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ABSTRACT 

The inflationary potential and its derivatives determine the spectrum of scalar and ten- 
sor metric perturbations that arise from quantum fluctuations during inflation. The CBR 
anisotropy offers a promising means of dete rmining the spectra of metric perturbations and 
thereby a means of constraining the inflationary potential. The relation between the metric 
perturbations and CBR anisotropy depends upon cosmological parameters - most notably 
the possibility of a cosmological constant. Motivated by some observational evidence for a 
cosmological constant (large-scale structure, cluster-baryon fraction, measurements of the 
Hubble constant and age of the Universe) we derive the reconstruction equations and con- 
sistency relation to second order in the presence of a cosmological constant. We also clarify 
previous notation and discuss alternative schemes for reconstruction. 
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1 Introduction 

Inflation gives rise to nearly scale-invariant scalar (or density) and tensor (or gravity-wave) 
metric perturbations which are excited by quantum fluctuations in the inflaton field and in 
the metric itself [l] and are determined by the inflationary potential and its derivatives [2]. 
Measurements of the scalar and tensor metric perturbations permit partial reconstruction of 
the inflationary potential [3]. Both the scalar and tensor perturbations give rise to temper- 
ature anisotropies in the cosmic background radiation (CBR) [4], and precise measurements 
of CBR anisotropy on angular scales from 091 to 100” (multipole numbers C = 2 - 1000) 
probably offer the most promising means of determining the metric perturbations. 

Copeland and his collaborators have emphasized the underlying relationship that exists 
between the inflationary potential and the power spectra describing the metric perturba- 
tions [5] (‘k’-space reconstruction). These relations are independent of present cosmological 
parameters (e.g., Hubble constant, baryon density, cosmological constant, and ionization 
history of the Universe). On the other hand, Turner has emphasized that realizing recon- 
struction in practice requires connecting the potential and its first few derivatives to a handful 
of observables, e.g., the scalar and tensor contributions to the quadrupole CBR anisotropy 

(S and T) and the power-law spectral indices that characterize the scalar and tensor power 
spectra (n and no) (‘P-space reconstruction). However, relating the power spectrum to CBR 
anisotropy necessarily brings in these cosmological parameters [6]. 

As we shall discuss, the only sign&cant dependence that arises in going from k-space to 
e-space is from a possible cosmological constant, and the purpose of this paper is to quantify 
that dependence. At the moment there is some motivation for considering a cosmological 

constant: the cold dark matter model with a cosmological constant provides a good fit to 
all the observational data (large-scale structure, measurements of the Hubble constant and 
cluster baryon fraction, and age of the Universe) [7]. In addition to calculating the depen- 
dence of the reconstruction and consistency equations upon the value of the cosmological 
constant and showing that the dependence upon other cosmological quantities is insignih- 
cant, we will clarify previous notation and normalization conventions and discuss alternative 
reconstruction strategies. 

2 Perturbative Reconstruction 

The program of perturbative reconstruction is spelled out in Refs. [8]. The basic idea is to 
express a handful of observables - e.g., S, T, n, nT, and dn/d ln k - in terms of the derivatives 

of the inflationary potential, evaluated at some convenient point (here denoted by ‘*‘). The 
perturbation expansion is in the deviation from exactly exponential inflation and exact scale 
invariance, quantified by the derivatives of the potential, or more conveniently in terms of 
the spectral indices nT and E E n - 1. In the scale-invariant limit nT = ?i = 0 and ah the 
derivatives of the potential vanish. 

. 



2.1 Notation and lowest-order reconstruction 

Let’s begin at lowest order. To lowest order (in nT and 6) the power spectra of scalar and 

tensor perturbations are described by 

nT = -- 

1024~~ k 
P(k) = -- 

75 H,4 
sPo> 2 v.3 

( ) Qo &-p Wk*lZ T2W 
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where V(4) is th e inflationary potential, prime denotes d/dqh, and V. = V(&), etc. 

