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Abstract

A nonperturbative correction to the thermal nucleation rate of critical bubbles in a

�rst order phase transition is estimated. The correction originates from large-amplitude

uctuations which may be present before the transition occurs. Using a simple model

of a scalar �eld in a double-well potential, we present a method to obtain a corrected

potential which incorporates the free-energy density available from large-amplitude

uctuations, which is not included in the usual perturbative calculation. For weaker

phase transitions, the nucleation rate can be much larger than the rate calculated via

perturbation theory. As an application of our method, we show how nonperturba-

tive corrections can both qualitatively and quantitatively explain anomalously high

nucleation rates observed in 2-d numerical simulations.
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Although the simplest �rst order phase transitions are characterized by a discontinuous

jump of a scalar order parameter between two distinct phases, they do not all proceed

in the same way [1]. For very strong �rst order phase transitions, where the free-energy

barrier between the phases is large, the transition is initiated by the nucleation of critical-

sized bubbles of the new phase in the background of the metastable (e.g., super-cooled) old

phase. By de�nition, these critical bubbles are just large enough to overcome their surface

tension and grow, eventually converting the whole medium to the new phase. The large

barrier between the two phases suppresses large-amplitude thermal uctuations of the order

parameter; an initial metastable state is well-de�ned, as no fraction of the volume is in the

new phase before the transition occurs. In this case, the metastable phase can be regarded

as \homogeneous", as only very small-amplitude thermal uctuations are present. This is

the situation described by Langer's theory of homogeneous nucleation [2], or, in the context

of relativistic quantum �eld theories, by the work of Coleman and Callan [3].

Besides the decay of the \near-homogeneous" metastable state described by nucleation

theory, one can investigate the evolution of an unstable initial state which is characterized by

considerable phase mixing. Within the context of condensed matter systems, this situation

corresponds to a quench within the unstable \spinodal" region of the two-phase diagram. In

this case, the two phases separate by the mechanism known as \spinodal decomposition";

small-amplitude, long-wavelength uctuations grow exponentially fast, forming domains of

the two phases which will eventually coarsen, as the system approaches its �nal equilibrium

state.

In this letter we will address the dynamics of phase transitions characterized by an

initial state which lies within the \grey zone" between homogeneous nucleation and spinodal

decomposition. Looking at the whole \spectrum" of �rst order phase transitions, from

very strong to very weak, it is clear that the amount of phase-mixing of the initial state will

strongly inuence the subsequent dynamics of the transition. However, the standard method

of calculating the nucleation rate employs Gaussian perturbation theory, which is valid only

for small amplitude uctuations [4]. For strong transitions this approximation is valid. But

for weaker transitions, large amplitude uctuations are more abundant, and can have an

important e�ect. Our goal is to present an approximate method by which the presence of

large-amplitude uctuations is consistently incorporated into the calculation of nucleation

rates. Thus, we are implicitly assuming that we are close enough to the regime described

by homogeneous nucleation that we can still distinguish between the two low-temperature

phases.

Large-amplitude thermal uctuations will be modelled by the so-called sub-critical bubble

method [5]. Recent results [6] have shown that modelling the dominant uctuations by sub-

critical bubbles is in excellent agreement with 3-d simulations [7]. The model utilizes the

fact that along with the nucleation of critical bubbles in the meta-stable phase, smaller

size, though still large amplitude, \sub-critical" bubbles will also be nucleated (and in much

greater number because they have a lower free energy). These bubbles by de�nition will

always shrink and eventually disappear, but there will always be some non-zero equilibrium

number density nsb at a given temperature. Their presence may lead to large corrections on

nucleation rates.

To begin, let us consider the standard model of a phase transition, in which the order
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parameter is a real scalar �eld �, which has a quartic double-well potential of the form

V (�) =
1

2
m2�2 �

1

6
g�3 +

h

24
�4: (1)

This potential has two minima, one at � = 0 and at � = �+, which represent the two phases

of the system. It can be thought of as the homogeneous part of a typical phenomenological

Ginzburg-Landau coarse-grained free-energy density (the cubic term can always be made into

a linear term), or as some e�ective potential where additional degrees of freedom coupled to

� have been integrated out. Our analysis will be purely classical, valid for T � m, where

m is the mass of the low-energy mesonic excitations in the associated quantum theory. All

relevant �eld con�gurations contain many quanta.

