9 CONTROL vacuum system monitoring 3 24 150
10 LUMINOS luminosity monitoring at VEPP-4M 2 10 40
11 RADIAC radiation monitoring 3 24 36
Total 61 467 805 2111

2.2 Local computing layer

The local computer layer is based upon the CC24-computer, named ODRENOK. This computer was designed
in 1983-1985 as an autonomous CC24 crate controller emulating the instruction set of ODRA-1300 (a clone of the ICL-
1900 series mainframes) computer. The main features of ODRENOK are as follows:

-word length 24 bit;

.- address space 4 M words;
-RAM size 64K 24-bit words;
- performance 0.5 MIPS;

- hardware implementation of floating point operations;

- USER/SYSTEM modes, multitasking support, virtual memory;

- extensions to the initial ICL-1900 architecture: firm ware implementation of
OS kernel, CAMAC -oriented instructions, vector instructions;

- 2M C AMAC module installed in the controller position;

- microprogram i mplementation on the AMD 2900 bit-slices

Each active crate has a four-port RS232 module for connection of up to four alphanumeric terminals, a number of color
graphic display controllers, a RAM-emulated module (768 kb or 1.5 Mb), a network interface, and peripheral crate
drivers. Now the alphanumeric terminals are gradually being replaced by IBM PCs, which are used as operator interfaces
and supplementary disk machines.

2.3 Equipment control lay er

A basis for the equipment control layer is a series of CAMAC modules developed at BINP. The series includes
different types of DACs and ADCs [5], switches, etc. Tables 2 and 3 list the main parameters of some modules.
Sixteen-output switches with electromagnetic relays are used to tum on and tumn off power supplies and for interlocks.
This type of CAMAC module has a 1ms switching time. .
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Table 2
Parameters of C AMAC embedded ADCs

Type of ADC 20-256 101-SK 850-SK  ZIS-4M
Conversion type integration fast fast fast
Conversion time 2-240ms Ims-2ms S50ns-2ms <2ms
Scale (binary) 13-20 12 8 10
Input voltage (V) +8 +12-+10 *12- %10 +2
Number of inputs 1, MUX control 4 4 4
On-board memory (kbytes) 3 12 3 -
Module width 1M M M M
Table 3
Parameters of C AMAC embedded DACs
Type of DAC CAP-16 CAP-20 GVI-8M PKS-8
Type of output ' analog analog delay pulse  pulse-width
Scale (binary) 16 19 + sign 16 16
Output range +6.5v +8.2v 0-838 ms 0-6.55ms
LSB 200 mV 15.6mV .1 ms -12.8 .1ms
ms
Number of outputs 16 1 8 8
Module width 2M 1M 2M M
3 SOFTWARE

3.1 Program environment

‘ A multitasking real-time Operating System (0S) ODOS [6] was specially designed for ODRENOK. It enables
us to un up to 10 independently-compiled memory-resident tasks. This OS supports intertask synchronous and
asynchronous message transfers, remote file access, connection of up to 4 local terminals and one “system” virtual
terminal attached through the network. The OS permits independent dynamic loading, running and termination of tasks.

TRAN (FORTR AN version) with an in-house developed compiler is used for application programs. Under
ODOS its features fit well for memory mapping and real-time module control.

3.2 Data-base organization

The DataBase (DB) contains all the information about the devices of the accelerator complex. It has static and
dynamic parts. The static database is stored in RAM-modules and on the hard disk of the central node. The dynamic
database is a number of arrays in the Resident Executive Programs (REPs). DataBase Editing (DBE) programs provide
access to the static database, for saving the operation modes and modifying the data files.

The organi zation of the static database is illustrated in Fig.3. The lower layer of the “topology” and “devices”
branches is a linear array of text, integer and real variables, which includes names, addresses, status flags and calibration
parameters. The “setting” branch includes the files, which are the operation modes for different parts of VEPP-4

accelerator facility.
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Fig. 3. Static database organization

REP is the resident modular program in each local computer (Figure 4). It contains the data, control algorithms and
carefully optimized communication subroutines. All front end electronics are controlled by REP which protects the
system from improper operation. Any newly developed electronics can be easily added to the program as plug-in
modules. Control actions are performed by writing the required values into the dynamic database. REP allows us to have
about 2000 - 4000 accesses/s to CAMAC modules.

Fig. 4. Diagram of basic control software in the ODREN OK computer.
3.3 Applications
All applications were developed by the VEPP-4 staff requiring about 15 person-years. In addition, a large
amount of time was spent on the development of special tools for commissioning and modeling programs.
The Operator Control Programs (OCPs) are implemented to handle the devices of the facility. Control values

are entered from the keyboard, data are displayed as a column of digital values of device parameters. Saving and Setting
programs (SSPs) save/set the operation modes.
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Graphical Surveillance Programs (GSPs) display the parameters to be monitored in an illustrative color form. It
allows the operator to identify easily any deviations from the assigned operation parameters. The status of the facility is
shown in specially-configured graphical display images.

High-level Control Programs (HCPs) provide the automatic operation of VEPP-4 ‘without operator intervention.
HCPs perform:

a) electron and positron beam accumulation and acceleration in the storage ring;

b) beam transport to the collider from VEPP-3;

¢) the rise of beam energy in VEPP-4M from 1.8 GeV to 6 GeV.

A mailbox in the central computer is responsible for connections between the HCPs in different computers. The
mailbox consists of a number of modules, each of them corres ponding to a particular ODRENOK. Each module contains
status information about the subsystems controlled by that ODRENOK (“operational ready”, beam energy, beams
current, etc.) and includes control commands for other computers (for example, “reverse polarity”, “rise energy”, etc.)

4 CONCLUSION

Although the present control system successfully provides for the operation of VEPP-4, it is obvious that an upgrade is
necessary. The first goal is the installation of ethernet links between the local process controllers. This will allow us to
use a top level based on workstations with standard software without loss of functionality. The second goal is wide use

of distri buted proces sors at the lowest control level.
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Control of the QUENCH Protection System at HERA

R. Bacher, P. Duval, S. Herb, K.H. Mess and H.G. Wu
Deutsches Elektronen Synchroton (DESY), Notkestrasse 85, 22603 Hamburg, Germany

Abstract

We describe the control of the Quench Protection System for the superconducting magnets of the HERA
proton storage ring in DESY. General control (operator to hardware) follows “standard model” -like concepts
with multiple consoles communicating with front ends via the ethernet. The front end control is based on
redundant VME CPUs running the VxWorks real-time operating system. The data-link to the lower level
quench microprocessor and PLC based alarm control center is connected via the CAN fieldbus. A network
server task communicates with consoles running MS WINDOWS and Visual Basic via UDP. Important
quench data are automatically archived following critical events, allowing follow-up expert system analysis
while the machine is brought again into operation.

Introduction

The HERA proton ring consists of 422 superconducting dipole magnets and 224 superconducting
quadrupole magnets. These magnets are cooled by 4.5 K liquid helium. A current of 5025 A goes through
all these magnets for a proton beam energy of 820 Gev. The superconducting magnets are ultimately
protected via hardware as opposed to relying exclusively upon software logic, the quench detection
electronics being monitored independently. Passive quench protection is achieved by using bypass diodes.
Active quench protection is carried out by using transducers to measure the current flow in bridges to detect
quenches, and then activating the corresponding dipole heaters to protect the magnets and operating the main
current switches. Futhermore, redundant components are integrated into the system as much as possible, at
both at the hardware and software levels. The present system uses front end VME-based CPUs running
VxWorks and makes use of the CAN fieldbus and PLC modules. A microprocessor-based computer
provides local intelligence for monitoring, testing and fault state detection of all the quench hardware
components. A PLC-based microprocessor functions as an alarm control center collecting alarm signals,
such as quench electronics status, power status, status of switches and alarm status from beam loss
monitors. This processor makes critical decisions regarding beam dumps and machine operation. Various
hardware test commands can be excuted from the control system consoles. The cument state of the quench
protection system is collected asynchronously at the consoles from the VME CPUs via the ethernet. The
front-end CPUs and the quench microprocessor and alarm control center are linked via the CAN bus.
Logically the VME CPU acts as a front end supervisor, collecting data, coordinating the behavior of the
quench microprocessors and alarm control center and serving as a network server.

A more detailed description of the quench protection system at HERA is given elsewhere [1]. In this report
we concentrate on the design of the software control, starting at the level of the VME crate and progressing
to the GUI at the console level. Specific details of the hardware controllerss such as the PL.Cs will not be

presented here. A schematic of the system architecture is given in figure 1.
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Figure 1. Schematic drawing of the hardware architecture for a quadrant
The Console Software

We use PCs running MS WINDOWS 3.1 in the machine control room as consoles. Several application
programs written with VISUAL BASIC are responsible for controlling and monitoring the quench
protection system. Data exchange between application programs and the front end servers is via ethernet.
We use a socket-based RPC-like protocol, developed for the HERA PC control system [2]. Changes of
state are noted promptly at the console via asynchronous messages from the front end. Furthermore, the
front end appears as an integrated device at the console, allowing specific commands, such as to activate a
heater test, to operate specified main current switches, or even to dump the beam to be performed by a
mouse click on a synoptic display. The total response time (mouse click to hardware setting and return) for
command execution is typically less than one second.

Front End Hardware

A total of eight MVME162 CPUs are used for front ends, two CPUs being housed in a VME crate in each
of the four HERA halls.They are used to control and monitor quench operation and the alarm center. One of
these CPUs is always executing as the master, the other as a redundant partner. The data-link to the lower
level quench microprocessor and PLC-based alarm control center is provided by the CAN fieldbus. Two
separate CAN buses are connected to each of these CPUs. One CAN bus connects one alarm control center
and four quench microprocessors. Two of these four microprocessors provide redundant control for the dipole
magnets, and the others deal with the quadrupoles, and groups of dipoles and groups of quadrupoles. The
CAN data transmission speed is set to 500 kHz, and the overall time of one CAN telegram transmission is

250 us.

Live insertion cards are used for the VME CPUs. One can remotely or locally power one CPU on or off,
without disturbing the operation of the othes. All front end hardware is powered through an uninterruptable
power supply (UPS). Furthermore, each front end in the hall operates independently of the others and is
capable of operating in a stand-alone manner.
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Front End Software

The front end software has been developed for the VxWorks real-time multitasking operating system.

A network task services remote consoles and runs at rather low priority. As mentioned above, the HERA
PC control RPC protocol is used for updating registered consoles. Commands which change the state of the
machine can only be executed by allowed users.

A PLC task is responsible for communication with the alarm control center, by sending a request command
via the CAN bus every second. A hardware redundancy check is also performed upon request from the alarm
control center. According to the result, it will send an alarm to the alarm center to dump the beam if
warranted. A message queue is used for collecting console commands from the network task. A test task
can be excuted for testing transducer and heater electronics if the conscle application sends a test request.

A CAN message receive task collects CAN bus data, and sorts and distributes them to mailboxes; it
operates on semaphores according to CAN-IDs. During quench detection, it will perform heater status
checks and send heater commands to the quench microprocessor if necessary. Quench telegrams come at
speeds of 200 Hz, the maximum speed from 4 crates at once being 800 Hz. This means that the CAN data
transmision must take place less than 1ms. The 250ps message transfer time mentioned above is more than
adequate. A massive quench situation has been simulated with programs written for VxWorks, to test this
extreme situation. No performance problems were detected.

A monitor task, running at 10 Hz, checks the status of all other running tasks and the data integrity with
that of the redundant CPU, as well as the status of the CAN bus connections. According to this check it
marks itself as ‘OK’ or ‘NOT OK”, and sends its status information to its partner CPU via the CAN bus.
Upon receiving this CPU status information, it will determine whether it should continue to act as slave or
take over as master.

Only the master CPU responds to the console commands and sends commands via the CAN bus to the
quench microprocessor and alarm center. Although the slave acts as a passive listener, it runs exactly the
same code and possesses all current information.

In the unlikely event of a CPU hang, a ‘COLD BOOT" is still possible by toggling the power on the live
insertion card remotely from the console program.

The Quench Archive

A dedicated client application running on a PC is responsible for archiving important data upon quench or
beam loss alarm. It monitors the quench status and initiates a data archive if necessary. The archive data
contain the complete state of the machine at the time of the quench or other critical events. The experts can
then use these data at their leisure while the machine is brought up into operation again. The archived data
are read by the same application program in the same way, but the data link is to an archive file, instead of
the front end program.

Performance

The current system has been in operation since April 1995, and operates as designed. Although the whole
system is composed of so many different hardware and software components and involves data exchange
from different platforms on the field bus, it has proven to be a reliable system. During the half-year of
operation, the built-in master-slave redundancy has not been invoked.
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Controlling telescope observations from the astronomer’s own desk:
the case of TNG
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ABSTRACT

High-level ground observation facilities for astronomy are located in isolated sites where atmospheric
and light pollution conditions are the best possible. Normally astronomers travel to such observation
sites, but in the last decade some major observatories started a remote control program on selected tel-
escopes; more recently, the concept of allowing remote observation from secondary control centers
has become a reality. The availability of bandwidth-on-demand networking services and the construc-
tion of new telescopes having integrated control systems, allow the user at least conceptually to per-
form observations from his own desk.

Teleoperation of telescopes is one of the topics of a project submitted to the European Union for fund-
ing and it has recently been approved: the aim is to monitor and control remotely two different tele-
scopes located on the Canary Islands using a common system and standard ISDN services. One of
these telescopes is the Italian TNG, which is discussed here as a test case. TNG has been designed
and is being implemented with remote control as an essential requirement.

1. THE STATE OF THE ART IN TELESCOPE REMOTE CONTROL

In order to achieve the image quality needed for top-level research in astronomy and astrophysics,
the effect of Earth’s atmosphere on the observation needs to be minimized. The solutions are either to
implement costly space-borne observing facilities or to install ground-based telescopes in remote
regions, with low humidity, good weather conditions, and no atmospheric and light pollution: in other
words, ones having “good seeing conditions”. The latter has been traditionally the way astronomical
observing facilities have evolved and ground-based telescopes still have a fundamental role to play in
the development of human knowledge.

For the traditional astronomer to perform an observation in one of the best ground-based observato-
ries means reaching isolated observing sites, where the observations are actually carried out, through
uncomfortable trips. The availability of an advanced telecommunications technology suggests nowa-
days a different and more practical solution to this problem: controlling the telescopes and perform-
ing the observations remotely.

The first attempts at controlling remotely astronomical telescopes go back to the first astronomical
observations from space (in the late 1960s). Up to now, remote control facilities have been imple-
mented by providing a point-to-point connection through which the telecommands to control the
basic telescope and instrument operations are sent. If the bandwidth of the communication channel is
large enough, the observational data can also be sent; this is of course mandatory in the case of space-
borne experiments, while it is not common practice for the ground-based observatories using remote
control. A review of recent remote control experiences is given in [1]. Among these, the European
Southern Observatory (ESO) is to be noted: since the mid 1980s, some of the ESO telescopes located
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in La Silla, Chile, can be remotely operated from the ESO headquarters in Garching, Germany and
this has become standard practice [2-3].

On the contrary, the concept of distributed remote observation, i.e. bringing the tools to perform and
control an astronomical observation to the user’s site, is relatively new. In one case (from UK to
Mauna Kea, Hawaii) the concept of passive distributed observing is introduced: standard Internet
lines are used to monitor the observing activities and communicating with the local staff physically
performing the observations, while no real-time activity is supported [4]. A second experiment has
been tested in 1992 between the Trieste Astronomical Observatory (OAT) and the ESO facilities in La
Silla, using the remote control system at the ESO headquarters as a relay. In this case, a 64 kb/s point-
to-point temporary connection has been set up between Trieste and Garching to support the test, in
addition to the permanent point-to-point connection between Garching and La Silla. The test system
allowed the real-time control of the telescope and instrument setup and functionality and the organi-
zation of the observations from dedicated computers located at the OAT site. The different aspects of

this experience have been reported in [5-7].

2. THE TNG TELESCOPE AND ITS CONTROL SYSTEM

One of the first telescopes of the new generation, i.e. having an integrated control system, is the TNG
(Telescopio Nazionale Galileo), a 3.5 m telescope which will be fully operational at La Palma at the
end of 1996. TNG is being built as a joint effort of the Italian astronomical community under the
coordination of the Observatory of Padua, with Prof. C.Barbieri as the Head of the project. The mode
of operation for TNG is envisaged to be based on an end-to-end data flow model, and on assisted
observing, with the possibility of flexible scheduling. Information on TNG and its instrumentation

can be found in [8-12].

Optically and mechanically, TNG can be considered as basically derived from the ESOs NTT, while
the design of its control system is new and original. The TNG control system [13] is based on a dis-
tributed computer architecture over which two main software environments are layered: the Telescope
Software System (TSS) runs on the local processors for telescope and instruments, and provides the
direct interface to the hardware; the Workstation Software System (WSS) runs on the control Unix
workstations, monitors the TSS activities, and provides the higher-level interface for the user. The
choice of using a distributed system at the local processor level maximizes the performance of the
system while minimizing the cabling; at the workstation level it enhances reliability (the WSS is able
to recover from failures semi-automatically, without losing control over the TSS), while allowing a
multi-instrument multi-user environment.

Due to flexibility and reliability requirements, the WSS [14] has been implemented distributing both:
the code and the data on the workstations supporting the system at the telescope. The code has been
distributed using the textnal symmetry paradigm, i.e. all workstations run the same code but behave
differently according to their startup configuration and/or to the messages they receive during opera-
tions. Data are distributed using a unique replicated data-base structure divided into a number of sub-
sets, each maintained by a different workstation: the access to data not pertaining to the local system
is guaranteed by a message exchange mechanism.

The system is designed in such a way that the physical location of the various workstations running
under WSS is irrelevant. This means that remote control of the TNG is implicitly embedded in the
design [7], since the control workstation running the WSS code and sharing the data base structure
can either be located on the telescope LAN, or be remote connected via a bridge or a router.

The structure of the WSS is shown in Figure 1, where three workstations (the Telescope workstation,
the Instrument workstation and the User remote workstation) are shown: each of them runs WSS, but

some of its tasks (depicted in white) are inactive.
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3. THE “REMOT” PROJECT

REMOT (Remote Experiment MOnitoring and conTrol) is a project recently approved by the Euro-
pean Union; its objective is to develop a system architecture to allow remote control of scientific
experiments and facilities that require real-time operation and multimedia information feedback and
using available or deploying new communications infrastructures. The availability throughout Europe
of bandwidth-on-demand services allows the user to control experiments and facilities from his desk,
provided that the overall system is designed with this concept in mind. The purpose of the project is
to build a generic teleoperation system, using as much as possible available elements from other
projects or off-the-shelf, together with ad-hoc software modules. The communications infrastructure
will be IP, complemented with real-time protocols and the availability of ISDN and ATM technology
shall also be taken into account. Products from the Internet domain shall be used whenever they do
not conflict with real-time requirements.

Representatives from two user communities participate in the project: the astronomical community,
whose top-quality telescopes are located in isolated sites to optimize seeing conditions (as discussed
above) and the plasma physics community that is concentrating the experimental facilities in a few
places in order to save costs. The astronomical community is represented in REMOT by an Institute
operating a full-fledged observatory (the Instituto de Astrofisica de Canarias (IAC)), an Institute
defining and building the control system for a telescope (the Osservatorio Astronomico di Trieste
(OAT)), and an Institute representing the astronomical user (the Laboratorio de Astrofisica Espacial y
Fisica Fundamental (LAEFF)), plus three additional Institutes (CDS, KIS, Lund, VILSPA) to set up
requirements. TCP Sistemas y Ingenieria is associated to the project as an industrial partner.