The factor [g(%)/&] 2 in Eq. (3) takes into account the growth of the perturbations and 
the relation between the density and curvature perturbations, with g(C!o) well fit by [9] 

g(O) = ;fl ; + [ 
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I 

-1 
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where Qu is the matter density (cold dark matter + baryons). The functions T(k) and TT(k) 
are the “transfer functions” which describe the cosmological evolution of the modes that 
arises due to the transition of the Universe from an early radiation-dominated epoch to a 
matter-dominated epoch, and are defined so that T(k), TT(k) + 1 for k --) 0. The transfer 
functions together with the growth factor for scalar perturbations take “primordial” spectra 
to presently “observed” spectra. The scalar transfer function can be fit by [lo, 111 

T(k) = [l + (ak + (bk)3/2 + (ck)2)“]-1’” 

with a = (6.4/I’)Mpc, b = (S.O/I’)Mpc, c = (1.7/I’)Mpc and u = 1.13. Here I N 
is a measure of the size of the horizon at matter-radiation equality. In the absence 
cosmological constant, the gravity-wave transfer function can be written as [12] 

?-T(k) = 3’;i(f%(k) 

(6) 

fioh 
of a 
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where jr(z) is the spherical bessel function of the first order and 7(k) is a factor analogous 
to T(k) and is given in Ref. [12]. For the modes of most interest, those that enter the horizon 
during matter domination, 7(k) M 1. 



It is convenient to rewrite the scalar and tensor spectra in terms of quantities A:(k) and 
AC(k) whose only k-dependence arises from a deviation from scale invariance’ and which 
have a simple physical interpretation, 

P(k) E g k A;(k) (8) 

PT(k) z zA;( k) T;t( k) (9) - 

where to lowest order in 5, nT 

A;(k) = F[k/ka]‘& 
Pi * 

A;(k) = $k/k.]“’ $ 

(10) 

(11) 

For the scalar perturbations, A’,(k = Ho) is the present contribution of this mode to 

the rms mass fluctuation per logarithmic interval in k (in the absence of a cosmological 
constant): ! 

.’ k3 
A;(k = H,,) = A’(&) E %P(k) (12) 

k=Hc, 

The quantity A$(k = Ho) is related to the present energy density in long-wavelength, 

inflation-produced gravitational waves (in the absence of a cosmological constant): 

dlog OGW 

dlnk (13) 

valid for k < ~CEQ - 2OOHo. 
In Eqs. (3,4) the expansion point 4. is the point about which the power-law indices and 

all the derivatives of the potential are evaluated. It is defined by the fact that the comoving 
scale k, crossed outside the horizon during inflation when 4 = 4.; given the details of 
inflation (reheat temperature and so on) it is straightforward to relate & to the number 
of e-foldings before the end of inflation and/or to k,. For lowest-order reconstruction q5. 
is irrelevant as any dependence upon it involves higher-order corrections in nT and 6. For 
second-order reconstruction, the choice of k, is important. It will prove very convenient to 
choose k, = Ho; later we will discuss the dependence of the reconstruction equations upon 

k,. 
In order to practically implement reconstruction the power spectra must be related to 

observables. At lowest order the natural set of observables is S, T, 5, and nT. Since 6 and 

‘Copeland et al. have introduced several definitions of A: and A; (also denoted as A:); we shall use the 
definitions given in Ref. [13]. We note that the relationship between Af and the power spectra given in the 
Appendix of Ref. [15] has errant factors of kzcl and k:l as well as not using the current definitions of the 
Af’. Copeland et al. have not explicitly discussed the definitions of Af for Q* # 0; we define without the ilc 
dependence that arises from the growth of perturbations and relating density and curvature perturbations. 

