
F Fermi National Accelerator Laboratory

FERMILAB-Conf-96/002

POPM: A Distributed Query System for High Performance Analysis
of Very Large Persistent Object Stores

Mark S. Fischler, Michael C. Isely, Ariel M. Nigri and Frank J. Rinaldo

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

January 1996

Submitted to the Hawaii International Conference on System Sciences, January 1996

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

January 17, 1996 1

POPM: A Distributed Query System For High Performance Analysis Of Very

Large Persistent Object Stores1

 Mark S. Fischler2, Michael C. Isely3, Ariel M. Nigri4 and Frank J. Rinaldo5

Fermi National Accelerator Laboratory

 P.O. Box 500

Batavia, IL 60510 USA

Submitted 5/29/95 to the Hawaii International Conference on System Sciences, January 1996

1. This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH03000.
2. mf@fnal.gov; (708) 840-4339 fax: (708) 840-8208
3. isely@fnal.gov (708) 840-2784
4. nigri@fnal.gov (708) 840-3819
5. rinaldo@fnal.gov (708) 840-8449

January 17, 1996 2

Abstract

Analysis of large physics data sets is a major computing task at
Fermilab. One step in such an analysis involves culling “interesting”
events via the use of complex query criteria. What makes this unusual
is the scale required: 100's of gigabytes of event data must be scanned
at 10's of megabytes per second for the typical queries that are applied,
and data must be extracted from 10's of terabytes based on the result of
the query.

The Physics Object Persistency Manager (POPM) system is a solution
tailored to this scale of problem. A running POPM environment can
support multiple queries in progress, each scanning at rates exceeding
10 megabytes per second, all of which are sharing access to a very large
persistent address space distributed across multiple disks on multiple
hosts. Specifically, POPM employs the following techniques to permit
this scale of performance & access:

Persistent objects: Experimental data to be scanned is “populated” as
a data structure into the persistent address space supported by POPM.
C++ classes with a few key overloaded operators provide nearly
transparent semantics for access to the persistent storage.

Distributed & parallel I/O: The persistent address space is
automatically distributed across disks of multiple “I/O nodes” within
the POPM system. A striping unit concept is implemented in POPM,
permitting fast parallel I/O across the storage nodes, even for small
single queries.

Efficient Shared access: POPM implements an efficient mechanism for
arbitration & multiplexing of I/O access among multiple queries on the
same or separate compute nodes.

The internal POPM engine implementation is optimized from the ground
up to employ principles of overlapped, multiple I/O, along with an
aggressive read-ahead algorithm. This results in higher utilization of
available bandwidth, lower effective latency, and better overall
performance than a comparatively naive query engine design.

The POPM system is currently targeted for use in the multi-node IBM SP
architecture. By using the high speed switch, overlapped I/O, and
multiple compute nodes, the system will be able to sustain the desired
high throughput required to access the distributed persistent address
space.

January 17, 1996 3

1.0 Introduction
There are many applications in computing which require “data mining”.

The culling of “interesting” physics events from experimental data here
at Fermilab is an example of such a problem. Another example includes
the scanning of large customer purchase records in order to learn of
buying trends. Problems of this nature abound.

The trouble with the data mining task is that the numbers involved are
extremely large: In our case, the source data is terabytes in size, and
searches must complete quickly (tens of megabytes per second) in order
to be useful. Efficiently focusing enough compute resources on this type
of task is a non-trivial problem.

To attack the data mining task requires defining and addressing two
problems: (1) Exactly what sort of software model can present an
efficient representation of this data? (2) How does one design a system
that can implement such a model and at the same time work quickly and
efficiently in the face of such large data sets?

The nature of the task, both in size and organization, simply defies
any attempt at mapping into a traditional row & column database paradigm.
Thus we apply persistent object-oriented database concepts to our

problem. The actual model we use follows the PTool concept API [1][2] ,

developed at UIC as part of the PASS project [3] .

This leads to the second question: How do we make this function on
such a large scale? One can’t simply attach terabytes of disk to the
typical workstation, run PTool, and expect reasonable query times, even
for a single query operation. Data sets this large require distribution
of the data over many processors, and the application of some kind of

parallelism when performing the scans [4] . Our solution is the Physics
Object Persistency Manager (POPM) system, deployed onto the IBM SP
distributed architecture as the computing platform. The main focus of
this paper is POPM.

This paper covers each of the above points. First is a description of
our particular data mining problem, along with an overview of the PTool
persistent object API and how it is used to represent our data
efficiently. Following that is a description of the problems and issues
associated with running over a distributed architecture.