The system will be built using a Client/Server architecture. The Client side, running at the user
premises, will hold the user interface and display facilities, the commanding interface and processing
and communication facilities. The Server side, located at the service provider facilities, will include
the actual interface to the provider system, the processing, communication and management services
and the “local operator” interface that will provide supervisory facilities together with the normal user
interface. The concept of the REMOT architecture is shown graphically in Figure 2.

Telescope sarver 1 Telescope server n

User site 1 User site n
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The services that REMOT is planning to provide as a demonstration can be roughly divided into three
categories:

« monitoring activities, aiming at following the basic operations to be held at the telescope, just to
make sure that operations are running smoothly. No control operation is performed, therefore no
real-time activity is really required; low-speed services are sufficient;

o remote control activities, aiming at controlling the activities of telescope and instruments,
including performing real-time operations. Guaranteed bandwidth for the support of real-time
operations is an absolute requirement; but the speed does not need necessarily to be high;

« remote observing activities, including monitoring and some of the control activities, such as the
logical setup of basic modes and functions of telescope and instruments. Guaranteed bandwidth
for the support of real-time is required; medivm- to high-speed is needed depending on the serv-
ices provided. If the transfer of scientific data files (lossless compressed) is provided, a high-
speed link is mandatory.

Using the IP solution will make remote scientific activities available across a wide range of platforms
and media. Low speed services will be tested over Internet, real-time services and high speed transfer
services will be tested by using IP over ISDN, or possibly over ATM.

A specific point is related to the expanding WWW Internet facilities available today. They could be
used to cover partially some of the services involved, especially in the field of user interfaces, as dis-
cussed in {15], probably combined with additional facilities. The possibility of including an adapta-
tion of a WWW server and client respectively will be analyzed. Due the nature of WWW), its use for
real time audio and video communications would probably be prohibitive, so this kind of services
needs another types of developments and tools.

A candidate for performing real-time control and transporting real-time multimedia data (such as
interactive voice and video) is the new Internet protocol RTP ( Real Time Protocol). RTP is a proto-
col that facilitates the transport of real-time data over packet switched networks, in particular IP.
Efforts have been made to make RTP transport-independent so that it could be used over AALS,

CLNP or other protocols.

The REMOT project will allow remote observations and the simultaneous use of network facilities
(e.g. access to astronomical archives and databases for the retrieval of information and historical data)
directly from the user’s institute. This solution will allow the control of observations, immediate
processing of acquired data and comparison with archive data to be performed in the familiar every-
day working environment. There are furthermore a number of other positive impacts: the possibility
of immediately processing acquired data at the user’s site reduces the need for powerful computing
infrastructures at the telescope; no point-to-point connections are needed and the expense of commu-
nications can be shared among all institutions using the observing facilities on a time-connected
basis; expenses for telecommunications can be recovered by the individual in-stitutes from the money
saved by avoiding scientists’ trips to the observing facilities.

Integrating the TNG telescope in the REMOT project is conceptually simple, since the TNG control
system has been designed and implemented to include transparent remote control as one of its fea-
tures. As a first step, the implementation of the TNG concept on ISDN-based connections will be
tested; later, an appropriate software interface between the TNG WSS and the new generalized user
interface which will be provided by REMOT will be built, in order to remotely control all of the tele-
scopes included in the project through a unique interface. In any case, the TNG project will bring its
own experience to test a concept that may dramatically change astronomical observing in the future:
controlling a telescope from the user’s own desk.
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STATUS REPORT OF THE PSI ACCELERATOR CONTROL SYSTEM

T.Blumer, D.Anicic, I.Jirousek, A.Mezger and L.Sekolec
Paul Scherrer Institute, Villigen, Switzerland

Abstract

The upgrade of the control system for the three accelerators and their associated beam lines is now near
completion. Some of the major improvements of the last upgrade include the replacement of 16 bit computers
PDP11 with RISC machines in VME. Aspects of performance, timing and realtime response are analysed and
results measured in the real system are presented.

HISTORY AND STATUS OF THE CONTROL SYSTEM

The control system history shows continuous improvements and several major upgrades which reflect the
continuous development of the accelerators. The present state now represents the third generation in a long line of

evolution of the control system.

The first system started with one “big blue”, a very precious central computer acting as an intelligent operator.
Settings could be saved and restored, probe measurements analysed, and beam profiles captured for later analysis
of the beam line using the data processing centre of the institute. At this first stage manual control was performed
directly through dedicated hardware. The second generation introduced 16 bit minicomputers with CAMAC for
communication and input/output to the process. Three such minicomputers were used, one for each of the three

accelerators.

The proposal for the present upgrade of the PSI accelerator control system was first outlined in 1989 in Vancouver
[1]. In 1993 in Berlin [2] more details followed as the project advanced and first results were presented.

Limitations of the minicomputer system, the development in computer hardware and the ever present demand for
extension in size and quality of the system created the motivation to undertake the latest upgrade, where three
distinct areas of change and improvement can be identified.

Firstly, the minicomputers, old and obsolete 16-bit machines (PDP11/44 with RSX11M+) had obviously to be
replaced. At the same time we intended to increase the I/O bandwidth by one order of magnitude and restructure
the front end software for better maintainability and more flexibility.

Secondly, the introduction of a distributed system based on messages for communication. This would allow global
access to all parameters throughout the whole system, independent of the hardware configuration and the
computer where an application is executed. It would improve reliability by separation of applications from the
input/output on the front end computers. This is a solution where the demand for additional /O performance can
be satisfied, independent of whether the number of connected devices is increased or the update frequency is

raised.

Thirdly, workstations with graphical user interfaces for the operator consoles were to be introduced. These would
replace the old hardware panels by more flexible workstation displays and provide modem platforms for large and
complex applications including a common standardised application process interface for the user.
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STRUCTURE OF THE PRESENT CONTROL SYSTEM

The basic system upgrade is nearly finished, if measured by the degree of introduction of the upgraded front end
computers. It is now completed to 80%. The system is now fully scaleable in size and performance.

The upgrade of the front end computers to the new machines was done in steps. The first step consisted of a
reconfiguration of CAMAC crates in hardware and in the central database and the second of a test with the new
front end. This was done in one service day. The new configuration was then taken into operation on a subsequent
service day. No additional interventions were needed for the applications, except some bug fixes.

The last residual effects of the move will be cleaned up by late spring 1996.

HARDWARE DESCRIPTION

The front end computefs are formed of HPrt743 (64MHz) RISC machines in VME. The accelerator devices are
connected via CAMAC and local fieldbusses. The CAMAC crates are accessed via bit-serial loops (5 MHz). The
serial loop is controlled by a CERN serial CAMAC controller [3].

Workstations provide the operator interface at the control room console. Dedicated nodes for knobs and touch
panels are CAMAC-based PDP11 microprocessors (CES Starburst) connected directly to Ethernet. A DEC AXP
Alpha provides disk space for global data used in the system. Additional nodes are used for auxiliary applications.
Development machines are separated from the machines needed for operation.

FIG 1: Present Control System Structure
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COMMUNICATIONS AND SOFTWARE

The communication used in our distributed system is based on connectionless messages using the basic Ethernet
protocol. This makes a loose coupling between FECs and workstations and ensures that no deadlock can occur.
The format and the content of these messages are standardised on the basis of logical I/O access.

The messages on the network form an operating-system-independent interface between front end and requester.
This was a pre-requisite for the replacement of the frontend machines. The front end software transforms logical
/O requests from the network into the appropriate hardware operations needed. This is done in a model
representing the connected hardware. To construct this model the object oriented language Sather is used. The
information for building the model is extracted from an Oracle database.

The user support in the workstations (open VMS) consists mainly of a general user application interface providing
the logical access for 'O to the accelerator devices. This is realised in the form of a shared image.

X-window-based MOTIF is used as a graphical user interface for animated displays. Graphx, a PSI developed
graphic package, is used for static graphic applications.

Workstations, some of them forming a VMS-cluster, are used for the development of the control system software.
The Oracle database resides on the VMS-cluster server. It centralises all the information for the description of the

system.

FIG 2: Functional Layout of Control System HW and SW
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PERFORMANCE AND RESPONSE TIME IN THE SYSTEM

In our system the /O performance of one front end is one of the dominant factors for the global system VO
bandwidth. Peripherals can only be connected to one front end machine, if this machine is saturated its peripherals

have to be distributed over more than one front end.

The maximum available I/O performance for requests from Ethernet was measured. This was done by loading one
front end up to saturation using different forms of characteristic requests {cases 1,3 and 4). For efficiency reasons
/O requests are grouped in lists of up to 60 cells, in these lists one device or value is associated with one cell.
Measurements were therefore made for 1, 10, 30, 40 and 60 cells per list. The front end computers measured are

the HPrt743 operating at 64 MHz.
FIG 3: IO Performance of one FEC over the Network
8000
7000 T
6000 T +

o 5000
&
— 4000 } !
®
=
® 3000
. il
0 + ' ' N ‘
0 10 20 30 40 50 60
values / List

20

15

10

0

1) The most efficient mode, used in displays for fast operator feedback (closed diamonds in fig 3).
Here lists are dynamically predefined, a repetition rate specifies execution. /O is performed

without additional requests.

2) For writing data or for /O with varying destinations every requested list has to be sent to the
frontend. These figures are measured with one VAX 4000/60 acting as requester. The loop time

is determined by the sum of execution time in the two machines. (Crosses in fig 3.)

3) This is the same case as 2, but with four simultaneous requesters. To measure the maximum

performance of the front end it is now loaded up to saturation. (Open triangles in fig 3.)

4) Ethernet load corresponding to case 1. To decrease Ethernet load a shortened protocol for reply
messages with ope third the message length is also implemented. (Open squares in fig 3.)
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From the above data the performance of the front end, as seen by the network, can be described approximately as
the sum of a fixed overhead time per list and the time needed for the treatment of each cell within this list.

These figures now are:
- Previously defined list, Overhead 1.2 ms and 0.12 ms per cell.
- List defined at each request, Overhead 1.6 ms and 0.20 ms per cell.

The accelerators at PSI are operated in continuous wave mode, apart from the inherent 50 MHz structure there is
no other time structure in operation, therefore the timing restraints mainly originate from control loops including
magnet power supplies and from fast operator feedback and interactions. Therefore a response time between 40
and 100 ms seems adequate. Timing granularity for timed requests in the frontend is 20 ms.

The variation of the turnaround time was measured for two typical MOTIF-applications with repetitive execution
in a loop. In both cases the workstation application sends one compound request (write, wait and read) to two
FEC's. The timing between write and read is done in the FEC. The loop restarts after reception of the read data
and some processing in the workstation. This is a typical case of a control loop for multiply coupled parameters.

In case 1 (fig 4) all time-critical code was executed at AST-level. It showed that 90% of the response time lay
within a window of 20 ms and that only 0.1% lay outside 40 ms.

In case 2 most of the time-critical code was executed at user level. It included signalling through X-windows.
Here the respective figures are 30 ms for 90% and 50 ms for 0.1%. An additional delay from the increased code

can also be noticed.

Both curves show a very small tail towards longer delays. This is cansed by the non-deterministic nature of the
workstation operating system, the network and the variation in load of the FEC.

FIG 4: Variation of Turnaround Time for repetitive MOTIF-Tasks on an Open VMS-Workstation addressing two
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UPGRADE OF THE FIELDBUS

We still use a secondary fieldbus of a design that dates from the origin of the PSI accelerator complex. This
parallel bus features 16 bit data, 8 bit function and address space. There is no error check, unless read after write
is specified within an application. Galvanic insulation is achieved by transformer coupling of the peripherals. The
bus is capable of 50 kHz, this corresponds to 100 kByte/s or 20 psec per 16 bit data transfer for random
addressing. Since errors are difficult to detect and the cabling is delicate and expensive, we are replacing this
fieldbus in order to get increased reliability.

The present prototype for evaluation uses the CAN bus. Other modern fieldbusses using programmable
microcontrollers in the remote stations could be used instead. With the CAN bus it is not possible and also not
expected to achieve the same bandwidth we have now. The high bandwidth available now is mainly used for
filtering. We estimate that this task is anyway better done at the source, prior to any multiplexing mechanism. So
for our applications we intend to overcome the handicap of a lower bandwidth by normally pre-treating, usually
filtering, the data at the source.

The cascading of two different bus systems is always time critical. In order not to impede on the specific CAMAC
timing, a solution with a dual port memory in the CAMAC CAN interface is adopted. The registers of the control
units are cyclicly read and then refreshed in the dual port memory. For write functions the data is directly
transferred to the control units using a write through mechanism.

FIG. 5: Prototype for Fieldbus Upgrade
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CONTROL SYSTEM FOR AN INDUSTRIAL ACCELERATOR
TECHNOLOGICAL COMPLEX.

V.N.Boriskin*, N.I.Aizatsky, YU.I.Akchurin, V.A.Gurin,
N.V.Demidov, A.N.Dovbnya, V.A.Kushnir, V.V.Mitrochenko,
A.N.Savchenko, YU.D.Tur, V.L.Uvarov.

National Science Center, Kharkov Institute of Physics&Technology (KFTI), Ukraine

This paper deals with the control and protection system for an electron linac for industrial purposes (KYT). The KYT
is a powerful source of accelerated electron beam and is designed to be used for radiation processes including
sterilization of medical supplies. KYT was designed and constructed in KFTI. The pilot KYT has been operating
since September 1993. This linac produces a 8-10 MeV electron beam with a power of up to 10 kW. The
commercial production of KYT was started in 1994. A description of the system ispresented.

HARDWARE AND TECHNICAL SUPPORT

The linac includes the high-voltage generator, the electron source, the accelerating system, a klystron with
its high-voltage modulator and a scanning and electron beam extraction device. The control system provides the beam
current and energy monitoring, the control of system parameters and fault diagnostics of the linac units, the
protection for the accelerator system against damage by the beam, interlock protection for the modulator and klystron
amplifier against incorrect operation, regulation of the currents in the magnet power supplies, regulation of the phase
and power of the RF system, control of the irradiation dose at the target and monitoring of target transportation
system.
The layout of the system is shown in figure 1. The hardware consists of a personal computer equipped with
analog-to-digital converters (ADC). This is connected by a local area network to the units shown below, which are
situated about 40 m from the PC. There is a synchronization unit (SU) and three microprocessor controlled units:
one for the klystron amplifier modulator (KAM), one for the technical services (TS), and one for the target
transportation system (TT). The control system of the experimental model of KYT was made using the CAMAC
standard [1]. However, this was too complicated for industrial usage, so the new version of the system will not use

CAMAC.

Fig. 1. Schematic of the control system.
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The ADC units receive signals from analog pulse detectors. They have two switched channels with 100 ns
period and two integrating channels. The SU assigns time-dependent programs to the pulse generation system, the
control system subunits and the measuring equipment. The linac operation frequency can be selected within the range
of 25 - 300 Hz, while in emergency situations or during a bean commissioning run it can be lowered to 6.25 Hz.
Switching on the SU automatically brings back the operation regime which was in use when the SU was previously
turned off. :

The KAM unit monitors the operation of the klystron modulator, ensuring the interlocking of the HV-supply
and beam switch-off, when the accelerator equipment enters into a hazardous state of operation, or when its operation
becomes dangerous for service personnel. This unit controls about 60 digital and analog signals.

The HS unit controls the operation of two cooling and three precise temperature controlled water circulating
systems, monitors the temperatures in the accelerator main components and the water flows in the cooling systems,
using thermocouples and sensors. The TT subunit controls the magnetic elements of the accelerator and the target

transportation system.
SOFTWARE AND PROGRAMMING

The program package CSL (Control System Linac 1.2), written in C, provides for the CS operation in three
stages:
- linac switch-on and -off,
- parameter variation and control,
- automatic control, identification of any deviations from the assigned operation parameters and monitoring
of the irradiation process.

Information on the system operation and the electron beam parameters is fed to monitors on the local control
panels at each of the subunits TS, KAM, SU, TT, and to the color graphics three-screen display at the main control
console. Control of the accelerator operation can be carried out either by the operator at the main console PC
keyboard, or from the local control panels. For each of the 16 main accelerator systems there is a corresponding
overlay module in the CSL, called by the basic monitoring software. These program modules allow the operator to
monitor single or multiple systems parameters, to give commands, to save and view archive files, to control the
radiation dose, to control the transport system for the articles being irradiated, etc. Parameters of several systems can
be monitored simultaneously, but only sone ystem can be regulated at a time.

CURRENT STATUS AND PROSPECTS

At the present time different versions of the system described above are working at two accelerator complexes.
Two new KYT-2 accelerators which are now being manufactured will be supplied with similar systems.
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Controls in the Past Year of ELETTRA Operation

D. Bulfone, L. Barbina, C. Bortolotto, M. Lonza, R. Marizza, P. Michelini, F. Potepan,
F. Radovcic, C. Scafuri :
Sincrotrone Trieste, Padriciano 99, 34012 Trieste, Italy

After a successful commissioning phase, ELETTRA, the Italian third-generation synchrotron light source
facility in Trieste, is operational. The paper describes the experience gained during the past year with the control
system of ELETTRA. Emphasis is given to the operational aspects and to the major system upgrades developed to
improve the machine performance.

1. INTRODUCTION

ELETTRA smoothly moved from commissioning to regular operation during 1994 [1] [2]. Since the
beginning of 1995 the percentage of beam time dedicated to experiments is about 80 %, which comresponds to a
total of 3800 hours in the past year. Figure 1 shows the cumulative operating hours for machine studies and user
experiments from the beginning of the commissioning in October 1993. The 1995 efficiency of the machine,
which is defined as the ratio between the delivered and the scheduled beam time, exceeds 90 %.

Five insertion devices (ten undulator sections, three wiggler sections) are presently installed. Four beamlines
are fully operational and open to external users, another five will be completed by July 1996.

End 1995
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Figure 1. Cumulative operating hours for machine studies and user experiments from the beginning of the
ELETTRA commissioning.

2. OPERATIONS

A 1.0 GeV electron beam produced by a linac is transferred via an underground transfer line to the storage
ring where the synchrotron light is produced. A ramping mechanism, which will be discussed later, has been
installed to provide the higher-energy electron beams which are requested by the users and this allows flexible

operation of the facility in a wide energy range.
Two kinds of shift are scheduled. Machine physics studies are performed in the so called "machine shifts"

where the ring is operated at different currents, filling patterns, energies and optics. During the "user shifts" the
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ring is 80% filled with an initial current of 250 mA at an energy of 2.0 GeV and synchrotron light is delivered to
the experiments. Injection is performed once a day.

The linac, which was bought as a turn-key machine, is presently controlled by its proprietary control system
from a local console whereas the transfer line and the storage ring are fully controlled by the ELETTRA Control
System from the storage ring control room.

Preparing for injection during a user shift, the control room operator has first to dump the stored beam, open
the gaps in the insertion devices (ID), close the front-end shutters and valves, cycle the storage ring magnets and
load the machine file [3]. After filling the ring with to requested current value, he has to execute a ramp to the
final energy, close the ID gaps, correct the orbit to zero position and slope at the centre of the IDs and open the
front-end shutters and valves to provide light to the users.

As the machine is more and more dedicated to user experiments, a number of control system improvements
have been designed and/or installed in order to optimize the operation of the facility during the user shifts. The
following sections describe such developments focusing on automatization and speeding up of machine
preparation, ID and linac control.