- 
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nT are already given in terms of the potential, it only remains to relate S and T to Ai 
and A$(k,). The variance of the multipole moments of the expansion of the CBR tempera- 
ture field are integrals of the power spectra times kernels which depend on the cosmological 

parameters (h, Sigh*, 52 h and the ionization history of the Universe. These integrals in- ) 
troduce the dependence of the reconstruction equations upon cosmological parameters. The 
dependence upon all of these except RA is very weak (less than 1% for sensible variations in 
StB h2 and 4% for sensible variations in h). 

The “Rosetta Stone” relations for lowest-order reconstruction, which take k-space equa- 

tions to e-space equations, are: 

S G z = O.lOf&2~)A;(k,) 

TG G - = 1.4 fp)(QA)A;(k ) 
4r 

* 

where we have followed conventional practice and expanded the two-point function of the 
CBR temperature perturbations in Legendre polynomials 

(F(b) $?(P,)) E ; c (2 + 1) C[ Pt(& - 22) 
t 

where brackets denote the average over the sky. The functions fsp’( 0,) and $‘(fl,) quantify 
the dependence of reconstruction upon the cosmological parameter fin = 1 - Ro. We have 
evaluated them numerically (with h = 0.75 and flBh2 = 0.0125) and normalized them such 

that all expressions have their familiar values with .@’ N 1. The functions and their ratio 

are shown in Fig. 1; they are well fit by quadratics over the range 0.0 5 fi, < 0.8: 

f&O) = 1.04 - 0.82R,, + 2Q; (17) 

$1 = 1.0 - O.O3R* - 0.10; (18) 

The correction to the familiar scalar relation in the 0~ = 0 limit (i.e., fp)(O) # 1) arises 

from including the integrated Sachs-Wolfe effect, due to the decay of the potentials near 
matter-rtiiation equality (see also Fig. 2). 

Using these relations in place of the scalar and tensor power spectra, the lowest-order 
reconstruction equations and consistency relation follow directly: 

K 
- = 1.65T/@) 
rn4pl 
V’ 

2 = *8.3GT/f$? 
6, 

(19) 

(21) 

(22) 



where the sign of VJ is indeterminate as it can be changed by taking 4 to -4. The final 
expression is the consistency relation that arises since the four observables can be expressed 
in terms of three properties of the potential. The familiar factor of l/7 is modified by ratio 

of $‘/$‘, introduced in Ref. [14]. In practice nT is likely to be difficult to measure, and 
so the consistency relation can be used to eliminate nT in the expressions for V: and Vt. 

2.2 Second-order reconstruction 

Including the R* dependence in second-order reconstruction is in principle as easy as it was in 

lowest-order reconstruction. (Second-order refers to includin, u the order ii and nT corrections 

to the reconstruction and consistency equations.) However the strategy is slightly different 
because while there are second-order expressions for the power spectra, cf. Ref. [15],* similar 
explicit expressions for the spectral indices do not exist. In addition, another observable is 
needed; the plausible candidate is the “running3 of the scalar spectral index [16], dn/din k, 
which is Q(E*,n$). 

Reconstruction proceeds from k-space expressions relating the inflationary potential and 
its derivatives at d* to A$(k,) and Ai( and follows the 0~ = 0 case done in Ref. [15]. 
The key k-space equations are : 

K 
- = ;A; [,+0.21~] 
41 

(2% 

(24) 
; 9.8+ + 1.12 -1 (25) 

1 v*s 
-6nT+&i - (26) 

n-m m:l 

-= (27) 
where for simplicity the arguments of As(k,) and AT(k,) have been omitted. Note too that 
the spectral indices and the derivative of the scalar spectral index are also evaluated at k,. 
These equations are Eqns. (3.4), (3.6), and (3.15) of Ref. [17] and Eqns. (39) and (46) of 
Ref. [15], as modified to be consistent with the definitions of AZ, and A; in Ref. [13]. The last 
equation is the second-order consistency equation. It can be used to eliminate the factors of 
A+/Ai in the first three equations. 