The paper then goes on to demonstrate the POPM system concepts.
Specifically, it will be shown how POPM presents an efficient
implementation of the PTool object model over the distributed
architecture of the IBM SP (Scalable Power Parallel) hardware - both by
extending the API in strategic places, and by exploiting natural
opportunities for parallelizing I/O during typical queries.

January 17, 1996 4

Expected and measured performance of POPM is discussed - including
single process scanning rates, and the designed scalability when multiple
queries share access to the common global data.

The final section puts all the pieces together. It will show how this
system will solve our data mining problems at Fermilab, and in fact
points out that POPM can be applied to other more general tasks involving
data mining problems.

2.0 Problem Description
2.1 Event oriented data & objectives

Data mining is the process of finding patterns and relations in large
datasets. The term ‘data mining’ is used because the typical procedure
involves processing very large amounts of data (i.e. ore) to extract a
few ‘nuggets’ of information (i.e. gold).

A typical data mining application would be in the area of consumer
goods analysis. Here dataset records correspond to a shopping ‘basket’.
The information being extracted would be buying patterns - relationships
between particular goods or classes of goods (e.g. fertilizers and fuel
oils). This processing is very different from traditional database
applications where some fields in a record are declared as primary
(and/or secondary) keys so that an index can be built for quick retrieval
of a particular record (or a small subset of records). Data mining
applications require quick access to an arbitrary set of records.

At Fermilab the data record (‘shopping basket’) contains details
describing a particle interaction event - information about one collision
between a proton and a target or an anti-proton. The nuggets of
information that we are searching for are events of particular interest,
e.g. Top Quark candidates, defined by complicated relations among the
event data. The datasets at Fermi range from 10 Terabytes to hundreds of
Terabytes. The ability to ‘sift’ through this much data requires an
innovative solution involving high-performance computing, parallel I/O,
and a new software paradigm. The strategy chosen is to divide the data
into collections of persistent (magnetic storage-resident) objects, and
scan only those sets of objects necessary to the query at hand. This
paper focuses on the generic light-weight persistent object manager
software that has been developed to support data mining applications.

 Within each High Energy Physics event (each record), the data can be
organized into attributes of several “physics objects” such as particles.
An event can have an arbitrary number of each type of object, so treating
each event as a row in one large table, as would occur in a relational
database, is impractical. Alternatively, entire events may be stored
compactly, but a scheme requiring retrieval of all of the data for each
event processed is unnecessary and undesirable.

January 17, 1996 5

Instead, the data can be organized as collections of objects of each
type. Then efficient access patterns can be achieved by scanning only
the types of objects involved in the query. The decisions about what
constitute each collection of objects are flexible; here expert users
can inject common-sense knowledge of the nature of the problem. But with
this data grouping, usual database techniques become impractical for
queries involving multiple objects. A typical physics selection might
contain such criteria as

electron#1.E + electron#2.E > 25

This implies a double loop, but the second loop need not range over
the millions of electron objects in the data: Since each event is
independent, this loop is over the several electrons in each event.

We call this property event-organization. In such a data set, query
software must take advantage of this organization to run efficiently -
in the above example, any method requiring creation of all pairs of
electrons in the entire dataset, or of an intermediate file of size
comparable to the electron data, cannot be practical. Physics data is
not a lone example: Consider market-basket data. Each purchase item is
described as an object; the entire basket is an event. A sample query,
to create data relevant to comparison-shopping habits, might look like:

(cereal#1.coupon != 0) && (cereal#2.coupon == 0)
&& (cereal#1.brand != cereal#2.brand)

This query requires examining every pair of cereal purchases within a
single event, rather than every pair that can be formed out of all
purchases.

Another instance of event-organized data is credit transaction
histories. Here each person is an “event”, in the sense that queries
select a set of people with specified combinations of transaction
properties. The objects are individual transactions - unlike the physics
and market-basket examples, in this case data added to a database would
tend to be additional objects added to existing “events”. But the key
property - that queries relating multiple transactions loop only within
the person's history, and not the entire database - still holds.

2.2 PTool style software modeling strategy

To avoid reading in all of the data for a query concerned about only
a few types of physics objects, all objects of one type should be stored
together. But the code determining whether an event is to be selected
will occasionally require not only information about the first object
mentioned in the query, but about physics objects of other types within
an event. Logically, the entire event can itself be viewed as an object,
although the various physics objects associated with it are stored in
disparate places. To support queries relating objects of different types

January 17, 1996 6

within an event, each object contains a pointer to the event-object; the
event-object has pointers to the physics objects of various types that
make up that event.