3. IMPROVEMENTS

3.1 Ramping

The ramping process at ELETTRA consists of synchronously setting the currents of the storage ring magnet
power supplies (46 main magnet (bending, quadrupole, sextupole) and 164 corrector power supplies) in order to
bring the machine to a higher energy state with arbitrary (usually constant) optics. The definition of the path in the
optics space and the specification of the DAC setting values (called "steps') are completely decoupled. This
allows a free choice of the parameters for the first whereas the power supply hardware characteristics can be dealt
with by the latter. The system is based on a general purpose mechanism which uses MIL-1553B broadcast packets
for the synchronization of the software processes executed by the different interface computers (Equipment
Interface Units, EIU). The measured jitter of the DAC setting times is kept between 10 and 300 ps. The ramping
process does not affect the control system operation and is transparent to the control room operator.

The earliest implementation and results of ramping at ELETTRA have been presented in [4] [5]. The system
also featured the so called "file ramping" which enabled a smooth transition to any machine file. The first
successful energy ramping from 1.1 to 2.0 GeV was performed in January 1994, after only one hour of ramping
tests. Saturation effects in the combined-function magnets led to variations of the betatron tunes above 1.6 GeV.,
During simple energy or file ramping the tunes were stabilised with the use of a feedback system.

Electron beam energies from 600 MeV up to 2.31 GeV were easily achieved. The ramping speed was
however limited by the tune feedback repetition rate and by the power supplies which were set to follow a linear
ramp whose maximum slope was fixed to 1 DAC bit/10 ms step. Ramping from 1.0 to 2.0 GeV during a user shift,
including large safety margins, took about 12 minutes.

A further improvement called "multiple-file ramping" which was installed in May 1995 overcomes the
limitations above. The ramping is now performed through a set of machine files which are optimized and
measured in advance on the machine, taking into account tune shifts, optics and closed-orbit distortion. Such a
procedure avoids the use of the tune feedback. The setting of the power supply currents with time is done using a
1 - cos(wt) function which gives zero derivative at the beginning and end of the ramp with the maximum in
between, therefore minimizing the total time. The ramping speed is changed by varying the duration of each step
from a minimum of 1 ms to the desired maximum value. The minimum time achieved for a 1.0 to 2.0 GeV ramp
is 100 s. The typical time during user shifts is about 3.5 minutes.

Multiple-file ramping has also proven to be a flexible tool during machine shifts, allowing synchronized
transitions between different machine files.

3.2 Insertion Device Loops

A closed-loop system on each ID compensates for the residual closed orbit distortions during gap closure [6].
The correction system for each undulator consists of a set of correction coil$ which act in the horizontal plane and
is powered by one four-channel power supply. Twelve (four per section) permanent magnet rotating blocks moved
by stepping motors are used for the wiggler.

The currents (positions) which minimize the orbit distortion are first measured at different intermediate gap
values and a look up table is generated. When the gap is changed the software loop sets the currents (positions)
accordingly by interpolating the measured values. A tracking scheme based on a predicting algorithm is
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implemented for the wiggler. The closed loop takes into account the speed of the motors and the delays caused by
the "slow" serial lines which interface the stepping motor and the ID gap controllers to the control system EIU.

3.3 One Button Machine

The progressive knowledge of the behaviour of the machine, together with its increasing operational stability
led to the development of application programs that summarize several repetitive and disjointed actions into one
single command. A small library of such programs is normally collected at control room level and used by the
operators on shift.

The one button machine (1bm) application has been designed taking into account the following issues:

- keep the already developed and well tested programs

- define a logic flow control of the various tasks

- provide extended step-by-step help for each task action

- avoid operator intervention during flow execution

- provide the choice between manual or automatic error recovery in case of task failure
- use a robust Motif interface

The one button machine (1bm) is a simple task-spawner that uses conventional UNIX routines for process
execution and communication. Once tasks are identified with letters, 1bm can understand basic Boolean strings
such as "AB+Cd" which is interpreted as: "execute the next task if task A and task B were correctly executed, or if
task C was executed and task D was in error or was not run at all". At each step, i.e. at each task termination, the
control logic is checked: if the condition is true, one or more tasks can start concurrently.

The exit condition is used to validate task termination and to establish a simple error reporting convention.
The standard output is redirected towards the spawner for tracking purposes and special characters are used to
isolate automatic error recovery strings.

Processes jump over a basic state diagram in which manual intervention may execute, stop, abort or freeze
any selected task, without invalidating the control flow dependencies.

If a foreseen task is not implemented, the extended help boxes guide the operator through the necessary steps
and wait for a final "Done" acceptance that allows the automatic flow to take control again.

3.4 Linac Control

The linac proprietary control system does not provide the requested level of reliability and the design of a
new system based on the ELETTRA Control System has started. Both software and interface hardware have to be
replaced. A modular installation is being considered in order to minimize the effect on the facility running
schedule. The new system will allow complete control of the linac from the control room workstations where a
number of essential analog signals can already be displayed.

As a short term solution, a remote procedure call server has been installed on top of the original linac
software. It allows monitoring and control of the main linac parameters from the control room.

3.5 Other Developments

Two different RF signal generators provide the 500 MHz driving signal to the storage ring RF plants and the
linac. They can be phase locked or decoupled in order to perform synchronous or asynchronous injection and to
independently change the storage ring RF frequency [7]. An automatic procedure searches for the phase value
between the linac and the RF plants and optimizes the synchronous injection rate by acting on a phase shifter
installed after the RF plant signal generator.

As the storage ring magnets have to be cycled before each injection, the procedure has been speeded up by a
new dedicated server at the processing level which uses an S-like function for the setting of the power supply
currents with time. The requested time has been reduced from twelve to about three minutes.

A service has been developed to share information and commands between the ELETTRA and the Beamline
Control System [8]. It is installed on the ELETTRA general purpose server computer and is accessed by a set of
remote procedure calls. The service has a multiprocess architecture with a common data area. For each active
client there is a corresponding server process handling the data requests and the data is stored in a memory area
shared by all the server processes. Typical information consists of general machine parameters (i.e. beam energy,
current and lifetime) and ID and front-end status (i.e. valves, photon shutters and vacuum values). The possibility
of sharing commands will allow each beamline user to control the corresponding ID.

General real-time machine status information is available through our World Wide Web server whose URL
address is http:/waxa.elettra.trieste.it:8080/ELETTRA .html.
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4. PERFORMANCES AND REMARKS

The ELETTRA Control System has been comprehensively presented in previous publications and details can
be found in [9] [10] [11].

The system architecture and the effective distribution of the control resources at each level provide a very
high degree of flexibility which allows easy expansion or addition of new schemes to the original configuration.

Hardware and software modularization is fundamental. System changes and upgrades can be transparently
installed to face specific needs using state-of-the-art technology. Taking advantage of the modular multi-master
architecture, an upgraded Local Process Computer (LPC) equipped with Motorola 68040 microprocessors has
been set up in few hours.

Fibre-optic Ethernet and its associated hardware did not give any trouble. The CERN LEP-NC mpe [12]
worked very well on both the UNIX and OS-9 platforms. Measured Ethernet loading during machine working
time is below 4% and no bottleneck situation has been experienced in two years of operation.

The MIL-1553B hardware confirmed its robustness and the long branches (about 500 m) covering the whole
ring can work at 1 Mbit/s without problems. The installation of the OS-9/NET tools (e.g., remote login and
distribution of the file system over the network) on top of the basic MIL-1553B communication software gives the
system a powerful debugging environment at the lower layers.

The overall behaviour of the VME hardware, which has been almost completely purchased from the market,
is good. The special DAC and ADC boards for the control of the magnet power supplies, which have been
subcontracted, present outstanding temperature stability. Some of the serial lines which are used for interfacing
intelligent controllers presented difficulties in terms of response time and protocol reliability.

The Man Machine Interface (MMI) provides the operator with an intuitive working environment and machine
operation requires no special knowledge of the control system details. About forty non-professional operators
alternate on shifts and use the control system. The scalable MMI organization leads to a coherent enhancement of
the available tools. Higher level applications merging the functionality of different pieces of equipment are
located within the existing logical frame and complement the "'old" control panels.

The home-made Control Panel Editor (CPE) and its associated library boosted the production of Motif panels
and high level software programs [13]. Non-expert programmers can take advantage of the resultant simple C
language skeleton which hides the Motif technicalities. Also, a consistent style is also preserved amongst the
different applications.

Developing ORACLE applications can be quite time consuming. The Motif implementation of the FORM is
not satisfactory and third-party products are being tested to provide a better graphical user interface to the
database. A number of improvements, such as integrity checking of the input data and permission control, are
implemented with the last release of ORACLE (version 7).

Interlock Programmable Logic Controllers give reliable hardware and software flexibility, but they do not
offer a comfortable program development environment. Both the interlock and the alarm system were
subcontracted to external companies. They worked satisfactorily from the beginning of the commissioning but
gave some problems with maintenance and the acquisition of the associated know-how took some time.

5. CONCLUSIONS

The ELETTRA Control System has effectively provided all the resources needed for the commissioning and
operation of the machine. Its operation is reliable and no limitation in performance has been experienced so far. It
can be expanded following the "natural" evolution of ELETTRA and permits major system upgrades, for example
ramping to be carried out.

The complete installation of the tools aimed at optimizing the machine preparation during user shifts will
reduce the time from beam dump to user readiness from 45 to about 20 minutes.

Beside the design and installation of the linac control system, a series of new projects are foreseen for the
future. Among these are: a systematic monitoring and archiving of the machine parameters featuring various
statistics on equipment operation; a new alarm server with extended capabilities, used as a pilot project in C++.;
the development of Digital Signal Processing techniques for machine feedbacks; and the control of FERMI [14],

an infrared Free Electron Laser.
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The New Controls Infrastructure for the SPS

P. Charrue and M. J. Clayton
ABSTRACT

A completely new control infrastructure has been installed in the SPS machine and experimental
areas, replacing the old control system based on NORD computers that dated back to the 1970s. The
new system uses Unix workstations and X-terminals to replace the old console computers and PC and
VME chassis running LynxOS to replace the low-level interface computers.

This paper will present the old method of equipment access and then describe the transitional phase
when the two systems were run in parallel followed by the final complete transition to the new system
and the removal of the NORD computers.

A great effort was made to recreate the old programming environment in the new system in order to
preserve the enormous investment in application programs. The equipment access and the NORD
console simulator are two examples of this effort. Finally the paper will present the results of the first
few months of operation of the SPS and its experimental areas with this new control infrastructure.

OLD CONTROL ARCHITECTURE

The SPS Machine

The original control system of the SPS dates from 1976, and has been extensively described
elsewhere [1]. Here we will briefly summarise its main characteristics.

It was based on NORD 100 computers connected together in a star network designed specially for
the project. In the control room, dedicated computers drove specialist consoles which provided a
graphical user interface with trackballs and knobs, while computers installed around the machine were
connected to the equipment either by CAMAC or by a fieldbus designed for the project, the Multiplex
syustems [MPX]. All the applications software was written in an interpretive language, NODAL [2]
which had instructions that allowed commands to be executed on any machine on the network. The
computers distributed around the machine, to which equipment was connected, contained special
functions written in the NORD assembly language which allowed the NODAL programmer easy
control of the equipment. It is interesting to note that these functions, called Data Modules, contained
their own private data areas and within the limited resources of the time implemented many of the
concepts now used in object-oriented languages.

Although many of the computers in the field were connected to equipment belonging to different
groups and acted as general service machines, some computers were dedicated to special tasks and
contained a lot of special system code. An example of this was the PS computer that controlled the
magnet currents in a real time feedback loop.

The general layout of the hardware connections is shown in Figure 1. The NORD computers were
connected to the CAMAC crates directly via their /O bus, the CAMAC crates being controlled by
special controliers that appeared as NORD devices on the bus. Although some equipment was controlled
by CAMAC modules, most was controlled by MPX modules which were installed in crates attached to
the MPX fieldbus, a serial bus with sufficient range to allow control throughout an auxiliary building.

aaiil]
5000 Nord I/0 bus

0000 v
CAMAC
NORD
MPX Fieldbus
MPX

Figure 1
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The SPS Experimental Areas

The SPS has two large Experimental Areas, the North and the West, and the Experimental Areas
group was responsible for the control of the beamlines between the targets and the experiments. The
control system was basically the same as that of the machine: it used the same NORD computers,
network, programming languages and concepts. It differed in two ways from the control system of the
machine: it used Serial CAMAC as the interface to the equipment and it was multi-user as it provided
terminal access for each experiment. Another difference between the Experimental Areas and the
Machine had a profound effect on the design and evolution of the control system and that was the fact
that the Areas were constantly changing, even during operation, as experiments came and went. The
system therefore contained extensive facilities for the easy installation of new equipment even during
operation.

The general layout of the hardware connections is shown in Figure 2. The layout was later
complicated to allow for the connection of several computers to the Serial CAMAC, but the general
principle remained the same.

=2=000
Nord IO bus

NORD

To other stations

—>

Serial
CAMAC

Figure 2

There were several Serial CAMAC loops in each zone, there being three in the largest one, the
North Experimental Area. This zone also contained the longest loop which was about 2km long.

NEW CONTROL ARCHITECTURE

Although a great success, the NORD-based control system became old and difficult to maintain, and
the restrictions imposed by its limited address space and non-standard operating system became more and
more of a problem. The new LEP control system {[3] provided a model for the integration of modem
operating systems and computers in the accelerator control environment towards which the SPS control
system could evolve.

The general outline of the new control architecture is shown in Figure 3. It has three levels:

- The Control Room Layer. This consists of X-terminals and UNIX servers which
provide the Graphical User Interface to the operators, the computing power to run the
application programs and specialist services like file servers, databases and alarm servers.

- The Front End Computing Layer. This is made up of front end process computers
installed in the field and controlling clusters of local equipment. These front end computers
are PCs or VME crates running a real-time UNIX (LynxOS) and tasks are assigned to them
on a geographical or functional basis.

- The Equipment Control Layer. This layer consists of Equipment Control
Assemblies (ECA) and industrial Programmable Logic Controllers (PLC) which are
connected to the front end process computers by various fieldbuses or RS232 links.
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Figure 3

The network between the control room layer and the front end computing layer is a TDM/Token
ring backbone. This is-connected to Ethernet in the surface buildings and the Experimental Areas via IP
routers and to a variety of transmission media in the control rooms via a central intelligent MMAC
HUB [5] [6].
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The Control Room Layer consists of X terminals, HP-UX Unix servers and some Apollo
workstations. The software running at this level communicates with the Front End computers either by
RPC calls to specialist servers written for the particular application, by the standard SPS/LEP EQUIP
call [7] or by the network communications facilities written into the NODAL language. The SPS/LEP
EQUIP call mechanism is the most important standardisation of interprocess communications that has
been introduced in the system, so a brief description is given here. An equipment database is maintained
in the system, which stores all equipment by name and holds for any piece of equipment both
addressing information and the method of access. A standard equipment access library is provided for C
applications programmers and NODAL is in this instance another C applications program. The library
translates the standard equipment access call into the particular protocol used by the actual equipment,
thus removing this level of detail from the application programs. This method of access is used to
communicate with the data modules in the Front End computers.

The Front End computers are 386-based PCs running LynxOS. The fieldbus uses MIL STD-1553
which is controlled by cards installed in the PC or by modules installed in the VME crates. The detailed
layout is shown in Figure 4 below

) . Front End
Bus driver cards in Computer
the PC
1553 fieldbus
1553 fieldbus

1593 equipnjent | MPX

RS232
Connections

Figure 4

The software in the front end computers consists of
- Drivers for the bus drver cards.
- Translations of the original NORD data modules into C for the new environment.
- A new NODAL interpreter to execute the original NODAL code from the NORD
environment.
- A message handler to route EQUIP calls.
- Any specialised equipment servers required by the local equipment.

The data modules were translated from the original NORD assembler code using a strict template
which greatly speeded up the process of translation, assured a homogenous functionality of the data
modules in the new system and will simplify maintenance in the future.

Some intelligent equipment had been developed for the SPS following the LEP standards, and
changes had been made to the old control system to permit access to this type of equipment. Such
equipment fitted naturally into the new system as it was immediately accessible via the Equip call

mechanism.
The SPS Machine

The old SPS control system had many programs specifically written to take advantage of the
particular environment which provided trackballs, knobs and several computer screens. The programs
manipulated this environment not only by calling specialist functions but also by sending extensive
sequences of control characters to the devices. Many of these programs had been written by specialists
long departed and their translation to a modern environment could not be envisaged on a reasonable
timescale.

The problem was solved by writing a piece of software that emulated the behaviour of the trackball
and knobs and mapped the different screens of the old system into windows on a X terminal. The old
NODAL programs could run as before, communicating with the operator via the emulator and with the
equipment by NODAL network commands and the new data modules installed in the Front Ends.
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The console emulator solved the problem of the old application programs written in NODAL.
There were, and still are, a large number of application programs written in C and running on the
Apollo workstations. These are the result of a first attempt to rewrite the control system in a more
modern environment, but they use the proprietary graphics standards of the Apollo computer and they
must be replaced by programs using the X windows graphics standards. They continue to run because
they access the hardware either by calls to RPC servers that exist in the new system, or by emulating
the NODAL access calls.

The original SPS machine had a very large MPX installation with about 1000 crates and at its peak
over 5000 modules. Although this installation was gradually reduced as equipment groups slowly
converted their equipment to be directly connected to the 1553 fieldbus (or in some cases directly to the
Ethernet), a large installation still remained. This was connected to the new system by allowing MPX
crates to be connected directly to the 1553 fieldbus with a new controller module, and software was
written to allow access to the equipment in exactly the same way as before.

The SPS Experimental Areas

Although the old Experimental Areas control system had two notable upgrades during its lifetime,
the introduction of microprocessor switch crates to share the load between several Nord computers, and
the introduction of the faster Nord-100 computers in place of the old Nord-10s, it kept the basic
structure of the original 1976 control system and ran with no major changes after 1980. Additions and
changes were made to the large pool of applications programs.

The problem of the upgrade of the Experimental Areas was examined by a working group, which
proposed the solution [4] which is now implemented. Two major problems dictated the form of the new
control system for the zones: the large investment in hardware at the level of the CAMAC crates and
below and the large and in some cases little understood suite of applications programs written in
NODAL over the preceding 15 years by many engineers and technicians, most of whom had moved to
other projects.

The old and the new control systems are shown in Figure 5.
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At the bottom of the diagram is the equipment to be removed: the Nord computers and the local
parallel CAMAC, the Serial CAMAC loop and the old simple terminals. In the middle of the diagram
is the equipment to be kept: the Serial CAMAC crates, the CAMAC modules installed in them and the
interface electronics that was connected to these modules. This represents a very large installation as
shown by the table below:

Zone # CAMAC # NIM # Patch # Modules # Connec-
Crates Crates Panels tions
North 28 81 179 1488 8081
West 17 49 108 903 5453
EA Lab 10 29 64 531 3208

It should be noted that the EA Lab mentioned in the table was a third small installation used for
test and development. It was the very large investment in material and also in its installation as shown
by the large number of connections that made the preservation of this part of the installation
unavoidable.

The equipment in the SPS Experimental Areas is installed large experimental halls; the largest,
EHNT1 is 290 metres by 50 metres, so the equipment is actually installed in small barracks which are
inside the halls. This causes the equipment to be concentrated naturally into clusters called stations
consisting of one or more CAMAC crates and the dependent lower level electronics. A station controls
the equipment geographically close to it. :

The upper part of the diagram shows the new installation. It follows the structure of the new
architecture with the front-end computers in the zones and HP-UX server machines at the control room
layer level. These machines are actually installed in the control room area for ease of maintenance, but
they provide a terminal service all over the zones via the Ethernet. The main departure from the software
structure of the machine is in the fact that the data modules run in the HP UX machines and
communicate with the equipment via small specialist servers in the front end machines. This departure
from the normal structure was done because it maintained the overall software structure of the old
system, with a single equipment access machine for a single experimental area: an arrangement that was
deeply built into the structure of the programs.