We would like to incorporate the free-energy density associated with large-amplitude,

nonperturbative uctuations into the computation of the decay rate. In the spirit of the

renormalization group approach, this should be equivalent to an e�ective \coarse-graining"

of the classical potential; averaging over these large-amplitude uctuations will lead to a shift

in the background free-energy density and decay barrier, which in principle can be translated

into a change in the bare couplings of the model. We can understand how to estimate the

e�ective coarse-graining by �rst studying the thin-wall limit of critical bubble nucleation.

In the standard theory, which neglects phase mixing, the nucleation rate � is proportional

to e�Fcb=T , where Fcb is free energy needed to form a critical bubble in the metastable back-

ground. For an arbitrary thin-walled spherical bubble of radius R and amplitude �thin <� �+,

where thin-walled means the radius R is much greater than the bubble wall thickness, the

free energy of the bubble takes the well-known form [8]

Fthin(R) = 4�R2� �
4�

3
R3�V: (2)

This formula has a simple physical interpretation. The �rst term is the energy it costs to

form the bubble wall, where � � 1
2

R
dr(@�=@r)2 is the surface tension. The second term is

the energy \gained" by converting a spherical volume of the metastable phase into the lower

energy phase. Therefore, �V is de�ned as the di�erence in free-energy density between

the background medium and the bubble's interior. Since �thin <� �+, for a homogeneous

background (metastable) we can write,

�V0 = V (0)� V (�+); (3)

where we have explicitly used the subscript 0 to stress that this is for the case with no phase

mixing.

If there is signi�cant phase mixing in the background metastable state, its free-energy

density is no longer V (0). One must also account for the free-energy density of the non-

perturbative, large-amplitude uctuations. Since there is no formal way of deriving this

contribution outside improved perturbative schemes, we propose to estimate the corrections

to the background free-energy density by following another route. We start by writing

free� energy density of metastable state = V (0) +Fsc; (4)

where Fsc is the nonperturbative contribution to the free-energy density due to the large

amplitude uctuations, which we assume can be modelled by subcritical bubbles. We will

calculate Fsc further below.
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We thus de�ne the e�ective free-energy di�erence �Vcg, which includes corrections due

to phase mixing, as

�Vcg = �V0 +Fsc (5)

which is the sum of the free-energy di�erence calculated in the standard way [eq. (2)], and

the \extra" free-energy density due to the presence of subcritical bubbles. Henceforth, the

subscript `cg' will stand for \coarse-grained".

We note that while we have made a correction to �V , we have not made any correction

to the surface tension �. Since we are considering the thin-wall limit, as long as h�i is small,

which is true if subcritical bubbles do not occupy a large fraction of space, the correction

to � will be subdominant. [Note that the presence of subcritical bubbles may shift h�i by

roughly
P

i e
�Fi=T�i, where �i is the amplitude of a given uctuation, and Fi its associated

free energy.] Thus, the arguments here give a lower bound on the magnitude of the correc-

tions. Later on, both volume and surface corrections will be automatically included in the

calculation.

Since a critical size bubble is de�ned as the bubble for which all forces on the bubble

wall cancel, i.e. @F=@RjRcb
= 0, we can now use eq. (2) to obtain the free energy needed to

form a thin-wall critical bubble in a background with subcritical bubbles

Fcb =
2�

3
R3

cb(�V0 + Fsc) =
16�

3

�3

(�V0 +Fsc)2
(6)

and the radius of the critical bubble is

Rcb =
2�

�V0 +Fsc

: (7)

Equations (6) and (7) warrant several comments. First, in the limit of a very strong phase

transition, subcritical bubbles are suppressed (Fsc ! 0), and both Fcb and Rcb approach the

standard expressions for the free energy and radius of a critical bubble in a homogeneous

background. Second, notice that Fsc acts in the same way as the free-energy di�erence �V0.

The presence of subcritical bubbles is equivalent to extra free energy in the medium, which

enhances the nucleation of critical bubbles. In particular, for potentials near degeneracy such

that �V0 <� Fsc, the nucleation rate of critical bubbles � � e�Fcb=T , can be much greater

than in the case ignoring the presence of subcritical bubbles.

Finally, notice that as �V0 ! 0, neither the critical-bubble energy nor its radius become

in�nite. For temperature-dependent potentials which (ignoring the corrections from subcrit-

ical bubbles) are degenerate at the critical temperature Tc, the nucleation rate � � e�Fcb=Tc is

�nite. In fact, the nucleation rate of critical bubbles may be non-zero even above the critical

temperature (again, using the uncorrected expression for the potential). This is a testable

prediction of our method which, of course, is sensitive to the equilibrium number-density of

subcritical bubbles.