Once again, the key to going from k-space equations to e-space equations is relating 
A$(k,) and Ai to the CBR observables T and S. At second order, the order 5i and 72T 
corrections must be taken into account. The second-order “Rosetta Stone” equations are 

2We will ndt need these expressions; in any case, the second-order corrections are multiplicative factors 
of 1 + 7n~/6 + (-7/3 + In 2 + y)ii to AZ and of 1-f (-7/6 + In 2 + 7)n~ to A$. 
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given by 

s = O.lOj$s’(nn)[l + fS.‘)(R*)ii ]A!Jk*) (28) 

T = 1.4 @(&)[I + f$‘(%)nT]A+(k,) (29) 

where $“‘(QA) 

sions foi A;(k,) 

are the same functions are in the previous Section and second-order expres- 

must be used. The functions fj”(fl,) uantify the a~ dependence of the q 
second-order corrections that arise from relating the Al to S and T. They depend upon the 
“pivot point” k, and for k, = Ho, they can be accurately fit by: 

f!’ = 0.45 - 0.51R^ + 1.04fl; - 0.14fl; (30) 

fp’ = 0.58 - 0.500,, + 0.310; - 0.8803, (31) 

Concerning the pivot-point dependence of fi(r)(fiA); using the fact that A:(k) 0: [k/k,]” 

and A+(k) 0: [k/k-In= it is simple to show that under the change k, + k:, fi” + f/l’ + 
ln(k,/kl). We note that changing the pivot point does not affect the form of higher-order 

corrections, i.e., the values of Fiji) for j = 2, --a. 
The -!-space reconstruction and consistency equations now follow from the k-space equa- 

tion through use of the “Rosetta Stone” equations: 

K -= 
mh 

1.65 [l. - (fp’ + o.l)nT] T/f;) (32) 

V’ 
L = zt8.3&& [l. - ($’ - 0.18)n~ - 0.0361 Tjf$?) 
rn3pl 

(33) 

VN 
* 
m;l 

= 21 (ii - 3nT) + (3Q - 2.6)n; + (1.9 - j$r))n$ (34) 

-o.2ir2 + 1.1 -& T/f?’ 1 
V’” 
z = &104&G mP1 

1 f!’ T 
nT = ---- 

7f$%s 

(35) 
(36) 
(37) 

While the signs of Vi and Vy are arbitrary, the relative sign is not. By using the consistency 
equation the factors of nT (which is likely to be very difficult to measure) can be eliminated 
in favor of T/S. 

Finally, we note that the previous results for fl* = 0 in Ref. [15] can be recovered by 

substituting f$?’ = fr’ = 1, fg’ = 1.3, and ft’ = 1.15. (In Ref. [15] the pivot point 

k, = Ho/2, so that In2 must be added to the f/l’ defined above.) 
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2.3 Alternative schemes 

The goal of perturbative reconstruction is to use data, most likely measurements of CBR 
anisotropy, to infer the value of the inflationary potential and its first few derivatives at &. 
To achieve this goal, one needs to pick a set of observables and then relate the power spectra 
to these observables. At second order, the pivot point k, also comes into play. 

The spectral indices 6, nT, and dn/dln k (f or second order) are obvious choices for the 
observables (though in practice one will probably wish to use the consistency equation to 

eliminate nT). The quantities S and T are sensible choices as they: (i) serve to normalize 
the scalar and tensor contributions to CBR anisotropy; (ii) are easy to extract from CBR 
measurements; and (iii) are relatively insensitive to all the cosmological parameters except 
QA. If one uses S and T then it is also sensible to select the pivot point k, = Ho, which 
minimizes the dependence of S and T upon nT and 5 since the dominant contribution to S 
and T comes from modes with k - Ho. 

On the other hand, since the multipoles that will have the most leverage in determining 
E (and dn/dln k) are !? N 30 - 300, it might be more useful to choose k, - (30 - lOO)Ho/2 
(recall, E and dn/dln k are evaluated at k = k,). However, the higher multipoles are more 
sensitive to the cosmological parameters (e.g., h and RBh*). 