The CAMAC crates were connected to the front end PCAs by the VICbus, a parallel bus originally
conceived to allow extension of the VME address space to several crates. The CAMAC crates were
connected to the bus by commercially-available controllers, and it was hoped that this scheme would
allow the easy mixing of CAMAC and VME and lead to a graceful future extension of the system. In
practice, it has been found easier to connect VME crates directly to the Ethernet and the VICbus has not
turned out to be commercially successful.

THE TRANSITIONAL PERIOD

The transitional period was a critical one, where parallel access to the equipment from the new and
the old systems had to be supported as much as possible to avoid the risks and disruption of a “big
bang” approach, where an old system is removed and a new system installed and started from scratch.
The parallel access was successfully carried out for the machine and the Experimental Areas, although
each had to have its own solution.
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The SPS Machine

In the case of the machine, the original hardware layout is shown in Figure 1. This was replaced by
an arrangement which allowed both the old NORDs and the new front-end machines to be connected to
the fieldbus at the same time, as shown in Figure 6.

PC Lynx 20
I/O Bus ;

VIC Bus

VMR

1553 fieldbus

1533 equipﬂent -~ MPX

RS232
Connections

Figure 6

With this arrangement, the translated data modules could be installed and tested in the new Lynx
front-end machines while the old data modules continued to operate in the NORDs. When the new data
modules became operational, changes were made in the NORD systems to allow them to be called from
programs running in the NORDs. As the NORD systems were essentially frozen by this time, this was
accomplished by patching the NORD systems so that the equipment appeared to be intelligent LEP-
type equipment, for which drivers already existed in the system. The calls to this equipment were
intercepted in the VME crate and routed to the new data module in the front end Lynx machine which
performed the required action.

A lot of time and effort was required to tune the console emulator so that the old programs could
run. This was particularly true in the case of the programs for the SPS machine as the users had over
the years exploited many undocumented features of the old system and a decision had to be made each
time as to whether to change the program or whether to change the emulator. Usually the decision that
required the least work was taken, so that facilities that were used in many programs were reproduced in
the emulator, but in some cases changes to the programs were made.

The SPS Experimental Areas

The same principle of graceful transition was applied in the Experimental Areas, but the different
hardware arrangements dictated a different solution. The VICbus controller could be configured to act as
an auxiliary crate controller and it was used in this position in the transitional stage as shown in Figure

7 below.
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With this arrangement it was possible to test the new data modules while the old system continued
to run. It was hoped to run the two systems completely in parallel to allow a painless transition
between the old and the new systems, but this was prevented by the problem of the LAMs, the
"CAMAC interrupts. The CAMAC interrupt mechanism had been fully exploited in the old system,
both for the connection of terminals to the system and for the operation of slow devices where the old
system could not poll for the response. This mechanism was not used in the new system as the
dedicated front end computers could poll without affecting the performance of the machines in the
control room layer. However, when both systems were operational the interrupt was taken by whichever
one saw it first, usually the NORD as it was not polling. This meant that when the old system was
operating, the new system would work only partially work. It could be made to work fully by stopping
the old system or by disabling the interrupts in the Serial CAMAC crate controllers and it was the latter
course of action that was usually followed. This disabling could be done very quickly by a program and
just as quickly reversed. It was thus easy to run test sessions during machine development periods.

There were some problems with the NODAL interpreter, but fewer than those experienced with the
Console Emulator as the programs were written to run on simple alphanumeric terminals and did not
exploit the idiosyncrasies of the old system as much as the machine programs did.

OPERATIONAL EXPERIENCE

The new control system was put into operation for the 1994 start up of the machine, and for the
1995 start up of the Experimental Areas.

The main problem experienced during the machine start up was associated with access to the data
from the target secondary emission monitors. These monitors were intelligent LEP-type equipment, and
worked well during tests, but became very difficult to access during actual operation, causing programs
to block while waiting for data, and finally crashing the front-end computer. The problems were traced
to time-out problems in the equipment, which was unable to respond, or responded with corrupt data
during a brief time after an acquisition. This problem was finally solved by queuing the requests for this
equipment in the message handler and imposing a suitable delay between requests. This problem shows
that no matter how extensively the equipment is tested beforehand , it is impossible to foresee the
access patterns that will occur during actual operation.

The Experimental Areas, with the benefit of the experience of the commissioning of the machine,
started with no real problems and beam was available for the experiments several days ahead of schedule.
The remaining problems are mostly concerned with very long term stability: the correction of memory
leaks and the slow accumulation of useless processes.
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A Versatile Modular Radiation Monitoring System

Don Dale, Daryl Bishop, Tyler Ewert, Dan Harrison, Jack Lam, Michael LeRoss
TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

ABSTRACT

A modular microprocessor-based Radiation Monitoring System has been developed for the detection of neutron,
gamma and beta fields. The system consists of distributed local monitoring stations located close to the radiation
detectors. A local monitoring station houses up to two Universal Detector Modules and a power supply in a
standard Eurocard cage. The Universal Detector Module supports Geiger-Mueller tubes and photomultiplier
detectors. The module provides local display of averaged radiation fields and high radiation level trip contacts. A
local station can operate stand-alone or communicate with a supervisory processor on an RS-422 highway.
Experience with an installed system is described.

1 INTRODUCTION

TRIUMF and Ebco Technologies Inc. of Vancouver entered a Technology Transfer Agreement to design and
build small cyclotrons for medical isotope production. A TR30/15 model, which can deliver 500ua of protons of
30MeV or deuterons of 15MeV energy was installed at the Institute of Nuclear Energy Research (INER) near
Taipei, Taiwan. The operation of the cyclotron required a radiation monitoring system, which is an integral part of
the safety procedures around particle accelerators. Monitoring equipment used at TRIUMF consists of radiation
detectors, a High Voltage (HV) power supply and pulse discriminators in NIM electronics connected to CAMAC
scalers that are read by a computer. Detectors typically consist of gamma monitors (Geiger Meuller (GM) tubes),
Neutron monitors (BF3 tubes) and stack air monitors (an air sampling system with a scintillation/photomultiplier
tube). The installation at INER required twenty detectors at ten different locations within the cyclotron complex.

The NIM/CAMAC based solution used at TRIUMF was considered too expensive within the INER infrastructure.
A new design with a distributed modular approach was chosen to provide a more viable solution

The Radiation Monitoring System was designed to monitor areas normally accessible by staff and provide
radiation level information that forms part of a safety system. This system - was not intended to replace radiation
surveys undertaken by a trained radiation surveyor.

2 DESIGN GOALS

Our goal was to design a flexible Radiation Monitoring System (RMS) that could be accessed remotely by a host
computer, yet could also function stand-alone. The system had to provide the necessary high voltages and accept
three types of detectors: Geiger-Mueller tubes (GM), BF3_tubes and photomultiplier tubes. To function as a stand-
alone instrument, a front panel switch and display were needed. Other essential requirements were that calibration
parameters could be modified and modules replaced with no manual reconfiguration. The system had to also
convert pulse counts to standard units of radiation dose-rate-equivalent (DRE). An interlock output had to be
provided when radiation levels exceed predetermined setpoints.

3 SYSTEM DESIGN

The radiation monitoring system designed and built for the TR30/15 is distributed and modular. It consists of
local monitoring stations close to each detector or detector group. A local station consists of several
microprocessor-based Universal Detector. Modules (UDM) housed in a Eurocard cage. Each detector module is
auto-configured from the backplane according to its location in the crate. The module contains no adjustable
~ devices. A local station can operate stand-alone or in communication with a supervisory processor on an RS-422

highway.
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Figure 1. A station crate with two UDMs connected to a Geiger-
Mueller tube and a photomultiplier tube

3.1 HARDWARE

Full-width (six slots) or half-width (three slots) station crates are possible. The logic power supply resides in the
farthest right-hand slot and the remaining slots may be filled by UDMs. An 8-bit address is set during module

configuration.

Station Crate
A Station Crate consists of a standard Eurocard .card cage. The card cage is 4U high and has either the standard

19" width of 84HP, or a half width of 42HP. Configuration information is stored in an EEPROM located on the
crate backplane. If a defective module is replaced, the new module will configure itself for the same high voltage,
calibration constant and other parameters in use by the original module. This reduces the spare parts required.

Logic Power Supply
The logic power supply consists of a commercial unit built into a 3U by 14HP module and provides +5, +/-12 and

+24 VDC. The power supply may be powered by either 90-132 or 175-264 VAC at 47-63Hz.

Universal Detector Module
The module is 3U high and 14HP wide. It will accept either a photomultiplier tube, a GM tube or a neutron

detector. The UDM uses a Signetics 80C552 microcontroller as CPU.

The UDM can operate in stand-alone or supervised mode. A block diagram is shown in figure 2.

High Voltage Power Supply
The high voltage power supply is a switching one and converts +24VDC from the backplane to a maximum of

2500V. The three nominal voltage ranges to be used are: 1850V for the neutron detectors, 1200V for the
photomultiplier tube and 900V for the gamma detectors. These nominal voltages are the default values. The
manufacturer’s specified tube voltage is entered during module configuration. The microcontroller sets the high
voltage with a pulse width modulated output converted to a DC voltage and monitors it through a resistor divider
fed into a 10 bit ADC. The voltage can be set to one part in 256 for a range of 0 to 2500 volts.
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Figure 2. Block diagram of the UDM

Amplifier Section

Two independent amplifier and discriminator sections have been implemented in the UDM, one for the gamma,
residual and neutron detectors and the other for the photomultiplier detector. The two amplifier stages are
necessary because of the difference in pulse amplitude between the GM tubes and the photomultiplier tube. The
gain of the amplifiers is fixed. The threshold for the discriminator section is set by the microcontroller to one part
in 256. The microcontroller selects the amplifier stage according to the configuration information.

Pulse Counting

After the pulses have been amplified and discriminated they are fed directly into the microcontroller's count
register. This accumulated count is sampled every second. An average is taken of the Jast four samples (thirty for
the neutron detector) then the DREt value is calculated and displayed.

Front Panel
A display on the UDM front panel provides anyone in the area with an indication of the radiation DRE in both
supervised and stand-alone operation. All indicators are designed to be readable from a distance of two metres.
The front panel (see Fig. 1) has: ‘
- a four-digit LED display to show the adiation DRE and HV status
- three individual LED lamps to indicate the detector configuration, green for the gamma detector (GM
tube), red for the stack air (photomultiplier tube) and yellow for the neutron detector
- one MHV connector for high voltage; for the GM and neutron tubes this connector is also used for the
pulse input
- one BNC connector for the pulse from the photomultiplier tube
- one subminiature "D" nine pin connector for a terminal connection (RS-232)
- a momentary switch to enable/disable the high voltage during stand-alone operation

The four digit LED display shows:
- “OFF” if the high voltage is disabled
- the radiation DRE in microsieverts/hr for the gamma and neutron detectors
- the radiation flux in counts/minute for the stack air monitors
- "con" when a terminal is plugged in for configuration of the UDM
-"rr" when the module is acquiring data, but no valid average has been established
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-"FAIL" if the module detects a difference of greater than 100 volts between HV setpoint and HV
readback

-""---"" if the module detects a bad configuration on power up.

-Flashing "9999" when the display is over ranged.

Communications
The UDM communicates with the host computer’s serial port via an RS-422 link at 19,200 baud. This link

consists of two twisted pairs, which allow bidirectional, full duplex data communications.

Power Up and AC Fail Recovery

On AC power up the module will start automatically. It first reads its configuration data from the non-volatile
memory on the backplane and then starts depending on the module configuration. There are three options for
enabling the high voltage after a power up: a) immediately, b) after a host computer “on” command or c) by the
front panel switch in stand-alone mode or as a backup if the host computer fails. ‘

Protection from ElectroMagnetic Interference (EMI)

‘We have taken several steps to prevent and/or to recover from EMI. The UDM is enclosed in an all metal housing.
An EMI resistant spray coating was applied to the inside of the plastic rack enclosure and a hardware watchdog
timer resets the microcontroller if necessary. Communication with the host computer uses a differential RS-422
shielded cable. In addition the communication protocol includes a parity bit for each character and a checksum per
message. All accesses to the backplane EEPROM are verified using a checksum.

3.2 SOFTWARE/OPERATION

The UDM firmware is written in C. The application program consists of a main loop which distinguishes between
normal operation mode and configuration mode.

In normal operation mode, the main loop is interrupted every 50 milliseconds by the microcontroller’s on-board
timer. Every twentieth interrupt (one second) the microcontroller’s pulse accumulator is read. This value is
placed into a ring buffer of 30 elements for a neutron reading and four for a gamma or photomultiplier reading.
The main loop averages the complete buffer to obtain a counts/second value. This value is then passed to the
appropriate conversion routine to calculate the radiation DRE in microsieverts/hour using the parameters entered
during configuration. The result is output to the display and sent to the host computer when polled. The host
computer’s poll generates a serial port interrupt, and the microcontroller responds with the current data during the

interrupt routine.

Configuration mode is entered when a terminal is connected to the serial port on the front panel of the UDM and
the main loop detects Data Terminal Ready. In configuration mode the HV is switched off and the operational
parameters may be modified. Preprogrammed into the UDM is a menu system to guide the user through the
configuration process. The user will first select the module address and the detector type then enter individual
parameters or select the defaults for the detector. Interlock output levels may also be entered. The configuration is
saved to the EEPROM on the backplane. When the terminal is disconnected, the microcontroller resets the UDM

and returns to normal operation mode

If the UDM is supervised by a host computer, the host is the master using a command-response protocol.
Messages are ASCII strings. The detailed message formats are as specified in fig 3.
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1]2]3]4] Structure of message received from host (4 bytes - fixed length)

4th byte: modulo 256 checksum (oyte 2 + byte 3).
Checisum of 255 mapped 1o 0.

3rd byte: comymand byte 1=on, O=off

2nd byte: address (0 1o 254)
1st byte: header chasacter (255)

1121314151 Structure of message sent to host (5 bytes - fixed length)

|—— 5th byte: modulo 256 checisum (yte 2 + byte 3).
Checksum of 255 mapped to 0.

4th byte: status byte (see below)

3rd byte: low byte of Integer reading
2nd byte: high byte of integer reading
st byte: heoder character '

7l6]5]4[3[2]1]0] Status Byte

gauge type 00=none 01 = gamma
10=neutron 11 = pholomultipler

uniistype 0= counts/sec 1=microsiovesis

busyfiag O=notbusy 1w busy

onofffiog O=off 1=0n

folificg O=notfoled 1=faled

unused =0

unused =0

Figure 3.Communication protocol

4 SUMMARY

A versatile radiation monitoring system consisting of a Universal Detector Module and Power Supply housed in a
standard Eurocard case has been developed. A system utilizing six GM tubes for residual field measurement inside
the vaults, six GM tubes for hallway measurement, six neutron detectors for hallway measurement and two
photomultiplier tubes for stack air measurements is currently in operation on the EBCO Technologies Inc.
TR30/15 cyclotron at the INER in Taiwan. The ten stations communicate with the cyclotron safety system PLC
(Allen-Bradley PLC5/40L). A similar setup was installed for the TR13 Cyclotron at the National University
hospital in Seoul, Korea.

Experience at INER suggests two possible improvements to the system: a preamplifier for the neutron detectors,
to allow the detector to be moved farther from the module and a higher powered HV supply. The system at INER
has been running without interruption since early 1993.
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Implementation of PCs in the HERA Control System

P. Duval (DESY-MKI, 22607 Hamburg FRG; duval@pktr.desy.de)

Abstract

Progress in controlling the HERA machine at DESY with PCs is described, with emphasis on the use of
producer-consumer communication links. To date the quench protection system for the superconducting
proton ring, the proton collimators, and major portions of the beam diagnostic control and RF controls are
incorporated in a control system using PCs running MS-DOS and WINDOWS-based software in a
NOVELL network environment. Although dominated by PCs communicating with IPX protocols, the
system also supports IP-based communications for links to UNIX machines and VME CPUs. HERA
Magnet control is still performed by NORD minicomputers, but the coming upgrade is also discussed in
the context of the PC magnet control system planned for the HERA pre-accelerators and peripheral
machines, which is now being tested in the PETRA and DORIS rings.

Introduction

The HERA (Hadron-Elektron Ring Anlage) accelerator at DESY consists of a 6.3 km electron storage ring
(30 GeV) straddling a 6.3 km superconducting proton storage ring (820 GeV). Prior to injection into
HERA, electrons and protons undergo similar sequences of acceleration starting with LINACs, passing on
to small synchrotrons, and the PETRA ring. The beams are then accelerated in the HERA rings, stored at
full energy, and brought into collision. The design luminosity of 1.6E31 requires 210 bunches in each
ring. Collisions are observed by the H1 and ZEUS experiments, each consisting of a large superconducting
solenoid surrounding the beam pipe at one of the interaction regions, and associated detectors. The electron
beam can also be polarized and used to study nucleon spin structure, while the protons diffusing out of the
beam are used to produce (among other things) B mesons to study CP violation.

Since the smaller accelerators and the experiments have their own control systems, we can speak of the
HERA control system as referring only to the HERA machine. However, we should keep in mind that each
system needs vital information from the others, so there has to be a mechanism for fast data exchange. Of
necessity, each sub-system originally followed its own frenzied development during commissioning, and
each has its own view of the “Standard Model,” so establishing such a data-exchange mechanism is in some

cases no small task. _

In this report we shall focus primarily on the HERA machine, but nonetheless present a few details
concerning data-exchange among the sub-systems.

The HERA Machine

Before we begin discussing the relative merits of PCs versus something else, let us first take a quick look
at what we have to control. Beam storage and steering is achieved using magnets controlled by
approximately 1200 independently powered circuits in the two rings. Setting and reading these magnet
currents is the primary task of the control system. Acceleration is achieved via coordinated ramping of the
RF system frequency and voltage (consisting of 6 cavities and transmitters for the proton ring and over 80
for the electron ring) and the magnet currents. Backgrounds are controlled by scraping off the beam halos
with 3 proton and 12 electron collimators. There are independent proton and electron vacuum controls. As
the proton magnets are superconducting, there is a separate cryogenics control for these elements, and an
associated quench protection system. Monitoring the beam is of prime importance and to this end there are
~300 proton and ~300 electron Beam Position Monitors (BPMs), and approximately the same number of
proton and electron Beam Loss Monitors (BLMs) and associated Alarm modules. As the proton BPMs have
a external trigger, there is also a separate HERA Integrated Timing system with corresponding trigger and
delay modules for each BPM. There are several integrating beam current monitors for both electrons and
protons, as well as fast single and multi-bunch current monitors. Likewise, there are several beam profile
monitors, including wire scanners and residual gas monitors. The proton and electron tunes are also
monitored, as are various state parameters of the machine in general, such as tunnel temperature.
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From the preceding paragraph, a dichotomy of controllable objects is clearly seen, namely those objects
related to diagnostics and those which actually control the beam. In the case of diagnostics, under most
circumstances devices of a given type, say BPMs, can be read, controlled and coordinated from a single CPU
for the entire ring. Furthermore, if such a CPU needs to be rebooted (for whatever reason), it does not affect
the machine to any great extent. This is not necessarily true for a machine control object such as a magnet.
It might not be possible to control all such objects from a single CPU, necessitating distributed control in
some form or another, and if one of the controlling CPUs needs to be rebooted it could easily lead to loss of
control and in the worst case a beam abort.