This �nal comment suggests an important point. Since for degenerate potentials (tem-

perature dependent or not) no critical bubbles should be nucleated, taking into account

subcritical bubbles must lead to a change in the coarse-grained free-energy density (or po-

tential) describing the transition. Thus, it should be possible to translate the \extra" free
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energy available in the system due to the presence of subcritical bubbles in the background

into a corrected potential for the scalar order parameter. We will write this corrected po-

tential as Vcg(�).

The standard coarse-grained free energy is calculated by integrating out the short wave-

length modes (usually up to the correlation length) from the partition function of the system,

and is approximated by the familiar form [9]

Fcg =

Z
d3r

�
1

2
(r�)2 + Vcg(�)

�
: (8)

How do we estimate Vcg? One way is to simply constrain it to be consistent with the thin

wall limit. That is, as Vcg(�) approaches degeneracy (i.e. �Vcg(�) ! 0), it must obey the

thin wall limit of eq. (5). Note that with a simple rescaling, the potential of eq. (1) can be

written in terms of one free parameter. Thus, the thin wall constraint can be used to express

the corrected value of this parameter in terms of Fsc in appropriate units. The free energy of

the critical bubble is then obtained by �nding the bounce solution to the equation of motion

r
2� � dVcg(�)=d� = 0 by the usual shooting method, and substituting this solution into

eq. (8).

Therefore, in order to determine Vcg, we must �rst calculate the free-energy density Fsc

of the subcritical bubbles. As a �rst step, we follow the work of Ref. [6], to obtain the

equilibrium number density nsb of subcritical bubbles. If we de�ne the distribution function

f � @2nsb=@R@�A, then f(R; �A; t)dRd�A is the number density of bubbles with radius

between R and R+ dR and amplitude between �A and �A + d�A at time t. It satis�es the

Boltzmann equation,

@f(R; �A; t)

@t
= �jvj

@f

@R
+ (1� )G0!+

�fVGTherm � G+!0: (9)

The �rst term on the RHS is the shrinking term (note that v = @R=@t is negative), the second

term is the nucleation term where G is the nucleation distribution function, which is de�ned

by � =
R
dRd�G, and �0!+ is the nucleation rate per unit volume of subcritical bubbles

from the \0" phase (the initial phase) to the \+" phase. The division of the system into two

phases depends on the particular application at hand, as will be clear in the example below.

By the Gibb's distribution, G0!+ = Ae�Fsb(R;�A)=T , where A is a constant independent of R

and �.

The factor  is de�ned as the fraction of volume in the \+" phase, and is obtained by

summing over subcritical bubbles of all amplitudes within this phase. The third term is a

phenomenological thermal destruction term (see work by Gelmini and Gleiser in Ref. [5]),

where V is the volume of a bubble of radius R, and GTherm = aT=V, where a is a constant.

The fourth term is the inverse nucleation term. For more details about this Boltzmann

equation, see Ref. [6], which has improved upon the work of Gelmini and Gleiser (Ref. [5]).

The free energy of the subcritical bubbles is determined by modelling them as Gaussian

uctuations with amplitude �A and radius R,

�sc(r) = �Ae
�r2=R2

: (10)
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The free energy of a given con�guration can then be found by using the general formula,

Fsb =

Z
d3r

�
1

2
(r�sc)

2 + V (�sc)

�
: (11)

Although this approach only includes one particular shape out of all possible �eld con�gura-

tions, the agreement between theory and numerical experiments indicates that the Gaussian

pro�le is an adequate ansatz for the dominant large-amplitude thermal uctuations.

The equilibrium number density of subcritical bubbles is found by solving eq. (9) with

@f=@t = 0, imposing the physical boundary condition f(r ! 1) = 0. Once we know the

distribution function and free energy for a bubble of a given radius R and amplitude �A, we

can estimate the total energy density of the Gaussian subcritical bubbles, summed over all

relevant radii and amplitudes. We can write, in general,

Fsc �

Z
1

�min

Z Rmax

Rmin

Fsb

@2nsb

@R@�A
dRd�A; (12)

where �min de�nes the lowest amplitude within the \+" phase, typically (but not necessarily)

taken to be the maximum of the double-well potential. Rmin is the smallest radius for the

subcritical bubbles, compatible with the coarse-graining scale. For example, it can be a

lattice cut-o� in numerical simulations, or the mean-�eld correlation length in continuum

models. As for Rmax, it is natural to choose it to be the critical bubble radius.