Since this data resides not in memory but on disk, these “pointers”
are not the familiar memory-address pointers. They must remain valid
across the lifetimes of processes - an executing query process uses
pointers to objects in the database which it neither has created nor
explicitly read into memory.

These special pointers are based on the concept of a “persistent
object”. This is a C++ structure with the property that the principal
representation of that data resides in permanent storage (disk or tape)
rather than in memory. Of course, when the data is used, it will be
brought into memory; but this is logically just as transparent as main
memory being brought into cache when the CPU needs it. The syntax for
working with persistent objects is defined by the Ptool API, which
employs the concept of persistent pointers (Pptr).

The persistent pointer is implemented as an Abstract Data Type with
overloaded operators for dereferencing, memory allocation, comparison
and assignment(->, new, ==, !=, and =). In both POPM and the original
PTool implementation, persistent pointers to specific classes are
defined by deriving a class from the base implementation, and thus have
the advantage of providing type checking.

A Pptr can be dereferenced to yield a member of a persistent object,
just as an ordinary pointer can be dereferenced to yield a member of an
ordinary object. The POPM class library supporting this API implements
this by overloading the “dereference” (->) operator for persistent
pointers. This will provide an l-value for the specified member of the
object. When a Pptr is dereferenced, POPM checks whether the
corresponding persistent object is in memory, and if not, causes a chain
of events involving the local processor, remote processors, and disks
and/or tape libraries, to read in the data and return the required
l-value.

When the overloaded “new” operator is invoked to get a persistent
pointer, a persistent instance of that class is created, and the
programmer receives a Pptr pointing to it. Data stored using that Pptr
will persist on disk past the end of the process. This is how data is
loaded into the persistent object database. The “new” operator has one
argument - the name of a “store” which defines an address space to group
related objects. The Ptool object model requires persistent objects to
be grouped into stores, so that the storage can be organized to optimize
sequential access to a store.

In order to keep the implementation of this persistent storage space
simple and efficient, boundaries are established so that objects will
fit in a reasonable piece of the process address space. The semantics

January 17, 1996 7

implementing this is the concept of “segments.” An object, to be
instantiated as persistent, must fit in a single segment, although a
single segment may contain many objects. This approach simplifies the
I/O subsystem, which can work with segments rather than objects. The
segment size is determined by a compromise among I/O performance
considerations, the sizes of large objects in our applications, and the
desirable flexibility of having many segments in core at once. It is
currently set to 64 kBytes.

2.3 Hardware Architecture

One of our major design goals was to get the most performance for the
least amount of dollars. This goal is pursued by using commodity devices
(disk, SCSI bus, tape storage, processors, etc.) in a scalable parallel
system. Multiple disks are placed on multiple SCSI buses on multiple
processors to maximize throughput at a minimal cost. The idea is to have
scalable massively parallel I/O on processors dedicated/optimized for
this task. These I/O processors then pass the data on to multiple
parallel compute (CPU bound) processors for the actual data evaluation
and extraction. Besides having a particular query execute across many
I/O nodes, we also need to allow multiple queries to execute in parallel
on the system. This is to maximize utilization of the overall system and
take advantage of various levels of optimization and caching.

Our current prototype [5] is based on IBM’s SP-2 Power Parallel system.
The SP-2 architecture is a distributed memory, message passing parallel
processor system. Message passing was felt to be better than shared

memory for scalability to large number of processors [4] . Each node in
the system is based on the RS/6000 processor. These nodes can be
configured to be compute nodes and/or I/O nodes. All nodes are
interconnected by a proprietary high-speed switch which allows all
processors to send messages simultaneously. The prototype’s peak
bisectional bandwidth is rated at 272 MBytes/sec.

One of the limitations of the SP-2 system is that only one process (per
node) is permitted access to the high-speed switch. At first glance this
would mean that only one “job” (i.e. user based query) could run on the
entire system at a time. Each user would lock the entire system’s access
to the high-speed switch until its query was completed. Our software must
address this problem by allowing many users to execute simultaneous
queries distributed across the entire system via the high-speed switch
thereby maximizing utilization and throughput. The software also needs
to distribute the user’s data across the I/O nodes, SCSI buses, and disks
in an efficient manner to maximize parallel access.