PCs in HERA

1. What is a PC?

A relevant question these days is: When I say PC what do I mean? Do I insist on a hardware definition
centered around the INTEL CPU and inexpensively priced end-units, or do I stick with an operating system
definition centered around Microsoft, or both? Although, when people run LINUX on a2 PENTIUM they
still refer to the machine as a PC, and when the same people run NT on an ALPHA they don’t, in this
report we’ll generally abide by the third (i.e. both) definition, and go a step further and state that a HERA
PC is an INTEL. machine which runs either MS-DOS or MS-WINDOWS 3.1.

2. Why PCs?

Looking at hardware, arguments concerning costs are compelling. Granted, an extra high-end PC may come
in around the same price as a run-of-the-mill SPARC, but one seldom needs a high-end PC. In fact, since
old “forgotten PCs” can frequently do the controls job we’re interested in, hardware costs are sometimes
negligible. Keeping in mind the age-old adage: “If we just want to go shopping, do we need to drive a
Mercedes?” we should always ask ourselves if we are just going shopping.

Looking at software, it’s not hard to beat MS-DOS and/or MS-WINDOWS as an operating system. The
major shortcoming here is that the OS is not protected, and risks exposure to every vicious C program that
tries to run on it. One should reiterate though, that neither MS-DOS nor MS-WINDOWS crashes by itself,
and healthy programs will run on it indeefinitely (although development can be agonizing). Anyway, that’s
the down side. The up side is that Microsoft has around 80 percent of the software market and is in no
danger of disappearing anytime soon. There is an enormous culture base built around MS-WINDOWS, and
an impressive array of commercial software which already covers most of our needs. The overwhelming
market share and user-feedback that Microsoft enjoys has essentially defined what is user friendly and what

isn’t.
3. When and Where to use PCs:

In truth there might be some times when we really do need a Mercedes. It’s therefore important to 1) plan
for an integrated control system and 2) use the right tool for the right job. So where is a PC the right tool

for the right job?

There is generally no disagreement that a PC can be effectively used at the CONSOLE side of the control
system (there might be some grumbling, but there is no major disagreement). This is true since the
CONSOLE:s are only displaying data and passing commands to the Front Ends. They are not directly
steering control system hardware. Since real-time is never an issue here, MS-WINDOWS is fine.
Furthermore if a rogue program gets loose on the CONSOLE and MS-WINDOWS crashes, you loose the

display, but nothing more serious than that.

When can PCs be used at the Front End? This is a more contentious issue. Even the most ardent
VxWorks enthusiasts will nonetheless concede that there are simple control tasks, which don’t need Real
Time by a long shot, and can be quite trivially controlled by a PC. For example, reading an ADC, which
monitors the ambient tunnel temperature every few minutes. Such a task can be realized by a 286 PC
running MS-DOS (cost: ~100 $). If the machine crashes (this will be a program bug, MS-DOS doesn’t
crash spontaneously), you are in no danger of losing the beam. Let’s take that a step further, and claim
that a good many diagnostic tasks can live quite happily on an MS-DOS machine with (for example) a
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GPIB card. Such dedicated diagnostic Front Ends, whose temporary disappearance (although a nuisance) is
not fatal, we shall refer to as simple FECs (Front End Computer). Simple FECs are excellent candidates
for PCs. By the way, this “temporary disappearance” might occur on any platform. Whether a bug causes
the process to “core dump” or the machine to hang is immaterial. You’ll still have to have a way of

dealing with it.

Beyond Simple FECs are Complex FECs, i.e. Front Ends with multiple tasks, and/or Real Time
requirements, and/or crucial importance. At HERA, we have many PC FECs meeting all of these criteria
(Note: there are several Real Time Kernels for MS-DOS commercially available). Nonetheless, we prefer
to leave the case of Complex FECs an open issue, and assume that we have a multi-platform control
system. Indeed, as we shall shortly see, we incorporate VxWorks FECs, and FECs running as servers on a
variety of UNIX and VMS machines.

4. Networked PCs

Following the “Standard Model”, the CONSOLEs and FECs at HERA reside on an ETHERNET. In
addition, the PC FECs and CONSOLEs are attached to a NOVELL file server. Furthermore, all control
system code is located on the file server (and not on the PC!), meaning that at boot time a PC logs in and
mounts network drives to the file server, and then loads and runs its code. In the case of a CONSOLE or an
FEC running WINDOWS (most FECs run DOS), WINDOWS itself is also loaded from the file server. As
WINDOWS generally has several open files and does considerable swapping, this does introduce a weakness
in that the connection to the file server is of paramount importance, since if the connection is lost the
workstation is almost guaranteed to crash. On the other hand, all backup strategies can be entirely focused
on the file server. The weakness can be (and will be this shutdown) patched by mirroring all relevant
software locally at login time, and always running from a local operating system.

Control System Model

So far, what we have described follows the so-called “Standard Model” of a control system, in that hardware-
near FECs communicate with user-near CONSOLEs over the ETHERNET. We have not insisted,
however, that FECs are VME CPUs or that anyone is running UNIX. On the contrary, we strive for a
multi-platform control system, where CONSOLEs and FECs communicate with each other without concern
as to what operating system is running at the other end. With that in mind, we make the following ansatz:

3> An FEC should present an integrated device to potential clients, i.e. a client should see an object
representation of the device to which it is speaking, be it a magnet, oscilloscope, BPM or whatever. A
client should never deal with raw data, but instead receive data ready for display, and issue commands

via mnemonic properties.

This goes hand in hand with saying that any change of state made by a CONSOLE should be seen by all
other CONSOLEs.

Also important is that there should be no distributed control over the ETHERNET, requiring one FEC to be
crucially dependent upon knowing the state of another FEC. To be sure, an FEC can be (and frequently is)
a client of another FEC. However, the possibility that information might not come in on time or might
not come in at all should be anticipated.

It remains to discuss specific communication models CONSOLE to FEC, and at this juncture we should
mention our indebtedness to the ISOLDE project at CERN/PS and its developers. The ISOLDE concept
was our starting point in 1991, and in some respects our system still bears a strong resemblance to
ISOLDE although our needs and development began to diverge rapidly from the original concept in late
1992. Initially the communication model was pure client-server, in that a CONSOLE always asked an
FEC synchronously for data. Polled data were requested from a timer on the CONSOLE. Also to be noted
is that the original concept was a PC-only one and used only IPX-based protocols. In 1993, IP-based
protocols were included, opening the door to non-PC communication partners. The fundamental model
remained, however, “client-server”. FECs were servers, and did not supply data unless specifically asked

to.
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Both IPX and IP communication channels were based on socket libraries, and specifically not commercial
RPC products. This was largely owing to the fact that such products did not encompass both the IPX and
IP worlds at the same time, whereas (working with sockets) the application layer and network/transport
layers were easy to keep separate, facilitating development.

It soon became clear that certain data channels were of vital interest to a large number of CONSOLEs and
FECs. These were items such as the energy and current of the proton and electron beams. And rather than
having N clients request the present values of these parameters from one server (where N is a large number!)
it was decided to make such values available via broadcast. To be efficient, the value is broadcast upon
change (according to an appropriate tolerance) or at the system heartbeat of once per minute. In this way,
no one has to ask, one only has to listen. Here, we are slipping over to a “producer-consumer” model of
data exchange, where an FEC is seen as a data “producer,” who is simply providing data to any “consumer”
who is listening. An FEC should be rightfully regarded as a “producer” anyway, in that it should be in
background constantly reading hardware and preparing data for display. Requests for data from the client side
should in most cases end up fetching data from RAM and not initiating a hardware read.

This pure “producer-consumer” model was only applied to the most important machine parameters,
however. Nevertheless, a crucial step in the “producer-consumer” direction was taken in 1994, by adopting
aregistered consumer model in which data links were now registered at the Front End instead of being
polled from the CONSOLE. In other words, an FEC would keep track of a “mailing list” of consumers of
pertinent data. A consumer could request values at a specific polling rate, or to be refreshed only upon
change. The data would then arrive entirely asynchronously. The reduction in wasted CPU time, not to
mention network traffic, in such a model is considerable! It is not uncommon, for instance, to have a
popular control application, which might be getting a data update at 1 Hz, run on 15 to 20 different client
workstations. Rather than having all 20 stations individually ask a server-FEC for data (one packet to the
FEC, plus a function call) and receive data (one packet from the FEC) at 1 Hz (times 20), the producer-FEC
keeps track of all 20 clients, makes one and only one function call at 1 Hz, and sends the data out to its
mailing list (one packet from the FEC times 20). Furthermore, as the operation is connectionless and
asynchronous, there is never any waiting on the part of producer or consumer.

Acknowledgments are required under only one set of circumstances. If a client has requested to be refreshed
only upon change of data, and the data have indeed changed, then the producer-FEC asks to be acknowledged
upon receipt of data. Otherwise, a consumer-CONSOLE knows very well if its requested polling rate has
been met or not, or if the system heartbeat time of one minute has been exceeded. If warranted, it will
sound an alarm and make an effort to relocate the FEC. Similarly, when a consumer-CONSOLE registers
with an FEC, it subscribes for a certain quantity of data updates. When the subscription runs down, it must
renew its subscription, or it will be removed from the FEC’s mailing list. In this way, there can be no
dangling consumers. Maximum efficiency regarding network traffic is maintained by packing together in
the same ETHERNET packet all subscriptions destined for the same consumer at the same time.

Command-based requests of course follow a client-server approach. The client has the choice of sending
commands synchronously or asynchronously. As the communication is connectionless, the turn around
time for request and reply is typically 2 to 3 milliseconds (IPX is marginally faster than UDP) plus any
time the FEC might need to read hardware.

These types of detail are of course hidden from the control system application programmer. What he sees is
an API which tells him how to link data from a Front End into his control program, in the case of a
CONSOLE application, or how to offer data for linking, in the case of an FEC application. Important is
only that the Front End device shows up as a tag name in the API. The tag name is resolved at
1initialization into an FEC address and an equipment function living on the FEC, both invisible to the APL
The FEC address will be either an IPX address, if both partners speak IPX, or an IP address.

At present, name resolution begins with a database file, which matches tag name to FEC name and
equipment function name. This will be replaced by a name resolver during the 1996 winter shutdown. An
FEC address is then established by the following: If the client is not a PC attached to the control system
file server, then the local host table is scanned for the IP address of an entry whose alias matches the FEC
name. If the client is a PC attached to the control file server, then the user list for the file server is scanned
for a user matching the FEC name. If a match is found then an IPX address is established. If no match is
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found then the local host table is scanned for an IP entry. All CONSOLEs speak both IPX and IP. All PC
FECs speak IPX, and speak IP only if necessary. And all non PC-FECs speak IP. We should also
mention that there are non PC-clients to certain control system elements as well. These are principally
machines outside the HERA control room, and serve to integrate the various sub-systems of the HERA

machine and experiments.

An important element to the control system structure is the concept of the Data Server. This is a machine
designed to acquire all important machine parameters at a sufficient rate so as to be able to act as a data
gateway to clients outside the immediate control sub-system. It is both a client and a server with a large
number of channels, and is in general very busy. This is nonetheless a much more efficient model for N
clients to obtain machine data, than for the same N clients to form individual links to potentially many
different front ends (largely owing to the data packing mechanism described earlier). The most important
subset of machine parameters is broadcast from this machine as described above. Furthermore, as this
machine always has an up-to-date record of the machine parameters, it also serves as the control system

archiver.

As to archiving, machine state variables are regularly archived (with appropriate filters) allowing data
retrieval and correlation throughout the year. Similarly, critical events (such as a magnet quench) can
initiate archive dumps of the state of a particular subsystem at the time of the event. This information is of

course of vital interest to the systems engineers.

The control system is also designed to be open, in that office client machines also have access to control
system data and applications, but with certain restrictions. Namely, the FEC server itself always knows the
identity of the caller and can pre-specify a list of users with WRITE access. READ access is generally
allowed since data READs do not change the state of the hardware. Likewise, client applications can also
choose to hide options from under-privileged users.

HERA: Current Status

So where are the PCs in HERA? As of this writing, CONSOLEs in the control room are either PCs
running WINDOWS or NORD mini-computers running SINTRAN, in approximately equal numbers, with
the NORDs living on borrowed time. The current generation of PCs in the control room are 486 33 MHz
or 50 MHz machines. These will likely be replaced by PENTIUMs in the coming year.

Most components of the proton beam diagnostic controls, as well as some electron diagnostic controls, are
incorporated on PC FECs running MS-DOS. A small minority run MS-WINDOWS, in cases where a user-
friendly GUI is important at the front end. And there are also a number of non-PC FECs which are a fully
integrated part of the HERA control system. These are summarized in Table 1.

As the data exchange mechanism described above has been ported to most platforms seen at DESY, a
number of control sub-systems provide data server gateways and/or are clients to the HERA data server.
The Proton Vacuum and Cryogenics systems, for instance, both of which are autonomous control systems
in themselves, are persistent clients to the HERA data server.

HERA: Next Year

One of the last and most important steps in upgrading the existing HERA control system involves magnet
control. As yet the 1200 electron and proton magnet controllers are driven by 4 NORD minicomputers.
There are two promising approaches currently being tested at DESY. One involves scaling the all-PC
PETRA control system to HERA, and the other involves using Symmetric Multi-Processing (SMP) on a
multi-CPU SUN workstation (see Herb and Wu, “Accelerator Magnet Control from an SMP Workstation”,
poster session this conference). In any case, the 1200 individual channels necessitate a multi-CPU
approach. The SMP solution would control all magnets from one computer whereas the PC solution
would span more than one. The PC solution appears to work well in PETRA. The number of magnets
there is considerably smaller, and all magnets can be controlled from one PC. In HERA the horizontal and
vertical correctors could conceivably be controlled from separate PCs.
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Table 1.

FecName
ADDA
BEAMSCOP
BPM

CMFL
DATASERV
BEAMCURR
FECSIM
HERA208
HERAS2
HERAQ
HIT
PETRAS2
SCRAPERS
0szis
IPS104
MKI101
SUN1

SUN2
EMIT_PP
BLME
EMIT_HP
ZLUMO1
DORCAV
BUNCHCUR
WIRE
DORQ!
HFPET_R
DORQ4
VWMASTER
VWSLAVE
PETRAQ
PETRAI
HFPET_L
TIC
TUNNEL_O
TUNNEL_W
DORFB
BCURRE
LPSVAX
PROXY
BLMDSY
DESYGAS
TUNEMOD
LPS_H1
WINFEC
DESYWS
HWEST
HF_HE_SL
HF_HE_SR
HF_HE_OL

Front End Computers at HERA following the PKTR Control System Model.

WINDOWS
WINDOWS

Description
Hera Tune Control

Hera P X-channel/Y-channel Beam Scope Monitor
Hera P BPMs,BLMs ,MTMs,Delay Modules,Alarm

Loop Modules
Hera P Fast Current (Lopez) monitor

Hera P Data Server

Hera P and E beam current monitors
Hera P development FEC
Hera RF (208 MHz)

Hera RF (52 MHz)

Hera P X and Y tunes

Hera Intgrated Timing

Petra RF (52 MHz)

Hera P Collimator Steering
Oscillascope Steering

Orbit Correction

Orbit Correction, Magnet Data
Development

NORD Gateway

Petra P Residual Gas Monitor
Hera E BLMs

Hera P Residual Gas Monitor
Zeus Lumi Workstation
Doris Cavity

Hera-P Bunch Current
Hera-B Wire Target

Doris Q1 Sender

Petra Sender

Doris Q Sender

VxWorks (Development)
VxWorks (Development)
Petra Tune

Petra Beam Current

Petra Sender

Hera Intgrated Timing
Tunnel Temperatures
Tunnel Temperatures

Doris Q2 Sender

E Beam Current

ZEUS Roman Pot Positions

Middieman FEC: Quench Proxy, Netmex Proxy

DESY BLM FEC

DESY Gas Monitor

Hera Tune Modulator

H1 Roman Pot Positions
Windows FEC simulator
DESY III Wire Scanner
HERA Sender (Development)
HERA Sender

HERA Sender

HERA Sender
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Hardware
i386, GPIB
i386, GPIB
486, 4x SEDAC, V24

1386, GPIB

1486, Watchdog
1386, GPIB, SEDAC, Watchdog
1386, Watchdog '
1486, SEDAC
1486, SEDAC
1386, 2 DSPs
i386, GPIB

1486, SEDAC
1386, SEDAC, Watchdog
i386, GPIB, V24
HP

HP

SUN SPARC
SUN SPARC
1386, SEDAC
1486, 4x SEDAC
1386, SEDAC, ADC
SGI

1486, SEDAC
1386, GPIB

i486, SEDAC
1486, SEDAC
1486, SEDAC
1486, SEDAC
VME, CAN
VME, CAN
1286, 3 DSPs
i386, SEDAC
1486, SEDAC
i486. GPIB

1386, SEDAC
1386, SEDAC
1486, SEDAC
1386, GPIB
VAX

1386, Watchdog
1386, SEDAC
1486. GPIB
1486, GPIB

1486, SEDAC
1486

1486, SEDAC
1486, SEDAC
1486, SEDAC
1486, SEDAC
1486, SEDAC



Table 1. Front End Computers at HERA ... (continued).

FecName oS Description - Hardware
HF_HE_OR DOS HERA Sender 1486, SEDAC
HF_HE_NL DOS HERA Sender 1486, SEDAC
HF_HE_NR DOS HERA Sender 1486, SEDAC
HF_HW_FB DOS HERA Sender : 1486, SEDAC
MKI1102 UNIX Orbit Corrections HP

IPS109 UNIX Orbit Corrections HP
VWWEST1 VxWorks SPS Master VME, CAN
VWNORDI VxWorks SPS Master VME, CAN
VWEAST! VxWorks SPS Master VME, CAN
VWSUEDI1 VxWorks SPS Master VME, CAN
VWWESTO VxWorks Transient Recorders VME, CAN
VWNORDO) VxWorks CPUO VME, CAN
VWEASTO VxWorks CPUO VME, CAN
VWSUEDO VxWorks CPUO VME, CAN
VWWEST2 VxWorks SPS Slave VME, CAN
VWNORD2 VxWorks SPS Slave VME, CAN
VWEAST2 VxWorks SPS Slave VME, CAN
VWSUED2 VxWorks SPS Slave VME, CAN
Z1Z1 UNIX Zeus Lumi Data SGI
EMIT_HPS DOS HERA Gas Monitor 486, GPIB
DESYSCOP WINDOWS DESY Scope Gas Monitor 1486, GPIB

The PETRA model is worth mentioning here. For one thing, it is a much more homogeneous model
where all of the players (with very few exceptions) are PCs running MS-WINDOWS. This in itself has
merit, as we shall shortly see. Furthermore, the control system ETHERNET segment is kept isolated, with
only a gateway interface to the outside. Most of the traffic on that segment is restricted to pure producer-
consumer traffic, or rather “producer traffic.” Data are flushed from the front ends onto the net via broadcast
at a cycle frequency of 1 or perhaps 2 Hz. The consumers only listen; they don’t introduce any extra traffic.
Of course allowing commands from the console necessarily implies that client-server traffic also appears
from time to time, but not in sufficient quantity to upset the overall loading.

Which, if either, of these solutions will be adopted remains to be seen. However, we should note that if
the SMP approach is adopted, this will add yet another make of 'Mercedes' on the control system. Is this

bad, good, or irrelevant?