In any case, it is a simple matter to substitute other multipoles for S and T. For example, 
consider 

SlC& 
T30 = - 

47r 

Writing the uRosetta Stone” equations in precisely the same form as before, 

$0 = . o lof~‘(n,)[l + ft’(%,)?i ]A;@ ) 

14 fp’(%)[l + fg’(flA)nT]&(k*) Tm = . * 

(40) 

(41) 

the form of the e-space reconstruction equations and consistency relation are unchanged 
(except T + Tm and S + Sm). It must of course be remembered that f;‘o’(OA) and 

f,“‘(Q,) are completely different functions which also have significant dependence upon 
other cosmological parameters. Taking k, = 2OH0, RBh2 = 0.0125 and h = 0.75, the 0~ 
dependence can be fit by, 

fp(n,) = 0.11 - O.O2R^ + 0.070; (42) 

f~‘(iln) = 0.08 - O.OORa + 0.010; (43) 

fg’(fih) = 0.25 - 0.35R~ + 0.07Qi - 0.520: - ln(k,/20Ha) (44) 

f$‘(n,) = -0.11 - 0.540~ + 0.370: - 0.93Q”, - ln(k,/20He) (45) 



2.4 Power-law inflation: an exact result 

If the inflaton potential is an exponential, 

V($) = Vo exp[--&6*/p Cwl], (46) 

the growth of the scale factor during inflation is precisely a power law, R(t) oc tp, and it is 
possible to solve for the perturbation spectra exactly [18]. In this case the only parameter 
to be determined is the Hubble constant during inflation (= H.) when the mode k, crossed 
outside the horizon. 

For power-law inflation the solution of the equation of motion (the massless Klein-Gordon 
equation) for fluctuations in the inflaton and the gravitational fields is a Hankel function. 
For modes that are well outside the horizon at the end of inflation (all those of astrophysical 
interest are), matching values of the field and its first derivative at the end of inflation allows 
one to calculate the Bogoliubov coefficients relating the creation and annihilation operators 
describing the quantum field before and after the end of inflation (see e.g., Ref. [19] and 
references therein). From these one can calculate the two-point function of the (classical, 
random) field at the present, and P(k) and PT(k). They are exact power laws with spectral 
indices fi = nT = -2/(p - l), and3 

As(k*) = 5& -?- (&) F(F) ,/z 

AT(k) = 

and the term coming from the small-argument expansion of the Hankel function 

1$2X 2’r($+z) fw = l+z 
fi 

= 1+(1 --,-ln2)2+--- 

N 1 - 0.27x + - -. 

where y = 0.577. - - is Euler’s constant. Further, H, is related to V, by 

H,2 = i? v, 
3 1 - 1/3p 

= y [l - n~/6 + 0(7X$)] 

(47) 

(48) 

(49) 

(50) 
(51) 

(52) 

The consistency equation can be written as 

T/S = -7 nT f!$y)(RA, ?-LT) (53) 

3Exponential in flation is also analyzed in Ref. [15]; th e second-order correction to the power spectra, given 
in Eq. (52), is missing a factor of l/,/m, This improves significantly the accuracy of the reconstruction 

of an exponential potential. 
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where for k, = Ho the correction factor is well fit by 

f$y)(fh,n~) = 0.97 + 0.58n~ + 0.25& - (1 + l.ln= + 0.28n;)fl; 

over the range of astrophysical interest: 0.8 5 n < 1 and 0 5 0~ < 0.8. 
Fitting the scalar + tensor CBR power spectrum to the COBE 2-year maps yields the 

normalization [20] 

As = (2.25 f 0.2) x lo-’ 0~“.775-o.041nno [&,/g(s20)] exp [O-766] (55) 

valid over the same range of n and !Jn as above. This allows us to calculate the one parameter 
to be determined, H,/mpl, as a function of 0~ and n; the results are shown in Fig. 3. 