Our prototype is currently a 24 node system, configured as 8 I/O nodes
and 16 compute nodes. Each I/O node is capable of supporting multiple
SCSI buses. The application data is distributed across I/O nodes, SCSI
buses, and disks to maximize throughput via parallel I/O. The Performance

January 17, 1996 8

section will discuss the balance necessary for high efficiency of this
system. Parameters include: number of I/O nodes vs. compute nodes, SCSI
buses per I/O node, SCSI disks per SCSI bus, number of simultaneous
queries, etc.

3.0 POPM Implementation
The PTool object framework provides a model which fits our problem,

and storage distribution across many CPUs makes possible the required
high capacity and fast throughput. The software which implements the
PTool object model on the distributed architecture is POPM. The
following sections explain the POPM implementation concepts:

1. How PTool data is related to fixed segments, and how POPM stores
those segments.

2. The basic POPM concepts, relating to a “trivial” single CPU system.

3. The full multiple CPU POPM implementation. The implementation on
the IBM SP-2 distributed system is described.

With the overall concepts presented, specific parts of POPM are
highlighted, which show where the POPM implementation takes advantage of
the high performance capabilities of the distributed IBM architecture.
Also described are enhancements POPM presents to the persistent object
API as originally defined in PTool.

3.1 Basic Implementation Concepts

The smallest unit of storage in the PTool model is the segment; this
has a fixed size set to 64 kBytes. When the overloaded “new” operator
is used to create persistent objects within a store, segments are created
as needed for the underlying persistent storage. PTool stores are in
fact composed of sets of these segments.

Mapping of a PTool object into its assigned segment is a fairly easy
task; the POPM class library, against which POPM programs are compiled,
handles that function transparently and efficiently. The difficult
problem is the implementation of fast, efficient segment transfer into
the memory of the process doing the data mining - an operation that must
scale well with the number of queries in progress. The POPM
implementation is specifically designed to address those issues.

The original UIC PTool class library performed segment I/O via mapping:
As segments were needed, each was directly mapped from its file location
into one of several possible “slots” in a fixed size array of
segment-sized slots in the process’s transient address space. If all
slots were mapped, the oldest one was picked and remapped to the required
segment. This array logically behaved as a “cache” of the last few
accessed segments, and makes possible semi-transparent access to all
persistent data in a PTool program.

January 17, 1996 9

The POPM implementation does things differently. The cache concept is
still employed, but because the segment may be located on a CPU other
than the one running the query, mapping can’t be used. In addition,
allocating a private slot cache inside the program’s address space can
be wasteful if more than one query is running on a given node. POPM

addresses both of these issues through two new concepts [6] : (1) A single
CPU-global shared memory slot cache is mapped by all query programs. (2)
Segment transfer to/from the shared slot cache is handled by separate
“disk slave” daemon processes.

In addition to several obvious advantages (dynamic load balancing, low
copy overhead), designing POPM around this shared slot cache concept
enables easy implementation of a very useful goal: disassociation of the
segment transfer activity from the actual query processing. Segments
are transferred not by the query process, but by one of several disk
slave processes running as part of POPM. When a query process requires
a particular segment, all it needs to do is allocate a slot, and set up
a request for the transfer in that slot’s header. A disk slave then
picks up the request and performs the transfer. This separation of the
act of segment transfer from the query operation creates opportunities
for significantly increased performance, including overlapped I/O, and
transparent distribution of segment data (discussed later).

A POPM system can run multiple disk slaves - each is a server just
looking for work to do. When a slot has a pending segment I/O request,
any disk slave may service it. Multiple pending requests are naturally
divided among the disk slaves, resulting in implicit parallelization of
I/O. Thus a single query process may achieve faster parallel I/O simply
by setting up multiple slots for transfer.

In addition to disk slave daemons, and the query processes themselves,
there is one other local daemon needed for POPM: the shared memory
manager. This process performs global “watchdog” functions for the
shared slot cache: It attempts to balance slot usage among query
processes, and it performs any wreckage cleanup / integrity verification
if any other processes should happen to fail or crash. The shared memory
manager daemon does not participate in actual segment transfers.
Logically, the shared memory manager can be thought of as an active part
of the shared memory slot cache; it handles any house-keeping activities
needed on behalf of the system.

January 17, 1996 10

Here is a diagram illustrating all of the concepts described thus far,
which is enough to run POPM on a single node:

The above description illustrates a POPM system configured for a single
node. For only one node, one does not really need such a complex scheme
for performing I/O. This extends easily, however, to form the foundation
for a multiple node configuration.

To create a multi-node POPM system, the single node system is
replicated across all nodes and a new process type is introduced for
inter-node segment transfers: The I/O server process.