There is much to be said for keeping a system as homogeneous as possible. The expertise developed in
dealing with a specific platform is then shared by many, and no one person ever becomes indispensable. On
the other hand, there is also a danger in putting all of our eggs in one basket (however mighty Microsoft or
Wind River appears at the time). In this regard it is perhaps more prudent to relax our definition
ofhomogeneous a bit. In the end, “How we got there” is more important than “Where we went.” In other
words, if I can take the same code and compile and run it on another platform with minimal effort, then my
learning curve on the new platform is not so steep. On the contrary, I am likely to feel at home in my new
environment, and my general knowledge will increase steeply. I then also have the ability to “plug and
play” at the front end, where (as long as I adhere to our initial ansatz of the control system model) I can
completely alter the machine and reconnect it to the control system, without any of the other participants
knowing. Rather, the application layer will know that something has changed and figure out how to deal
with it, but the applications programmer still sees the same object on the other side of the APL

As to the data exchange mechanism, the homogeneity of the HERA system lies in the API, which is an

identical C interface across all of the previously mentioned platforms. Reading hardware might of course
require a completely different expertise on one system than on another, and in this light there remains a
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strong bias in sticking to the PC environment. Nonetheless, as UNIX offers a fairly standard working
environment across many platforms, UNIX solutions to controls problems are not to be avoided, on the
general principle of hedging our bets. Being able to easily incorporate a special UNIX solution to a
controls problem and at the same time to allow an engineer who has tested and developed his hardware with
a PC to trivially include his work in the control system proper are both good capabilities to have.

The waters will undoubtedly be muddied even further in 1996 as the control system API will be ported to
WINDOWS-NT, i.e. to the WIN32 API.

C or C++ is the natural language of choice when interfacing with the control system API. The notable
exception is under WINDOWS where, since it offers such an outstanding GUI, Visual Basic is used. Visual
Basic itself fills a development tools niche so well that there has been over the past two years a flurry of
activity from several vendors either to offer something similar (or better) or to port Visual Basic to non-PC
platforms. The ease with which one can learn and program something useful with Visual Basic is
astounding. This point should not be taken lightly, as a good many of our own CONSOLE applications
have been written in this language by machine physicists whose last programming experience had been
FORTRAN IV several years ago. This in turn enables the software engineers to devote more time at lower
systems levels. Future incamations of Visual Basic will almost certainly offer inheritance and
polymorphism to its GUI objects, making it a legitimate object oriented language.
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Using A Public Domain Real-Time Kernel On A VME/Ethernet Based
Control System ’

David E. EISERT
Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, WI 53589-3097,

USA

There are many options available when choosing a real-time kernel from full-featured operating systems to writing
your own kernel. The cost of these systems also covers a large range from tens of thousands to only a few hundred
dollars. Recently there has been added yet another option, well documented real-time kernels that have been submitted
to the public domain, these include Chimera (Carnegie Mellon University), RTEMS (U.S. Military), and pC/OS
(Jean J. Labrosse). We selected the pC/OS kernel because it is small and has the required capabilities. Although the
kernel was ported to the system in a matter of days, several months of development were required to write device
drivers for the processor board. This paper will discuss why we selected the uC/OS kernel, the effort required to
implement this kernel and our experience with the completed system.

1. INTRODUCTION

The Synchrotron Radiation Center (SRC) designed and built the Aladdin storage ring in the late 1970s. The
original Multibus-based controllers were replaced with VME/Ethernet-based systems in 1986 [1]. The VME CPU
boards used in that upgrade were based on a 12.5 MHz Motorola 68000 with a total on-board memory of 512 KB. A
second VME board was needed for the ethernet interface and was based on the AMD LANCE chip set. The software
for the systems was written in assembly language and was made to imitate the original Multibus systems. We
wanted to migrate to a high-level language but the compilers available at the time produced inefficient code and
consumed a large amount of system resources. Software from the VME CPU board vendor consisted of a monitor
ROM and other commercial real-time kernel vendors lacked support for ethernet networking. We had no other choice
but to write all the drivers ourselves. Much has changed since then, with both VME CPU boards and commercial
software support for networking in real-time kernels. As a result we decided to replace our VME CPU boards
sometime in the 1992-1995 budget period, but unfortunately the budget only allowed about $25K for the ten 6U

VME systems used on the ring.

In order to understand our choice of a real-time kernel, some background into the selection of a CPU board is
necessary. In early 1992 the SRC Optics group was working on a new beamline that required a dedicated control
computer to implement a feedback loop for precise positioning of an optical component [2]). The SRC Controls
group was called upon to assemble a VME system for this beamline. We decided not to use the older MC68000
VME CPU boards but to evaluate other boards that could later be used on the storage ring. We selected the Heurikon
V3D with a MC68030 processor, an optional floating point coprocessor, a 32-bit ethernet coprocessor and up to 16
MB of parity protected RAM. The vendor offers two commercial real-time kernels with network support but the cost
of the development system for these kernels exceeded our available budget. Software support was not a consideration
in our case due to lack of funds to purchase a real-time kernel and the availability of GNU C++ for software
development. In addition, we were purchasing only a single VME CPU board for this project with some prospect of
purchasing more boards at a later date. It was very hard to justify the cost of a real-time development system for only

~ a single board.
2. THE KERNEL

Since we had already decided not to purchase a real-time kernel, our original plan was to copy much of the
assembly language kernel from the older VME boards. The older kernel simply remained suspended waiting for
interrupts from periodic timer events, ethernet messages or other /O device requests. The interrupt handlers would
then process as much as they needed and place the address of a routine that would do further processing into a FIFO
queue. After the interrupt returned, the routine would be pull off the queue and executed. This method lacked many
desirable features available in a pre-emptive multitasking kernel but proved adequate for the tasks assigned to the

VME systems at that time.

2.1 The uC/OS Kernel

As the device drivers for the on-board hardware were being written, Embedded Systems Journal published a series
of articles describing the wC/OS real-time kernel [3,4]. pC/OS is a preemptive multitasking kernel with
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semaphores, message mailboxes and dynamic task priorities. This kernel was originally developed for 8-bit
microcontrollers and as a result the code was optimized for size and efficiency. The author also tried to make the
kernel as portable as possible and reduced the amount of assemble language code to a minimum. uC/OS does have
some limitations including a maximum of 63 tasks, each task must have a unique priority and it does not include
any of the utility tools normally included with a commercial kernel development package. nC/OS is technically not
in the public domain. The license agreement allows distribution of the object code but not the source code.

The process of porting the kernel proved quite simple. The approximately 600 lines of C source code compiled
with only a few changes to remove PC style memory declarations. The less than 100 lines of Inte] 80186 assembly
language were only used during context switches. The context switches occur only after an interrupt. A software
interrupt is used to perform a context switch after a new task is added or a task has changed priority. An assembly
language interrupt wrapper had already been written so that interrupts could call interrupt handlers written in C. The
interrupt wrapper saves the registers, looks up the address of the interrupt handler for the given interrupt vector and
calls the handler. When the handler returns, the interrupt wrapper restores the registers and issues a return from
interrupt instruction. To handle the context switch a few lines had to be added to the interrupt wrapper. On entry to
the interrupt wrapper, registers are saved onto the current task stack and the stack pointer is switched to the interrupt
stack. As the interrupt handler executes, calls to pC/OS routines made from the interrupt handler may change the
highest priority task ready to execute. When the interrupt handler returns to the interrupt wrapper, the highest
priority task is found and the stack pointer is moved to that task’s stack. When the interrupt wrapper issues the
return from interrupt instruction, the new task starts to execute. The whole process of porting the kernel required

only a few days.

2.2 Utility Routines

Many real-time kernels supply utility routines that include memory allocation, string handling, and software
downloading. Unfortunately wC/OS lacks these routines but source code to many of these routines is readily
available in the public domain. In fact, the Free Software Foundation supplies a very complete set of the standard C
library and a C++ library. This library was considered, but since the library calls many kernel routines a complete
port of this library would have been difficult.

Three basic functions were desired from the standard C library. The string handling functions such as strcat and
strlen, the string formatting functions printf and scanf and the memory allocation functions. String handling and
formatting functions were obtained from a public domain C library that was not as complete a the Free Software
Foundation’s C library. These routines compiled easily and did not contain any kernel calls. The memory allocation
routines were acquired from an article published in the Embedded Systems Journal [5)]. The routines presented there
are well documented and integrated easily with the existing kernel and library routines.

The final utility routines consisted of downloading and debug monitor routines. In our case we had been using the
ethernet for software downloading for many years and software downloading would be handled later in the network
software. The debug routines that include examining memory and other system operations proved simple to write
once the standard library routines for string handling and formatting were available.

3. WRITING DRIVERS

We had been using the network interface for downloading code into the older VME systems almost from the start
of the 1986 upgrade. Thus one of the early goals was to use our ethernet based monitor, written for the older boards,
to download code into the new boards. The serial port still remains a vital tool for debugging purposes and the serial
port driver was implemented after the ethernet driver. A small version of the serial driver was used to dump out
messages during the development of the ethernet driver. The last system driver needed was a timer driver. The timer
driver is used for preemptive multitasking and for precise delays required by some tasks.

3.1 Ethernet Driver

The ethernet coprocessor used on the Heurikon V3D is the Intel 82596. We had previous experience with the
Advanced Micro Devices LANCE ethernet chip set so many of the functions were similar. The main drawback to the
Intel coprocessor is that it was designed primarily for little-endian processors with enhancements for big-endian
processors. The big-endian mode handles only some of the data ordering problems and close attention to byte
ordering is critical during driver development. One advantage of the coprocessor is that it can be programmed to
ignore ethernet broadcast messages. At present our VME systems are still connected to the campus wide network
through several bridges that eliminate all unnecessary traffic except for ethernet multicasts and broadcasts. The
internet protocol uses a great deal of broadcast messages during normal operation and very infrequently “broadcast
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storms” on the campus wide network would swamp the older VME systems. We did not use a standard network
protocol at the time this driver was being developed and only recently have we started to use the internet protocol.

The ethernet driver is composed of three main parts, the inijtialization of the coprocessor, the interrupt handler and
the packet transmission routines. During the initialization phase the ethernet coprocessor is given its ethernet
address, any multicast addresses it may accept and a link list of memory buffers to place received packet data. The
coprocessor has many different memory organizations available for received packet data, the simplest of which is a
link list of buffers. The interrupt handler deals with processing the received packets, cleaning up data structures after
a packet has been transmitted and handling any errors generated by the coprocessor. When the interrupt handler is
notified that a new packet has been received, it first checks the packet destination address to make sure it is either
addressed directly to this system or it is a multicast packet that this system has been enabled to receive. The
coprocessor does not completely filter all multicast addresses and other multicast packets can be received by the
coprocessor. Next, the header is checked for the proper format and improperly formatted messages are discarded.
Finally the packet is placed in a FIFO queue to be processed by a network command handler task. The last set of
functions performed by the driver allow other tasks to get a properly formatted network message buffer and then pass
it to the coprocessor to be sent out.

3.2 Serial Port Driver

The main task of the serial port driver is to stream bytes into and out of the serial port chip. This is
implementated by having two circular queues per serial port, one queue for the received characters and one for the
transmitted characters. Counting semaphores are used for both queues with the receive semaphore set to zero and the
transmit semaphore set to the transmit queue size. When a character is received, the driver increments the receive
semaphore. Thus when a task asks for a character string from the serial port with a call to gets, the task is suspended
waiting for a non-zero count in the receive semaphore. When a character is received this task is made ready and the
gets routine places the new character in the task’s buffer. This process continues until the end of line character is
received. When a task wishes to send a character string out of the serial port, the characters are placed in the transmit
queue and the transmit semaphore is decremented by one for each character in the string. If the transmit queue fills
before all the characters can be placed into the transmit queue, the task is suspended waiting for some characters to be
sent and space to be made available in the transmit queue.
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3.3 Timer Driver

The timer driver is designed to have very fast response and as a result bypasses most of the kernel. The timer driver
builds a list of time events ordered from the shortest time delays to the longest. The driver adds a new timing event
into the queue by subtracting all the time from events that occur before the new timing event in the queue. When the
time has elapsed for the time event in the head of the list, the timer driver calls the routine associated with the time
event at the timer interrupt level. This means that the routine must function very quickly or signal a task to
complete the work outside of the interrupt level. One of the main timer events is the call to the kernel routine
OSTimeTick. This routine decrements the delay counter of any task that voluntarily suspends itself a number of
kernel time ticks. When the task’s delay counter goes to zero, the task is made available to execute. When the timer
interrupt returns, the context switch is made to the highest priority task available to execute. Another timer event is
used for ramping digital to analog converters (DAC). The fast response of the timer driver allows for a time delay
resolution in the tens of microseconds. With this resolution the DACs can be ramped very smoothly.

The timer driver uses a timer chip that derives its clock from a crystal oscillator. Crystal oscillators are reasonably
good for short time periods but they display long term drifts. In addition, the timer driver may have difficulty
obtaining the exact elapsed time between removing the time event from the head of the queue to starting the next
time event in the queue. Therefore the timer driver makes small adjustments to the kernel time tick delay by using a
battery-backed real-time clock. Every 30 seconds the real-time clock is read and compared to the elapsed time from
the time tick. If a discrepancy exists, an adjustment is made to realign the clocks over the next 30 seconds. The
small adjustments do not effect the timing of any other timing event but long term times that are obtained from the
time tick are accurate to about 2 seconds per day.

4. SYSTEM TASKS

All systems contain a few common tasks needed for normal operation. These tasks include processing network
messages, serial port messages and periodic I/O driver tasks. The network task parses the received ethernet packets
and performs the operations detailed in those messages. The monitor task waits for any commands typed into a serial
port and executes them. Finally, the driver task calls all the I/O drivers at a periodic rate so the /O drivers can
perform any operations off this event without creating its own timer event.

4.1 Network Task

The network task suspends waiting on the ethernet driver’s receive packet semaphore. When a packet is received by
the ethernet driver it places the packet into a FIFO queue and sets the receive packet semaphore. The network task
removes the packet and inspects the header of the packet for a proper network protocol. Two protocols are currently
supported, a private protocol developed in 1986 and the internet protocol. The network driver then removes the first
data word in the packet. This data word is used in a switch statement to call a routine to process the rest of the
information in the packet. The routine may load software, read or write information from a driver, or perform some
other task.

We used our own packet format during the 1986 upgrade because we found a simple method on our VAX/VMS
systems to send and receive raw ethernet packets. VAX/VMS has supported this raw packet I/O for many years and
even after several VAX/VMS operating systems revisions it has remained unchanged. Back at that time we were
considering DECnet as the network protocol but we never implemented DECnet because only minor software
maintenance was required to support the raw packet I/O. We did not consider TCP/IP because there was only third
party support for TCP/IP under VAX/VMS. :

Recently it has become obvious that the internet protocol is the primary network protocol in use and we have
implemented a subset of that protocol on our VME systems. Although formal implementations of TCP/IP require a
minimum set of functions, it is possible to implement a much smaller set of functions. The minimum subset of
TCP/IP needed for communication are the internet protocol (IP), user data protocol (UDP) and the address resolution
protocol (ARP). The IP protocol is actually just 20 bytes of information inserted at the beginning of the network
packet. Eight of those bytes are the internet addresses of the sending and receiving systems, two bytes are used for
the total length of the packet and another two bytes are used for a checksum of the IP part of the packet. The other
bytes select various options for packet fragmenting, data protocol and routing. These options can normally be set to
a fixed value for all transmitted packets. The UDP protocol is inserted after the IP section and consists of an eight
byte header plus the actual user supplied data. Four of those bytes specify the source and destination UDP ports, two
are used for the length of the UDP part of the packet and the last two bytes are used for an optional checksum of the
UDP part of the packet. The actual implementation of these two protocols required less than 50 lines of code in the
VME systems. The ARP protocol defines a method for ethernet based TCP/IP systems to obtain the physical
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ethernet address of another system on the same ethernet segment. Basically a system will broadcast a simple packet
that contains the IP address of the system for which it wants. to find the physical ethernet address. Then all systems
on the ethernet segment inspect the packet and compare their IP address to the address given in the packet. If their IP
address matches the one in the packet, that system replies to the requesting system with a packet containing its
physical ethernet address. Although the ARP protocol could be implemented very easily, we did not want to inspect
all the broadcast packets on the ethernet segment. We avoided this problem by using a VAX/VMS system to handle
the ARP requests for the VME systems. The VMS TCP/IP software can be set up to watch for other system’s IP
addresses on the ethernet segment and reply with the other system’s physical ethernet address.

4.2 Monitor Task

The monitor task is used mainly for debugging software over the serial port. This task waits for character strings to
be entered through the serial port, then it parses and executes the commands. The monitor task is not a complete
debugger because it lacks features such as break points and watch points. Its main features are to examine/modify
memory, display task status and display memory allocation status. All of these features are also available with the
ethernet-based monitor software that executes on remote networked PC systems.

4.3 Driver Task

The driver task is used to periodically call all the I/O drivers on the system. When the driver is called, it can
perform basic tasks that are relative to the kernel time tick. An example would be for a driver to read all the channels
of a multiplexed ADC and log those readings over time. After the driver task has called all the I/O drivers on the
system it voluntarily suspends itself for one kernel time tick.

5. FINAL INSTALLATION

As noted earlier, the initial implementation of the kernel and CPU board drivers was on a single storage ring
beamline. The beamline system had several types of VME I/O boards but the storage ring uses different /O boards.
Thus drivers for the storage ring VME /O boards had to be completed before the new CPU boards could be installed

on the ring.
5.1 Hardware Drivers

Development of the storage ring VME I/O board drivers proceeded quickly due to many years of familiarity with the
storage ring I/O boards. The first CPU board was installed on the ring within two months after they arrived. The rest
of the CPU boards were installed over an eight-month interval to allow for normal operation of the storage ring.

5.2 Maintenance

Even though the new kernel had been running in the beamline system for over a year we still discovered two bugs
in the ethernet driver. The first problem appeared when one system would generate a Spurious Interrupt after several
weeks of operation. It turned out that the ethernet coprocessor would signal an interrupt request but when the
processor issued an interrupt acknowledge the coprocessor did not respond. The board was sent back to the
manufacturer but they did not find any problems. As more CPU boards were installed on the storage ring we noticed
that some boards never demonstrated this problem and others would generate the error almost weekly. The problem
was resolved by trapping the Spurious Interrupt in the ethernet driver and checking the status of the ethernet
coprocessor. If the coprocessor status word indicated that it was requesting service, the ethernet interrupt service
routine would be executed. The second problem was discovered recently that causes an ethernet coprocesssor fault
from insufficient memory buffers for received packets. Apparently a burst of unfiltered multicast traffic on the
ethernet segment arrived at such a rate that the processor could not discard the packets quickly enough. The ethernet
driver should have reset and reinitialized the coprocessor but the code did not clean up some memory structures
properly. The conditions that generated this fault are almost impossible to reproduce. They occurred on several
occasions during a few month time period and then seemed to have stopped. Code that corrected the problem was
placed in a few systems and those systems have shown the ability to recover from one such event.

Another indication of the quality of the kernel can be observed from the ability to modify the system software as
hardware changes are needed. Recently we upgraded some of our analog converters from 12-bit converters to 16-bit
converters. After the new 16-bit ADC boards were selected and ordered, the driver was written for the boards several
weeks prior to the expected delivery. The driver was fairly complex requiring an interrupt service routine to handle
the hardware scanning of the ADC. Coding of the driver required 400 lines of C and was completed in a single day.
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When the board arrived, the driver functioned without a single problem. The first board was placed into operation on
the storage ring two days after the boards had arrived.