3 Discussion 

Inflation makes three generic predictions: a flat Universe with nearly scale-invariant spectra 
of scalar and tensor metric perturbations. The anisotropy of the CBR offers a means of 
testing all three: the positions of the peaks or damping tail of the CBR anisotropy spec- 
trum can test the spatial flatness of the Universe [21] and measurements of the CBR power 

spectrum can determine the relative amplitudes of scalar and tensor perturbations and their 
spectral indices. (In the case of tensor perturbations, unless T/S > 0.1, only an upper 

limit can obtained [22]; and realistically, nT is likely to be difficult to measure [14].) The 
CBR anisotropy probably offers the best means of measuring the scalar and tensor metric 
perturbations and thereby constraining the properties of the inflaton potential. 

The scalar and tensor metric perturbations are both determined by the underlying in- 
flationary potential, and so conversely, knowledge of the metric perturbations can be used 
to determine the potential and its first few derivatives (k-space reconstruction). To take 
advantage of this in practice, one must relate first the metric perturbations to CBR observ- 
ables (e-space reconstruction). However, doing this introduces dependence upon cosmologi- 
cal parameters not associated with inflation (the baryon density, the Hubble constant and a 
possible cosmological constant). As we have shown here, the most important of these is the 
cosmological constant. 

For almost a decade, the advantages of a cosmological constant for inflationary cosmology 
have been touted - accommodating measurements of the matter density which fall short of 
the critical density, lessening the tension between measurements of the age and the Hubble 
constant, large-scale structure which is in better agreement with that measured by redshift 
surveys, and better agreement with the baryonic content of clusters [7]. 

In this paper we have carried out the program of perturbative reconstruction, allowing 
for the possibility of a cosmological constant. In particular, at lowest order we have derived 
the dependence upon a cosmological constant of the equations that relate the observables 

s, T, (n - l), and nT to the inflationary potential and its first two derivatives. We have 
done the same at second order, including the additional observable dn/dln k and the third 
derivative of the potential. Likewise, we have also modified the consistency relation to allow 
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for a cosmological constant. In addition, we have clarified previous notation/conventions 
and generalized reconstruction to the use of other observables. Now all that is needed is a 
high-angular resolution map of the CBR sky! With NASA considering three proposals for a 
satellite mission in 1999 and ESA considering another proposal, that could happen within 
the next five years or so. 

Acknowledgments. We thank Andrew Liddle for several helpful conversations. This work 
was supported in part by the DOE (at Chicago and Fermilab) and the NASA (at Fermilab 
through grant NAG 5-2788). 
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Figure 1: The functions fj”’ and f/” and the ratio fp’/ff’ as a function of Cl,. 
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Figure 2: The dependence of .$’ on the Hubble constant, for 0~ = 0 and 0.8. The de- 

pendence of fsp) on h is 2 4%, much less than the RA dependence. Both dependences are 
due mostly to the evolution of the potentials from last-scattering till the present (i.e. the 
integrated Sachs-Wolfe effect). 

13 



I 

2 

\ \ ‘\ 
0.8 “1 

0.6 - \ 
1. 

(3 -\ 

0.4 -\, 

_ \ I 

\ 
0.2 - \ 

\ 

i I l- I 

\ 
\ 

‘\ 

\ 
I 

\ 
I 
I 
I 
I 

i 
I 
I 
I 
I 
I 
I 

I 

I 

1 1.5 

I I 
0’ I I I I 1” I ’ ’ 1 11’ 

i 

0.85 0.9 0.95 

n 

Figure 3: The scale of power-law inflation, quantified by lO’(H,/mpl), as a function of RA 
and n (H, is the Hubble constant during inflation when the scale k, = Ho crossed outside 
the horizon). As described in Section 2.4, the COBE normalization, n and 0A fix H,/mpl. 
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