Every host in a multi-node POPM system has the basic components of the
single node system: a shared slot cache and a shared memory manager.
Nodes which contain persistent storage (I/O nodes) also run disk slaves.
Query processes run on designated compute nodes. And each node runs an
I/O server process.

All of the I/O server processes in the system function together as a
unit, coordinating via the MPL user-space interface to the SP-2 high
speed switch. They cooperate to forward slot requests to the proper
nodes containing the requested segment(s), and return the results. I/O
servers therefore logically behave as surrogate disk slaves on nodes with
query processes, and as surrogate query processes on nodes with disk
slaves. I/O server processes run continuously; the I/O servers
effectively make remote disk access appear local to the node(s) which
require it.

Figure 1. Single CPU POPM system

disk slave

query

process

query

process

disk slave

Shared

Slot

Cache

Shared

Memory

Manager

disk slave

January 17, 1996 11

Following is a diagram showing an example 4 node POPM system:

The I/O server implementation cleanly compartmentalizes all access to
the switch interconnect (the “MPL” boxes in the diagram are IBM’s Message
Passing Library), through a carefully designed class interface. Porting
POPM to a new distributed architecture is simply a matter of changing
this class implementation.

Note that this I/O server based approach means that only one access
point into the switch is needed per node, no matter how much local POPM
activity is taking place. This makes possible the use of distributed
architectures with non-shareable interconnect access, like the SP-2 user
space switch interface, for multiple query processes.

3.2 POPM Performance Issues

The above describes the overall concepts relating to structure of POPM
with a few hints about performance. Now we delve into some of the details
which enable efficient operation. POPM employs overlapped I/O, striping

Figure 2. Multi-node POPM configuration

Legend

Q: Query process

D: Disk slave

M: Shared Memory Manager

S: I/O Server

M

slot

cacheS

Q

M
P
L

Q

M

slot

cacheS

Q

M
P
L

Q

M

slot

cache S

D
M
P
L

D

M

slot

cache S

D
M
P
L

D

High

Speed

Switch

I/O

Nodes

Compute

Nodes

January 17, 1996 12

techniques, and intelligent read-ahead. These three concepts, when
combined, have a synergistic effect providing the fast single process
query throughput require by our problem.

A pending segment I/O request in POPM is stored as control information
associated with the slot cache element for the request; this means that
there can be as many pending requests as there are slots in the system.
In addition, the I/O server processes are designed in a stateless
fashion; the forwarding of I/O requests and retrieval of the results are
separate operations with no intervening blockages. This means that I/O
servers can handle effectively arbitrary numbers of I/O requests at one
time. Combined with the fact that all disk slaves operate independently,
this lets the entire segment transfer path behaves like a pipeline. All
stages work independently from each other, from the query process through
the shared slot cache and the interconnect, all the way to the disks.
Segment transfer requests can be processed in parallel, and generally
won’t have any limiting serialization dependencies.

The striping aspects of POPM are affected by the way segments are
stored: The logical organization of a store is a sequential collection
of segments, but the physical organization is different: A store is
contained as a collection of files, called folios, on the persistent
storage medium. An individual folio, in turn, is composed of a fraction
of the segments for the store - folios within a store are of equal size.
When POPM needs to access a specific segment of a particular store, it
performs two computations: First it finds the folio in which the segment
is mapped, then it locates the storage device containing that folio and
accesses the proper offset within that file to reach the segment.

POPM striping is a matter of properly defining the mapping pattern of
segments to folios (segment striping), and of folios to storage devices
(folio striping), such that access performance is optimized. With two
storage devices and four folios, a naive mapping might be:

folio
number:

folio1 folio2 folio3 folio4

segment
numbers:

seg1 seg4 seg7 seg10

seg2 seg5 seg8 seg11

seg3 seg6 seg8 seg12

Figure 3. Naive segment assignment

storage
device:

disk1 disk2

folio:
folio1 folio3

folio2 folio4

Figure 4. Naive folio assignment

January 17, 1996 13

If a block of segments are requested at once, throughput will be
enhanced if the request can be parallelized across the storage devices.
The above mapping won’t produce that behavior unless the block of
segments requested happens to span the boundary between the 2nd and 3rd
folios. Striping solves this problem:

Blocks of sequential requests - as small as 2 segments - will be
implicitly spread among the storage devices. Since multiple storage
devices will be accessed, POPM’s pipelining and overlapped I/O
architecture will come into play and parallelize the entire operation.
But how does one cause a single query to request multiple segments at
once? That is addressed by the POPM read-ahead mechanism.