6. CONCLUSION

Although the kerpel only required a few days to port, the device drivers for the CPU board required more than a
month of work. Many more months of work were required for the complete set of VME I/O drivers. Many believe
that commercial real-time kernels are well worth their purchase price. One would clearly purchase a commercial
kernel for large projects involving many programmers. For smaller facilities such as SRC the decision is not as
clear. Three costs have to be considered when writing a kernel, the development cost, the project delay cost and the
maintenance cost. We did not have any problems with project delays and maintenance costs have been minimal. The
development costs were reduced substantially by using public domain code in the kemnel.

This work was supported by the National Science Foundation. The current contract number is DMR-9212658.
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The NSLS beamline computer systems have gone through two major updates: (1) a graphical user interface
(GUI) was incorporated into the original beamline-control and data-acquisition program ACE to form the new com-
posite program GrACE, and (2) we updated device drivers to run GrACE on a Pentium PC running the UNIX-like
operating system LINUX. With a proper PC CMOS setup and a PCI local-bus graphics card, the LINUX X server on
a Peptium is dramatically accelerated to run GUI applications. With in-house-designed CAMAC and MCA device
drivers and a public-domain GPIB device driver, we can run the original beamline-control and data-acquisition pro-
gram without changing the computer-interface hardware. The updates produce powerful, low-cost, flexible, and user-

friendly computer systems.

1. Introduction

The original NSLS beamline-control and data-acquisition program ACE [1] had enough functions to serve
its purpose. However, we recognized that a graphical user interface on top of ACE is necessary to provide a friendlier
user interface. GUI applications had tremendously negative impact on program execution speed due to the poor
architecture of the software and hardware of the original 486 PC-UNIX platform[2]. LINUX [3] supports a wide
range of software, from X-windows to the GNU C/C++ compiler to TCP/IP. It’s a versatile, bona fide implementa-
tion of UNIX, freely distributed by the terms of GNU General Public License. After Intel marketed the Pentium,
some developers wrote device drivers for PCI local-bus graphics cards to take the advantage of the local bus system
capable of moving 32 bits of data at 33 MHz which accelerates GUI applications dramatically. We updated the orig-
inal system with low-cost computer systems and in-house-designed software to achieve powerful, reliable, and user-

friendly computer systems.

2. Hardware configuration

. The PCI local bus greatly improves 1O performance, especially graphics. The PCI bus can transfer data
between the processor and the peripherals at up to 132 MB/s, far faster than the ISA bus rate of 5 MB/s. A full-fea-
tured PCI-compliant VGA card, with at least 1 to 2 MB of video RAM, will accelerate graphics performance further.
We bought several 66MHz, 100MHz, and 120MHz Pentium PS5 [4] computers, each equipped with a PCI EIDE hard
disk controller, thirty-two megabytes of RAM, a 256 kB cache, an ATI MACH 64 with 2MB of VRAM, and a 1GB
hard disk drive. We chose PCI local-bus Ethernet cards [5] for network communication.
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Table 1 and table 2 shows the CPU and system benchmark among various computer systems we studied dur-
ing evaluation. We only compared systems under $12XK in price and picked the best values. '

TABLE 1. CPU benchmarks [6]

Pentium Pentium SUN/SPARC/ | SUN/SPARC/

66MHZ 120MHZ | HP 715/50 HP 715/80 20/50 20/61
Cache size | 256 KB 512KB 256 KB 256 KB 256 KB 256 KB
SPECint92 | 78.0 133.7 49.2 83.5 69.2 88.9
SPECfp92 | 63.3 99.5 78.8 120.9 78.3 102.8
TABLE 2. System performance using BYTE Benchmarks [7]

Pentium P5 Pentium P5 Pentium P5 Sun Sparc 10

Kernel LINUX 1.2.8 LINUX 1.2.8 LINUX 1.2.8 SUN OS
Clock 90 MHZ 100 MHZ 100 MHZ 50 MHZ
Hard disk controller EIDE PCIEIDE PCI SCSI-II
RAM 32MB 16 MB 32MB 128 MB
Average Index 6.6 11.6 11.6 7.9

The system performance was an average index of arithmetic tests, file copy, pipe-based context switching
tests, shell scripts and so on.

3. Software development

" Some of the source codes of the following software development is sharable [8]. The user manual for ACE
is on'the World Wide Web [9].

3.1 Device driver development

We wrote a device driver for the AT-bus PC004 PC-CAMAC interface card for a 6001/6002 CAMAC crate
controller, available from DSP Inc., and a device driver for the AT-bus PCAII multi-channel analyzer from Nucleus
Ine. ‘

We obtained the GPIB device driver for LINUX from a public domain site [10]. One has to modify the ker-
nel to use DMA if the PC has more than sixteen megabytes of RAM. One could leave the kernel untouched by dis-
abling the DMA manager. On the GPIB board [11] we used, the DMA operation is unimportant when a chunk of data
less than 32 bytes is transferred and most effective when a chunk of data more than 512 bytes is transferred.

In LINUX, theses device drivers can be installed on the fly without modifying the kernel or rebooting the
system.

3.2 GUI development

We wanted to add a GUI on top of ACE with minimum changes in the original structure of the ACE pro-
gram. We developed three GUI processes to communicate with ACE through pipes. It not only facilitates debugging
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but also preserves flexibility because each process can run independently. Furthermore, this kind of structure will
facilitate further development into a client/server application. Figure 1 shows the current structure of GUVACE.

GUI I
GRACE

|

stdout lst.(flin nod /
pipe /

stdin | stdout /
stdin pipel pipel stdin

GUI/MCA | siont piped ACE pipedl stdout| GUI/PLOT

~, v

",
fork ~~-- -
~e——— -

e e

.
-----
'''''

Figure 1: GUI/ACE

3.2.1 GUIIGrACE process

Figure 2 shows one example of the GUI/GrACE which maintains a scrollable window to print out the origi-
nal screen message from ACE (on the lower left corner). In addition, it shows the GUI for the motor database editing,
align/scan and counting. Another innovative design is to use Tcl/Tk to implement a GUI builder to build a user’s own
macro definitions. GrACE sends strings of commands to the ACE server whenever users click on a GUI as if those
commands were typed out by them[12]. The Builder Xcessory[13] was used to build the GUL.

3.2.2 GUIIMCA and GUI/PLOT processes

Figure 3 shows one example of the GU/MCA and GUI/PLOT called by ACE during a scan. Both pro-
cesses, capable of running alone, will display the X and Y positions of the cursor in the plotting window interactively.
Initially, the Builder Xcessory was used to layout the GUL Thereafter, a plotting and user-interface library using
Motif and X-windows graphics were written in-house to develop GUI processes.

4. Discussion

To integrate the LINUX OS on a Pentium PC demands skillful system administration. Although it is not
quite well supported commercially[14], we can fulfill most beamline applications to achieve a powerful and user-

friendly computer system.
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Figure 2: GUI/ GrACE calls ACE server
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Figure 3: GU/MCA and GUI/PLOT called by ACE during a scan
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Abstract

In the KEKB project both the ring and the linac accelerators are to be upgraded from the TRISTAN project. It was
recently decided to employ EPICS control software for the KEKB ring controls. It is reasonable to use such mature
collaboration-based software when starting to build a new control system. However, on the linac side, which will be
upgraded from 2.5 GeV to 8 GeV, we have been operating a new separate control system, employing international and
de-facto standards with an object-oriented design for the last two years.

We are thus searching for a scheme to join these two control systems together, since it is important to have a tight
control coordination between the linac and ring in order to achieve a higher luminosity in physics experiments. In this
report, several schemes for the integration between the ring and the linac are discussed.

1. Introduction

Modification of the KEK electron/positron linac for the B-Physics (KEKB) project with an improved beam current
and energy started in 1994 [1]. We will upgrade our linac energy from 2.5 GeV to 8 GeV by 1998. A control system is
also being prepared for it employing international and de-facto standard systems with object-oriented design [2]. It will
improve both functionality and reliability [3].

In the project the linac should provide beams of better quality, stability and availability in order to achieve a higher
luminosity in the ring. Thus, cooperation is indispensable between the control systems at the KEKB ring and linac.
Extensive studies must be carried out in order to understand the correlation between the operational parameters in both
accelerators with common database and accelerator-analysis codes.

Recently it was decided to employ EPICS (Experimental Physics and Industrial Control System) [4], for the KEKB
ring controls and the control software is being reconstructed while maintaining most of hardware resources from the
TRISTAN project.

On the other hand, we have been gradually rejuvenating the linac system since we must continue beam injection to
the Photon Factory (PF) ring during the improvement. It is reasonable to employ EPICS as a result of the international
software-sharing effort when a new control system is designed. However, the issue of integration with the existing linac
control system remains.

In the former TRISTAN project, accelerator operation was performed separately at the linac and ring control rooms.
Although some control information could be exchanged concerning the last part of the linac, it was not much used during
normal operation. In the KEKB project, it is necessary to merge at least the beam handling console.

It is very desirable to have a common control architecture. Fortunately, we use a similar hardware architecture in both
of the new control systems. There should be possible a scheme to shift over toward common EPICS controls.

In this paper we consider the technical aspects of the integration feasibility of the existing linac system and the ring
EPICS system. Operational aspects will be considered elsewhere.

II. Control System Cooperation Between the Linac and Ring

In order to achieve system cooperation between the KEKB linac and ring, the operational procedure and use of the
control-room are under discussion. From a technical point of view, there are several possibilities. The use of EPICS at
the linac is of course one of them. Below we describe four major possibilities.

A. Employment of EPICS at Linac

In order to integrate two control systems the best solution would be to use EPICS at the linac control system replacing
the existing one, since common resources could be shared between the two control systems without much effort. This
scheme would be taken if both control systems were to be designed again.

* Also at CERN/PS during 1994. farukawa@kek.jp.
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However, because of the need for PF ring injection we cannot shut down the linac accelerator for a long period during
the KEKB upgrade and much of our manpower will be necessary to follow a gradual accelerator improvement program.
1t is thus quite difficult to replace software during this period.

Although the equipment access method over the network was standardized at the linac, we have used three different
methods for the graphical operator interface: MS-Windows GUI applications, DOS-based touch panel systems and Tk
[5] based X-Window GUI applications. Because of such a variety it would take some time to re-design the graphical
operator interface under EPICS.

Also, the equipment-control software based on object-oriented design at the linac does not match the channel-oriented
EPICS software, so it would be necessary to redesign the structure of most application software for controlling the linac.

In order to accomodate the differences between equipment access methods it is possible to develop special EPICS
records, such as magnets and klystrons. Although we may emulate our current access method on EPICS IOC (Input
Output Conwroller), those pieces of software would become large, and we would have to modify not only the client
applications, but also the EPICS source tree.

If we change to an EPICS environment, it would be attractive to implement such records to fulfill the equipment-
oriented design at the IOC level. However, during the construction time, such a complication should be avoided and a
more simple scheme should be implemented.

B. EPICS Capability in the Current Linac Control System

The current linac-control system comprises VME front-end systems, Unix systems and operator interface subsystems.
If it would be possible to implement the EPICS IOC capability into the current VME systems, both the current linac
software and EPICS client software could be executed and a gradual transition to EPICS could be accomplished.

One of the authors (k.f) studied such a feasibility [7]. As a result, the idea came up that if we could emulate some
VxWorks system calls, which EPICS IOC utilizes, in a thread environment, we should be able to execute EPICS I0C
codes, although dynamic symbol manipulation is technically not easy to implement.

On the linac VME, while the OS9 operating system is currently employed, most software is written for both the OS9
and LynxOS operating systems. We had a plan to move to LynxOS, which is currently suspended. With LynxOS we
could use the POSIX thread (pthread) environment, which is one of the standard thread specifications. Though the code
is not yet finished, an implementation has been attempted on LynxOS.

Therefore, such transition is possible. However the software development required is too much compared to the
amount of sharable resources. Since the transition from OS9 to LynxOS has been suspended for certain reasons, this
scheme is not feasible now.

It would be interesting to adopt the POSIX real-time standards to the EPICS IOC, since it would expand the EPICS
application area. It should be discussed not only for KEKB integration, but also for more general areas.

C. Communication Protocol Conversion

In the linac control system we implemented our own control protocols both between Unix and VME and between
Unix and the operator interfaces. On the other hand, in EPICS the Channel Access protocol is used between the IOC
and OPL. If we could convert one of these protocols into the other, the two control systems could communicate with each
other.

A server for EPICS Channel Access, called Portable CA server [8], is being developed in the EPICS collaboration,
in order to enable access to external controls from EPICS Channel Access clients. Since several sites use it without any

_ obvious problems, the Portable CA server could be installed at the linac in order to allow EPICS clients to reach the linac
controls.

After writing protocol conversion routines for the linac equipment, EPICS Channel Access clients could see the linac
accelerator as one large IOC. Although it is asymmetric as shown in Figure 1 and we could not share low-level controls
between the linac and ring, such a solution would be very simple to implement.

In such a scheme, if it is necessary to reach an IOC in the ring side, from the linac, Channel Access library routines
could be called from inside the linac operator interface. At least at the beginning, some kind of security checking should

be made between the linac and ring controls.

D. Common Upper Level Control Protocol
A Channel Access server described in the previous section is a practical solution in a one-to-one conversion. However,
we must soon think about the Photon Factory ring as one of the downstream clients for the linac. Also, controls for physics

experimental groups and other facilities may be loosely combined.
In such a multi-architecture situation it is natural to design a common upper-level protocol and several groups are
working to implement it. The CICERO project is a development collaboration based on CORBA (Common Object
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Figure. 1. CA server implementation at Linac to enable common applications.

Regquest Broker Architecture). In the EPICS collaboration cdev (control device) [9] is proposed as the common API and
implementation is made available.

Since cdev is designed to be object-oriented, it should be easy to write an interface to the linac control protocol.
Although the link at the top level with cdev is not efficient in speed, software design will be clear.

Although cdev over the distributed network is not yet defined well, we expect that ACE (Adaptive Communication
Environment) or CORBA will be soon applied to cdev. Figure 2 shows such a common environment.

Common Applications

cdev
ACE or CORBA
U RO -
cdev cdev i cdev : i cdev ;
Linac Ring i PF Ring: EFgéiTi%:esi

Figure. 2. Possible integration of control systems at KEKB with cdev and ACE or CORBA. Common Applications may
communicate with any control system.

Although this scheme seems very suitable, and would provide a common application environment, the number of
existing general application programs is small. Most of EPICS clients use only the CA protocol, but we hope that more
application programs will be developed on cdev. In the long run this scheme is considered to be the most promising.

III. Other Services

Other services, such as computer resources, computer networks and relational databases, as well as their management,
can be combined more easily than the control protocols. Since our manpower is very limited, we should pay attention to

merge such services.

IV. Conclusions

The above discussion shows two schemes which are feasible for merging the existing linac control system and the
EPICS ring control system. One is to employ the CA server at the top of linac controls for a short-term solution.

The other is to implement a cdev environment over the top of the two control systems as a long-range plan. We need to
design a network-communication interface and a set of common control application programs in the EPICS collaboration.

If the adoption of cdev is successful, we may skip the use of EPICS on the linac side. Of course, in order to save
manpower, we may design new sub-systems with EPICS. We would not have any problems with such a mixture of
architectures, since cdev can manipulate all communication between them.

As a result of these considerations we hope to achieve successful results with the KEKB project.
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ABSTRACT

The SPEAR electron synchrotron is an old and venerable facility with a history of great physics. When this storage
ring was converted to serve as a full-time synchrotron light source, it was evident that the time was due for an
overhaul of the control system. Qutdated hardware interfaces, custom operator interfaces and the control computer
itself were replaced with off-the-shelf distributed intelligent controllers and networked X-workstations. However,
almost all applications and control functions were retained by simply rewriting the layer of software closest to each
new device. The success of this upgrade prompted us to do a similar upgrade of our Injector system. Although the
Injector was already running an X-windows-based control system, it was not networked and Q-bus-based. By using
the same Ethernet-based controllers that were used at SPEAR, we were able to integrate the two systems into one
that resembles the 'standard model' for control systems, and at the same time preserve the applications software that
has been developed over the years on both systems.

INTRODUCTION

SPEAR was originally commissioned in the early 1970’s as an electron-positron collider, and, when the PEP ring
was built at SLAC, the control system at SPEAR was upgraded by installing a version of the PEP system [1]). The
PEP system used custom-built CAMAC hardware which had a paralle]l crate architecture. This system used a
Grinnell graphics processor to provide the operations displays and the background display for the touch-panel
controls. This processor provided primitive graphics and text with color capability. The PEP system also used
Modcomp computers to enable distributed control to the CAMAC crates due to the physical separation of the
control room from the various parts of the PEP ring. The Modcomp system was not required for SPEAR because of
its more compact physical layout. The port of the PEP system to SPEAR was done in the early 1980s and ran the
SPEAR ring for more than ten years using VAX 11/750 and 11/780 computers. In 1990, the SPEAR ring became a
dedicated synchrotron radiation source operated by the Stanford Synchrotron Radiation Laboratory.

The SPEAR Injector was built in 1989 and used a control system that was transferred from a system developed at the
ELSA ring in Bonn, Germany [2].

REQUIREMENTS AND OPTIONS

Our motivation for doing the upgrade of SPEAR (and then using that experience to upgrade the Injector as well), was
to replace a couple of very old systems which were either already obsolete and unsupported, or soon would be. The
two systems that were of most concern were the VAX 11/780 that ran the control system software and provided the
UNIBUS interface to the CAMAC hardware and the Grinnell graphics display processor.

The 11/780 was already obsolete and very expensive ($15k/year) to maintain and was an obvious candidate for
replacement. The problem was that the current interface to the CAMAC hardware was via a proprietary UNIBUS-
based controller called the VAX CAMAC Channel (VCC) [3], a SLAC built device. Since none of the modem
computer systems currently available supported the UNIBUS, it was going to be necessary to replace the VCC as

part of the upgrade.

* Supported in part by the Department of Energy, Office of Basic Energy Sciences, High Energy and Nuclear Physics
under Department of Energy contract DE-AC03-76SF0015
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The Grinnell graphics processor drove the operator displays and the touch-panels. It provided only primitive graphics
capability and the manufacturer of the hardware had gone out of business many years previously, making
maintenance difficult as spare parts became scarce.

Our basic requirements for replacing the existing system were to:

Provide CAMAC performance no worse than the current system which operated at about 3 Hz.
Provide an X-windows-based graphical user interface (GUI).

Continue to provide a capability to knob operator-selected parameters.

Eliminate the VAX 11/780 and Grinnell processor.

Several proposals were submitted on how to meet these requirements and a design review was held in November
1992. The proposals submitted were to:

1) Obtain a VAXBI based computer and use a specially built fiber optic interface (which was similar to units being
built for the SLC project at SLAC) to connect to the CAMAC crates.

 2) Expand and install the control system used at our Injector to SPEAR.

3) Replace the current VCC and crate controllers with VCC emulation software and MicroVAX crate controllers
from Kinetic Systems.

All proposals involved replacing the Grinnell system by converting the Grinnell graphics calls to X-windows
equivalents and replacing the old touch-panels and color monitors with X-terminals.

The result of the design review was to choose the MicroVAX controller option.

THE UPGRADES

Hardware -- Crate controllers

We replaced the outdated SPEAR VCC interface and aging parallel crate controller with an Ethernet-based distributed
intelligent controller. The advantage was that the Ethernet solution leaves the SPEAR control system open to the

option of non-CAMAC hardware such as VME.