As an application of the above method, we will investigate nucleation rates in the context

of a 2-d model for which accurate numerical results are available [10]. This will allow us to

compare the results obtained by incorporating subcritical bubbles into the calculation of the

decay barrier with the results from the numerical simulations.

The 2-d scalar potential V (�) is given in eq. (1). Following the rescaling of Ref. [10],

the potential can be written in terms of one dimensionless parameter � � m2h=g2,

V (�) =
1

2
�2 �

1

6
�3 +

�

24
�4: (13)

This double-well potential is degenerate when � = 1=3, and the second minimum is lower

than the �rst when � < 1=3.

As argued before, we �nd the new coarse-grained potential Vcg (or, equivalently, �cg) by

constraining it to agree with the thin wall limit. Simple algebra from eqs. (5) and (13) yields,

to �rst order in the deviation from degeneracy,

�cg = ��
~Fsc

54
(14)

where ~Fsc =
g2

m6Fsc is the dimensionless free-energy density in subcritical bubbles. The new

potential Vcg is then used to �nd the bounce solution and the free energy of the critical

bubble.

The calculation of Fsc in two dimensions is fairly straightforward. Close to the thin

wall limit (i.e., G0!+ � G+!0 � G), one can analytically solve the equilibrium Boltzmann
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equation for the density distribution function, obtaining f(R; �A; T ) = (1 � 2)WT (R; �A),

where (v � jvj)

WT (R; �A) =
(A=v)

2
exp

"
�
�

T
+RT (a=v) +

(a=v)2T 3

4�

#
s
�T

�

8<
:1� erf

2
4
s
�

T

 
R+

(a=v)T 2

2�2

!35
9=
; ; (15)

and we wrote the free energy of a given subcritical con�guration as Fsb � � + �R2, with

� = ��2A=2, and � = �
�
1
2
�

1
9
�A + �

48
�2A

�
. The fraction of the volume occupied by subcritical

bubbles is then,

(�max; Rmin; Rmax) =
IT (�max; Rmin; Rmax)

[1 + 2IT (�max; Rmin; Rmax)]
; (16)

where, IT =
R
1

�max

RRmax

Rmin
�r2WTdrd� . The radial integration can be done analytically,

although the result is not particularly illuminating. The integral over amplitudes must

be done numerically. We then substitute f(R; �A; T ) and  into eq. (12) to �nally �nd

Fsc(�; T;A=v; a=v).

In order to illustrate the e�ect of subcritical bubbles on the nucleation barrier, in Figure

1 we compare the value for the barrier obtained with and without the corrections, as a

function of �, for constant values of the temperature. The temperatures are chosen to be

within the range used in the 2-d simulation. The constant A was �xed at A = 0:1, consistent

with the measurements of Ref. [10]. Notice that the presence of subcritical bubbles greatly

decreases the barrier as the potential approaches degeneracy (�! 1=3). However, for small

temperatures T < 10m4=g2, the correction becomes negligible.

In Figure 2 we show that the calculation of the nucleation barrier including the e�ects

of subcritical bubbles is consistent with data from lattice simulations, whereas the standard

calculation overestimates the barrier by a large margin. In fact, the inclusion of subcritical

bubbles provides a reasonable explanation for the anomalously high nucleation rates observed

in the simulations close to degeneracy. The error bars are from the numerical measurements

of the barrier; for larger values of �, higher temperatures had to be used to attain nucleation,

increasing the error in the barrier measurements. However, we note that even with the large

error bars, the data is inconsistent with the theoretical predictions for the barriers, while the

corrected barrier values fall within the error bars for a wide range of parameters. We note

that data from 1-d simulations also show the same behavior as the data in Figure 2 [10].

Simulations in 3-d are in progress, and will enable us to test this method in more detail.

Finally, we note that the inclusion of nonperturbative corrections through the de�nition

of an e�ective, \coarse-grained", coupling may have several consequences not only to the

nucleation rate of �rst order transitions, but also to their dynamics. Clearly, once we have a

corrected potential, quantities such as the critical temperature, the amount of super-cooling,

the bubble-wall velocities, and the completion time for the transition will change. This

opens up several possible applications of this method, from laboratory studies of nucleation

to cosmological phase transitions.
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