A typical query process working through event-oriented data is going
to be sequentially scanning through at least one set of objects. For
any given set, the data may be dense, resulting in sequential scanning.
This sequential behavior is something that can be automatically detected
and exploited by the query process. The algorithm is, in concept, very
simple: consider each open store a possible read-ahead “stream” and
maintain additional internal state for it. This state would include the
last segment accessed. When an access requires a segment that is not
the same as the last segment accessed, check if the required segment is
the next one in sequence. If this “tends” to be true, then there is a
read-ahead opportunity. Perform the read-ahead by allocating a few more
slots and pre-requesting the “next few” segments. The proper definition
of “next few”, or the read-ahead depth, can be automatically tuned by
keeping track of the current depth and noticing whether or not the “next”
segment is present by the time it is needed. If it isn’t, POPM will
increase the depth. If it is, the next few segments are also checked
for readiness; if “too many” are already present (where “too many” is
derived from the variance in the average latency to fetch a segment),
POPM will decrease the depth in order to conserve slot resources.

folio
number:

folio1 folio2 folio3 folio4

segment
numbers:

seg1 seg2 seg3 seg4

seg5 seg6 seg7 seg8

seg9 seg10 seg11 seg12

Figure 5. Striped segment assignment

storage
device:

disk1 disk2

folio:
folio1 folio2

folio3 folio4

Figure 6. Striped Folio assignment

January 17, 1996 14

An absolute maximum read-ahead depth, based on the number of read-ahead
streams that may be active on the node, is tracked in order to prevent
one I/O-bound stream from using all slots and starving out other
read-ahead streams. The shared memory manager participates in the
read-ahead depth computation to ensure sensible allocation among the
streams.

This strategy results in a self-tuning behavior in which effectively
only enough I/O bandwidth to “keep up” is actually dedicated to the
read-ahead stream. Result: efficient bandwidth allocation among
competing read-ahead streams.

With read-ahead in place, POPM is able to block-request multiple
segments at one time. Since POPM is able to process these requests in
parallel, the overall performance can potentially be very high, even
for a single query process.

3.3 POPM functionality enhancements

 In addition to transparent performance enhancements, POPM adds some
important functionality enhancements to the original PTool API
definition. Namespaces make the persistency model more workable in a
large scale production environment. And locked persistent pointers, or
“physical pointers”, provide an important refinement to the PTool API.

In the original Ptool API, which is inherited in POPM, there is the
concept of a single global 64 bit persistent address space. This is
implemented by maintaining a global database of all stores within the
address space. This would be fine if the entire system were dedicated
to scanning only one persistent address space. But in general, there
will be several production datasets (in our case data from different
physics experiments), and there will also be test datasets, each of which
should be contained in its own persistent address space and have its own
name space (with its own set of administrative protections).

POPM provides for multiple address and store name spaces, each of which
is independent, but all of which may be concurrently accessed in a single
system. POPM coordinates these multiple address spaces by supporting
multiple databases for stores - one database per address space.

A individual POPM query is still confined to one address space: It
must be “declared” at start-up, after which all accesses are confined to
that space. When a query process declares its address space, the
corresponding database is selected by POPM for all further references.

Access to PTool API persistent data is normally accomplished through
the use of the overloaded dereference operator (“->”) for the Pptr data
type. Every call results in a search of the slot cache (POPM uses a hash
look-up) in order to find the “real” address through which object data
can be currently reached. On the surface, this seems reasonable, but
there are two important concerns which must be addressed: (1) Every

January 17, 1996 15

persistent access, even at the finest granularity, will result in an
expensive cache search. (2) There is no defined lifetime of validity
for the computed real pointer returned by this search; another
dereference may cause the slot to be replaced with other data.

While the repeated searches have only a performance impact, the pointer
validity issue potentially affects correctness. Nothing prevents a
compiler from applying the overloaded “->” operator to obtain a transient
physical address, then loading data from that address sometime later
(within the same code block). Indeed, if the dereferenced item is a
member function that dereferences persistent data, this behavior is
inevitable. Since even a naive implementation will provide memory cache
slots for several persistent objects dereferenced by several Pptrs, this
flaw has no practical consequences; but contrived examples can go astray.