The Kinetic Systems model 3968 was adopted for both SPEAR and the Injector. The controller features a 2.7 VUP
rtVAX 300 processor including both floating-point and advanced Ethernet co-processors, as well as 8 megabytes of
RAM memory, two terminal ports, a CAMAC interface, and 8 kilobytes of dual-ported memory.

Hardware -- Knob boxes

The existing knob boxes at SPEAR were home-built and old, and the person responsible for maintaining them was
retiring. They connected to the existing VAX system via an RS-232 link. After some searching, only one
commercial unit was found that could provide similar capability and this was a knob box manufactured by Hytec.

The Hytec unit has only two knobs, as opposed to the four knobs on the old boxes, but is programmable in such a
manner as to actually provide the capability of controlling twice as many parameters from one box as compared to
the old knob boxes. These new units also use an RS-232 link, but are connected to an Ethernet based terminal server

instead of directly to a VAX.
Hardware -- Computers and X-terminals

Once the decision to go over to an Ethernet-based control system, it allowed us to choose virtually any computer
system that could run VMS to replace the VAX 11/780. Given our budget constraints, it was decided to get a VAX
station 4000-90 system with two 1 GB hard disks and 128 MB of memory. This system provides more than 30
times the raw CPU power of the 11/780 and gives us the ability to do more compute-intensive activities locally,
such as machine modeling, that would have been extremely slow or impossible to do previously.

It was also decided to provide several operator stations in the control room area using Tektronix X-terminals. The

main operator station has an X-terminal with dual display capability, allowing the operator to display much more
information in one place at one time. These units are all Ethernet-based.
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Software -- SPEAR

As mentioned previously, the original SPEAR control system was built on top of VCC hardware that was interfaced
to the CAMAC crates via a parallel data link and was connected to the VAX UNIBUS via the VCC (see figure 1).

fhiog?

----- == eeeeeeen QIDInterface remmen S e o
VYMS Driver ACP
;UNIBUS EthcrnetlT
Y CC Interface
-5
Parallelfffighway
¥

n n E-—-T

CAMAC Crates with CAMAC Crates with
parallel highway Controllers Micro¥ AX Coatrollers

Figure 1
Schematic of Old and New CAMAC Systems
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A VMS driver provided the operating system interface for the application software. All programs used this QIO
device interface to execute CAMAC operations. The paralle]l data highway was organized in several branches (0 to
7), each branch connecting up to 8 crates (0 to 7). Each CAMAC crate was addressed by using the branch and crate
number. An important decision for the upgrade project from the beginning was that the new CAMAC interconnect
“should keep the existing control application programs as they were, without any modification to the existing code.
This was possible with the use of the well-defined QIO interface and provision of an identical device interface. For
many years, SSRL ran application programs for the beam-line controls that used the capability of VMS to have an
Ancillary Control Process (ACP). Such a process provides a QIO interface for application programs and handles
input / output requests for these programs within a regular program [4]. This interface was chosen for the upgrade
project because it yielded the flexibility for the new software to emulate the old CAMAC functions on the main
host. The. additional software overhead was tolerable as the new SPEAR control host (VAX station 4000-90) is
about a factor of 30 faster than the old VAX 11/780.

The ACP on the central host now establishes network connections to all crate controllers and thus executes the
CAMAC instructions. In more detail the CAMAC system now works as follows:

e  An (untouched) application program generates a list of CAMAC commands, provides a data buffer for write and
read data as well as a status buffer. This is done in exactly the same format as for the old VCC system.
The application issues a QIO and passed these buffers to the operating system.

The ACP gets these buffers.

The ACP generates independent lists of CAMAC commands and write data for each crate addressed.

If not done already, the ACP establishes a DECnet connection to each crate used.

The ACP sends a packet containing commands and write data to each crate.

The MicroVAX crate controllers receive the command and data packets.

The crate controllers (in parallel) execute the given CAMAC commands, using the given write data.
The crate controllers each build a list of status information and read data.

Each crate controller sends a status and data packet back to the ACP.

The ACP receives the status and data packets from the crate controllers.

The ACP returns the status information and data to the application program's buffers.

The QIO operation is complete.

As described, this new system fulfills the requirement of replacing the old hardware system without any
modification to the existing application software. The critical aspect of this project was the real-time performance of
the new system. This was difficult to estimate as the number of CAMAC commands per CAMAC list varies from
a single command to up to 100 commands. At the same time, the commands in a CAMAC list can address an
individual CAMAC crate or all crates at once. When first implemented, the ACP sent the command packet to the
first involved CAMAC crate, waited for the response and only then sent the command packet to the next involved
crate. As expected, the performance was dramatically improved after a revision, so that now all packets are sent and
then the status and data packets are received. A measurement of the worst-case scenario, i.€., a single CAMAC
command in a list, shows a total round-trip execution time of about 7 milliseconds. This is the minimum response
time, but additional commands in the same list increase this time by very little. In the running system the ACP
now collects statistical information about the data throughput to each CAMAC crate. This indicates that the average
execution time for a SPEAR CAMAC operation is about 9 milliseconds. The performance of the Ethernet was also
taken into account. To be independent of the global Ethernet traffic, the control system segment was isolated from
the rest of the network by a LAN bridge. The current SPEAR machine operationrequires that the injected and stored
electron beam be accelerated from 2.3 to 3.0 GeV. This is done over a time of about 3 minutes and it requires that
all the main and corrector power supplies are ramped in a very synchronized procedure. In the old VCC hardware
system this was guaranteed by the VCC hardware. In the new system, the commands for the different CAMAC
crates are handled more independently by the ACP and there exists a potential for variations in the millisecond range.

However, this problem has not been experienced.

Displays on the old control system were driven by a 1970's era video controller from Grinnell. This device accepted
16-bit commands to set position, draw pixels, lines, rectangles, and to manage a color lookup table that depended on
the division of available planes among the different screens. Ours was configured to two black and white touch-panel
screens and three 4-plane color display screems. A 'switch channel' command allowed programmers to send
commands to selected screens. The device was shared, allowing (in principle) any application to write to any or all

SCreens.

The replacement of this device was greatly facilitated by the modular, object-oriented flavor of the original control
system software. In this design, all applications were event driven, guickly-executed 'methods’ organized into
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concurrently executing VAX/VMS processes (APs). Each received event always contained the screen number(s) in
its auxiliary data, so applications never had to make this decision. Events are scheduled at selected frequencies, or by
operator touch-panel button pushes, or by something happening in the storage ring.

Further, each application communicates to the displays through a 'graphics layer'. This layer generates 16-bit
commands from requests to draw standard (but limited) graphics items. The protocol is:

initialize ( screen#, buffer );
draw_itern#1( data, buffer );

draw._itém#Z( data, buffer );

. ﬂush( buffer );
e return.

At ‘flush' time, the buffer of commands was sent to the device as a single /O operation (the layer automatically
generates extra I/O operations if the buffer becomes full). The graphics layer is linked to each AP containing an

application that requires graphics.
To replace the video controller device:

e Each screen of the device was replaced by an X-window client running on an X-server. The client process, which
can also reside at any network node, receives buffers of 16-bit commands and converts them into Motif requests.
It also maintains backing structures to redraw the window when requested to do so by the server. The structures
are necessarily 'AP semantics-independent’, built up only from the packets of 16-bit commands received since
the last 'clear_screen' command.

e A 'dispatch' layer of software was inserted at the device end (where the /O operation used to be invoked) of the
graphics layer described above. This layer arranges for each buffer of 16-bit commands to be forwarded to the
client process of the buffer's screen. The layer is linked to each AP that needs the graphics layer.

e No modifications were made to any of the AP's (but of course they had to be re-linked).

e A possible problem was the proliferation of network sockets if each AP could send to each client. We decided to
reduce this by requiring the APs dispatch software to forward buffers to the ‘master scheduler' process (the one
that also manages the touch-panels; there can only be one of these at a node). This process, is the only one that
talks over the network to the X-clients.

o Since things are executing asynchronously on many nodes, ring buffers had to be installed at several places.
The most important spot is where buffers entered the clients, particularly if there are slow ‘dumb X-terminals'
installed as X-servers on the system. Another spot is where buffers from applications are received by the
master-scheduler process.

e On the input side, physical touch-panels are not easily available, so button pushes are replaced with mouse
(release) clicks. These mouse clicks from the X-server’s screen are received by the client and sent (over the
network if necessary) to the Touch-panel Manager, wrapped to look like button pushes from the old touchpanel

screens.
The new system automatically provides the following enhancements:

All screens can have color. At present 16 colors are available and deemed sufficient. The screen windows can be re-
sized by the Motif window manager. Fonts look much better since the old device didn't even support lower case(!).

The number of X-servers executing at one time is limited only by the number of network sockets allowed. A single
server can show windows of different screens. Two servers at different locations can monitor the action-of the same

screen.

The number of logical screens can be increased. Applications can be dedicated to screens, or they can be dynamically
allocated to screens by the operator (an almost redundant feature, but it comes free!).

Software -- Injector

The successful upgrade of the SPEAR control system by using MicroVAX CAMAC crate controllers defined the
upgrade for the Injector control system. The Injector also got rid of the CAMAC interface that was connected to the
proprietary bus (Q-bus) of the MicroVAX 3600 on which the control system ran. All CAMAC crates -- for SPEAR
and the Injector -- are now controlled by the same type of crate controller, thereby minimizing maintenance
activities. These crates are connected through Ethernet, which eliminates dependence on a single manufacturer.
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The Injector control system is much younger than the SPEAR system and therefore does not have an extensive
history in the application programs. The design of the control system incorporated the feature of putting machine
parameter values into the control system database only when the parameter values had changed. This was
implemented by a data acquisition process that collected all input data from the CAMAC modules and applied the
parameter values after filtering, i.e., comparing with previous values. The upgraded Injector control system now
generates a configuration for each CAMAC crate from the control system database. This configuration is loaded into
the crate controller CPU. The processor now runs the data acquisition within the crate; it filters the data and only
sends a data packet through the network to the central host for the parameters that have changed. This significantly
reduces the network utilization.

As the CAMAC interconnection was already isolated from the application programs before the upgrade, the change
in data management within the crate controllers did not affect the existing programs. By replacing the shareable
library that addresses the CAMAC hardware, the control applications now "talk" to the crates through a network
instead of the serial highway. The only other change made to the Injector was forced upon us when we ported the
control system from the MicroVAX 3600 to a (somewhat) newer VAXstation 3138. The VAXstation was running a
more recent version of VMS, necessitating a conversion of all the DECwindows routines to their equivalent Motif
calls. The MicroVAX was showing signs of age and was becoming under-powered for the load we were putting on it.

iPOST-UPGRADE IMPROVEMENTS AND FUTURE

Alpha Port

As always, whenever you make new capabilities available in a system, people will always find a way to exploit
those capabilities beyond the capacity of the system to support them. In an effort to stay ahead of the game and to
remain in synchronism with computer technological trends, we plan to port the entire SPEAR control system to a
DECstation 3600 AXP. Although the current SPEAR computer is more than adequate for our foreseeable needs, we
also realize that it will take a significant amount of time to port all the various SPEAR applications to the Alpha
architecture and wish to make that transition before we are forced to make it.

For most of the applications it will be mainly a matter of compiling and relinking the code. However, the CAMAC
and database interface codes will most likely need more extensive rework in order to meet the requirements imposed
by the 64-bit architecture and the larger page size.

Feedback | BPM Upgrade

In the previous SPEAR control system, the central host had to execute the very complex CAMAC command lists
to perform the beam-position measurement (BPM). The BPM data acquisition was all done in a single CAMAC
crate. This crate controlled RF multiplexers, which selected a single monitor button out of the 24x4 signals, started
a BPM signal processor and digitized the signal. From the raw data values the central host then calculated calibrated
beam positions. After the replacement of the old VCC CAMAC hardware, the process of the BPM data acquisition
and data calibration was moved into the intelligent crate controller. The MicroVAX controller now handles the
modules in the CAMAC crate by itself. The dedicated software performs essentially the same steps as the old central
host, but it does this in a much faster manner. Beside generating the raw button data, it also generates calibrated
beam positions. The calibration functions were actually linked into the MicroVAX crate controller code as they were
before. This was made possible when existing VMS FORTRAN subroutines were linked with the new C code that
runs under the VAXELN operating system in the crate controlier. The migration of the BPM processing into the
new MicroVAX crate controller resulted in the following improvements:

e The data acquisition time to measure a complete orbit was improved from one non-averaged measurement per
minute to about 1 measurement per second, each averaged over more than 1000 orbit readings.
e The central host receives calibrated data much faster without any overhead.

SPEAR ! Injector Merging

Both accelerators now have identical CAMAC crate controllers. The functionality, that is, the type of commands
from the central hosts, is still different. For the SPEAR system, lists of commands are exchanged and executed
about 3 times per second. For the Injector system, the acquisition configuration is loaded once and the crates send
data when needed. Of course, changes of parameter settings are possible at any time.
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The two different software packages for SPEAR and Injector were merged together. Each CAMAC crate controller
can now be addressed by the SPEAR control system as well as by the Injector system. To date this feature is not
fully utilized. Care has to be taken that contro] settings have a single-master system.

VME Integration

Recently, a VME crate was added to the SPEAR control system. This crate will eventually be used for a feedback
system [5]. As a migration path for the future, this crate is now housing DAC modules that control some SPEAR
power supplies. The VME crate also has a MicroVAX controller that is connected to the SPEAR network. The
software that runs in this controller emulates a CAMAC crate for the SPEAR control system and thus completely
hides the existence of a VME crate from the SPEAR system.

In the future, more applications will be moved into the front-end crates. ‘This will allow the central control systems
to concentrate on more global management tasks as well as the operator interface. In the long-term, the different
control systems will merge, as different individual systems can be seen as parts of a global system that are all
interconnected and exchange data with each other.

CDEV Compatibility

The CDEV application programming interface (API) being developed at CEBAF and APS appears to have the
potential to make the sharing of accelerator programs between various facilities much simpler. We would like to take
advantage of this capability by modifying our control system so that it can transmit and receive data at the CDEV
layer. We believe this can be accomplished with only about a one to two man-months effort.

CONCLUSION

The new SPEAR control system has been running now for about 2 years and has been very reliable. We have seen
no evidence of any network bottlenecks or other kinds of problems associated with Ethernet communications. We
continue to make minor adjustments to the crate software to improve performance and to support new functions.

The Injector control upgrade is in the checkout stage at the time of writing, but is essentially fully operational and
appears to be working quite well. We are using this system as we are starting up for our next user run, with the
intention of operating with the new system for that run.
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This paper describes the method of upgrading the BEPC control system, in which the dedicated adapter VAX-CAMAC-
Channel (VCC) was replaced by a commercial adapter KSC2922/3922, Qbus CAMAC interface. All low level /O driver
routines have been changed without changing the whole CAMAC hardware system. The upgraded control system has a
distributed architecture and several hierarchical databases are installed in the FEC computers, so the data flow should be
controlled. Once raw data in any node have been refreshed, any changes will be transferred to the other nodes to maintain

uniformity of data in those databases.

1. INTRODUCTION

The original BEPC control system has a centralized structure mainly composed of a console, a VAX750 computer, the
intelligent channel VCC, the CAMAC system and hardware devices. The structure of the system is shown in figure 1. VCC
is a dedicated product from SLAC, which is no longer produced and of which there is a shortage of spare parts. Now the VCC
has been replaced by the commercial product KSC2922/3922, a Qbus-CAMAC adapter produced by Kinetic Systems
Corporation, which serves as the data communication interface to the CAMAC hardware.

IWorkStatxon I I

|-:onsole| | VAX-114750 4 % % OECnet
i Unibus I VAX4500 l MicroVAXIl |

A

CAMAC System CAMAC System
CAMAC System CAMAC System
:

Figure 2 Upgraded BEPC control system

Figure 1 Original control system structure

The upgraded control system has a distributed architecture based on Ethernet and has been operational since Oct. 1994
(Figure 2 ). Because of the short time available for upgrading, the low level CAMAC system was retained.

2. HARDWARE STRUCTURE

The VAX-11/750 used the VCC as a Unibus - CAMAC interface, but the VAX4500 and MicroVAXII computers in the
improved system use the Q-bus. The KSC 2922 Computer Bus Adapter provides an interface between the DEC Q-Bus and up
to eight 3922 dedicated crate controllers through a byte-wide parallel bus. The 2922/3922 combination provides four DMA
modes and a programmed transfer mode. All modes of operation are capable of transferring 16- or 24-bit CAMAC data words.

DMA data rates up to 0.77 MB/s can be achieved.
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3. SYSTEM SOFTWARE

Data acquisition software consists of a packet creation program PBZ, a data I/O program XCAMAC, a device on/off
program DCOUT, the digital voltage acquisition program of the main B and Q magnet power supplies SPRDVM and the

beam position monitor program BPM.
In the control system, there are nearly 7,000 signals which can be classed into 7 types. (see Table 1)

Table 1. The signals table

Input signals DM ( digital monitor ) 1 bit digital input
AM ( analog monitor ) _analog input
D1 (digital input ) 16 bits digital input
DV_(digital voltage ) R*4 analog input
Output signals DC_(digital control ) 1 bit digital output
AC (analog control ) analog output
DO _( digital output ) 16 bits digital output

For acquisition of the signals mentioned above, the following programs were rewritten:

The VCC packets are made by subroutine PBZ. PBZ takes the CAMAC V/O address of each signal from the database and
assembles it to the control word and VCC packet. Then the control words and VCC packets are sent to the database to be used
by XCAMAC and other processes. The sequence of the VCC packets in the database is: DMAMDI packets, AC_OUT
pockets, AC_IN packets, DCDO packets, IPSC packets and SAM packets. The BEPC system has about 1350 VCC packets.

The data acquisition process XCAMAC refreshes the database at a rate of twice a second and acquires about 4000 signals
each time. The process also carries out the ramp operation of the magnet power supplies during particle acceleration in BEPC.

The subroutine SPRDVM acquires the digital voltage signals (DV) so that operators can monitor the present current
status of the magnet power supplies. DVM3456A is connected to the VAX computer via a 3388 GPIB interface.

4, IMPROVEMENT

There was a hierarchical database in the original control system which had a static area and a dynamic area. In the static
area, there was information about the CAMAC interface and machine parameters. The original data from the accelerator
equipment was stored in the dynamic area which was refreshed at 2 HZ. For the distributed architecture of the new system, the
original database had to be modified. First of all, we installed a database in each FEC computer with same data structure and
created a 3922 packet area in the dynamic area of the databases. To keep the uniformity of the data records in these databases, a
network communication program was developed to exchange the data between those databases and several new sections were
inserted the dynamic area of each database to hold the raw data from other nodes which are refreshed once per second through
the network. As shown in figure 3, when the database on node 1 receives the raw data from its input/output port, the network
communication manager is notified by a event flag to fetch the data and send them to the database in node 2. In order to
prevent alteration of the high level application program, the 3922 data area in the dynamic area is mapped onto the original
VCC data area and the local index of the database is replaced by a new global index in each database at control system startup,
so that the raw data from all of the accelerator devices can be read in each node.

The format of the data and command packets differs from that for the VCC; therefore the main work was in changing the
packet chains from VCC format to 3922 format. Another difference is the data bit format. The VCC requires the 16 high bits
to be valid, but the 2922 needs the 16 low bits.

A new packeting organization program QPBZ acquires the CAMAC I/O address of every signal from the database,
assembles them to CAMAC control words by calling the 3922 driver subroutines such as Cainit, Caopen, Caclos, Canaf,
Cainaf, Cablk, Cahalt, Caexew and Camsg, etc. Since block transfer operation is need for acquiring the analog signals by the
SAM modules, we wrote a new program for the organization of SAM packets.
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