Both the correctness problem and the performance problem are addressed
by providing a way of locking a pointed-to slot and remembering the real
pointer. In that way, access to multiple fields of an object would only
cost a single dereference, and there is no fear of the underlying slot
being replaced during that interval. POPM addresses this with a new
“locked” pointer type in the API, called a “physical pointer”. The
semantics are that the user instantiates and assigns a physical pointer,
and later either reassigns it, allows it to go out of scope, or explicitly
destructs it when the data pointed to can safely be expunged. So long
as the physical pointer is pointing at a valid persistent object, the
corresponding segment is guaranteed to be present in a slot, and that
slot is guaranteed not to be replaced by other segments. This explicitly
defines the validity lifetime of any computed real pointer values. Also,
since the dereference results are saved in the physical pointer instance,
redundant cache searches for repeated accesses to the same object are
avoided.

In POPM, slots can be replaced asynchronously with respect to the query
process (as part of the load balancing algorithm in the shared memory
manager). Unfortunately, this asynchronous behavior exacerbates the
pointer validity problem for basic Pptrs. To insure that no problems can
occur even in this case, POPM transparently applies the locked Pptr
mechanism to the last N Pptr dereference operations (where N matches the
slot cache size of earlier PTool implementations).

To better illustrate the performance benefit of physical pointers: A
code segment utilizing several members of a persistent object via a
conventional Pptr must, to be safe, dereference its persistent pointer
each time. Setting an ordinary pointer to the address used by a Pptr
(assuming it were possible) would seriously risk loading incorrect data.
Each overloaded “->” has been measured on an IBM SP-2 system to take
about 800 nsec (assuming the data is present). For procedures such as
data-conversion, requiring every attribute of each object, this is a

January 17, 1996 16

serious issue. By instead employing a physical pointer, the code can
address the various members of the persistent object attribute using an
ordinary pointer:

int some_func(PPTR<mytype> pA)// mytype is some object defined elsewhere
{

int result;
LockedPPTR <mytype> xA(pA);
mytype *A = xA; // Assignment of physical pointer to ordinary pointer
result = some_func (A);// data pointed to safely passed

// some_fucntion() can use many members of A
// and can itself freely dereference other persistent pointers.

} // Now xA is destructed, so lock is freed.

This avoids all but one dereference operation.

Having introduced a locking mechanism, the API must define the behavior
when deadlock is threatened due to an excessive number of active locks.
(For the same reason that unlocked Pptrs rarely have problems, such
situations will tend not to happen unless the user errs by not releasing
unneeded locks.) While recovery mechanisms are possible, programs
routinely using such recovery would have horrendous efficiency. Worse
yet, the user would see no reason for the poor performance. And, having
explicitly defined the lifetime of a lock, it would be unwise to
invalidate the least recently used one. Instead, POPM defines lock
resource depletion to be a fatal error. In systems which need to survive
such errors, near-depletion warnings might be possible.

4.0 Performance Expectations & Measurements
The key elements of the above concepts have been implemented. To

evaluate the expected query performance, we have done a series of data
transfer tests mimicking the patterns expected in data mining jobs. All
tests were done on Fermilab’s SP system, in which SCSI bus bandwidth is
a bottleneck. The hardware is composed of 8 IBM SP-1 I/O nodes, each
one with a single SCSI II fast interface which will sustain about 5.7
MBytes/second transfer rate, and 16 SP-2 compute nodes, all
interconnected by TB-2 adapters to the high performance switch. With
this hardware, using 64 kByte asynchronous messages, we have found that
the MPL communications library can sustain 21 MBytes/second through a
given node. Thus the aggregate bandwidth out of the I/O nodes is 168
MBytes/sec, while the aggregate sustained rate from the SCSI buses is
only 45 MBytes/sec.

A perfectly balanced system would be able to read as much data as the
compute nodes can process, but not more than that. This balance is
affected by several factors besides the I/O subsystem: compute node CPU
power, complexity of the query, number of stores scanned per query, etc.
For our data mining queries, the optimum system would have one I/O node
with 3 SCSI II fast interfaces per compute node. Thus, the current test
system is clearly SCSI bandwidth limited and the test results reflect
that.

January 17, 1996 17

Another important performance factor is the read-ahead algorithm: its
depth will determine the number of disks and nodes working in parallel
to exploit the striping of segments across storage units, and to hide
access and delivery latency. The number of read-ahead segments is
therefore one of the parameters varied in our tests.

Since aggregate switch bandwidth scales with system size and is not a
limitation, a crucial measurement is the data bandwidth which can be
concentrated into a single compute node, assuming that the consumer of
that data is not compute bound. For a single query running on the system,
the throughput will be a function of the communications performance, the

segment prefetch depth, and the number of I/O nodes involved. Figure 7
shows the results:

One of the most important properties of a distributed system is the
scalability: the aggregate throughput should increase linearly with the
addition of new hardware. To achieve this, a balance must be maintained
among the capabilities of all crucial components - in our case disk
bandwidth, switch bandwidth, and the computing power available. The net
aggregate throughput cannot exceed the lowest of these limitations.

In our system, as discussed above, the number of SCSI adapters is the
limiting factor. An aggregate throughput test was done using 7 I/O nodes
each of which has a 5.7 Mbyte/sec sustained input rate; with perfect

Figure 7. Delivered single query bandwidth

0

5

10

15

20

25

0 10 20 30 40

Read-Ahead Depth (64K segments)

D
el

iv
er

ed
 B

an
dw

id
th

 (
M

by
te

s/
se

c)

6 I/O Nodes

5 I/O Nodes

4 I/O Nodes

3 I/O Nodes

2 I/O Nodes

1 I/O Node

January 17, 1996 18

parallelism, the maximum total throughput would be 39.9MB/s. The

linearity seen in Figure 8 shows that, at least up to this performance
level, POPM does a very good job of parallelizing the I/O.

These results show that the POPM concepts are accomplishing their
design aims, to the extent permitted by the testbed hardware. Clearly,
there is a need for better balance in Fermilab’s hardware configuration.
To this end, more disk I/O, and particularly SCSI bus bandwidth, is being
added to the system. If most queries are not compute-bound, then the
I/O:compute node ratio may also be adjusted. With these balance
improvements, we should obtain up to 252 MBytes/sec of aggregate
throughput, beyond which further improvements can only be achieved by
scaling to a larger system.

5.0 Conclusion
Data mining is a way of life at Fermilab. It is required to get our

job done. We have very large data processing needs and the volume of data
to be processed doubles approximately every 18 months. As a result of
this we are constantly pushing technology, searching for new and more
efficient ways to solve our problems. Cost effective scalable, parallel
data mining with commodity devices offers a very good solution to this
specific problem.

There is an ever-increasing number of vendors who are making available
competitive hardware suitable for this type application: Scalable
systems with high I/O capabilities and high interconnection bandwidths.
The major issue is in the software to effectively take advantage of these
hardware configurations. POPM is a step in that direction, and is the
best solution currently available for our needs. These needs are not
unique in the marketplace; the POPM persistency management techniques
are applicable in a variety of important contexts. POPM has been
specifically designed to take advantage of other (newer) hardware when
it becomes available and is not locked to the SP-2 architecture.

Beyond the efficient implementation of persistency across distributed
I/O processors, POPM introduces some useful features for lightweight
object managers in general. The syntax for dataset namespaces and the
“LockedPptr” physical pointer concept are being incorporated into an
improved Ptool API definition, so systems based on either persistency
framework may easily be ported.

Number of queries Total throughput Average query throughput

1 21.0 21.0

2 35.2 17.6

3 39.5 13.2

Figure 8. Throughput as a function of the number of queries.

January 17, 1996 19

The positive results for performance behavior discussed above provides
a proof-of-concept and verification that these techniques address the
major limitations affecting query throughput in distributed-I/O systems.
In particular, the ability to process data for a single query (on one
compute node) at 21 Mbytes/sec provides encouraging validation of the
concept of using such a system for high-performance complex analysis of
event-oriented data.

6.0 References
[1] R. L. Grossman, Working With Object Stores of Events Using Ptool, Laboratory for Advanced

Computing Technical Report Number 94-8, University of Illinois at Chicago, 1994.

[2] R.L. Grossman et al., The Architecture of a Multi-level Object Store and its Application to the
Analysis of High Energy Physics Data, CERN Service De’ Information Scientifique, Conference
Proceedings, June 1994, pp66-97.

[3] C. T. Day et al., The PASS Project Architectural Model, Computing in High Energy Physics, 1994,
San Francisco, CA.

[4] D. G. Feitelson et al., Satisfying the I/O Requirement of Massively Parallel Supercomputers, IBM T.
J. Watson Research Report, RC-19008, July 15th, 1993.

[5] K. Fidler et al., The Computing Analysis Project - A High Performance Physics Analysis System, to
be published in the proceedings of Computers in High Energy Physics 1995, Rio De Janiero, Brazil.

[6] M. C. Isely et al., Design Notes for the Next Generation Persistent Object Manager for CAP, Fermi
National Accelerator Laboratory, Fermilab-TM-1934, 1995.

