
, L 

ati 
‘- w 

Fermi National Accelerator Laboratory 

FERMILAB-Pub-95/274-A 
August, 1995 

Submitted to Physical Review Letters 

WEAKINTERACTIONSINSUPERNOVACORES 
AND SATURATIONOF 

NUCLEONSPINFLUCTUATIONS 

Giinter Sigl”~’ s 

a Department of Astronomy &’ .dstrophysics 
Enrico Fermi Irqtitute, The University of Chicago, Chicago, IL 6063’71493 

’ NASA/Fermilab Astrophysics Center 
Fermi ivational Accelerator Laboratory, Batavia, IL 6051 U-0500 

ABSTRACT 

Extrapolation of perturbative nucleon spin fluctuation rates seems to suggest a strong 
suppression of weak interactions in supernova cores. We derive a new sum rule for the 
dynamical spin-density structure function which relates the spin fluctuation rate to the 
average nuclear interaction energy. For a bremsstrahlung like structure function profile we 
show that instead of strongly decreasing, the neutrino scattering cross section is roughly 
density independent and axion emission, rates increase somewhat slower than the lowest 
order emissivities towards the center of a hot supernova core. 

.- . 

s Operated by Universities Research Association inc. under contract with the United States Department of Energy 



1 Introduction 
The cooling history of a newly born neutron star in the center of a supernova (SN) is 
mainly determined by neutrino diffusion. Numerical simulations employing the lowest order 
neutrino interaction rates calculated within the Glashow-Salam-Weinberg theory predict a 
cooling time scale which agrees remarkably well with the neuttino signal sbserved from SN 
1987 A [l]. Th e emission of novel weakly interacting particles like axions [2] could change the 
cooling time scale substantially which in turn allows to derive constraints on the properties 
of such particles 131. 

Within linear response theory weak interaction rates with a medium of nonrelativistic 
nucleons are determined, apart from the weak phase space, by only two dynamical structure 
functions, one for the density and one for the nucleon spin-density [4, 51. Some work has 
been devoted to their calculation but either the Landau theory of quasiparticles was applied 
assuming a “cold” nuclear medium [4, 61 or the authors focused on quasielastic scattering 
studying static structure functions [4, 7, 81. Interactions of neutrinos and axions with a 
nonrelativistic nuclear medium are mainly governed by the local nucleon spin-density and 
its fluctuations. To lowest nontrivial order in the spin dependent nucleon-nucleon interactions 
causing these fluctuations, the relevant weak processes are of the nucleon bremsstrahlung 
type. Due to the Landau Pomeranchuk Migdal (LPM) effect [9] which accounts for multiple 
nucleon scattering the inelasticity of these processes depends on the nucleon spin flip rate. 
In addition, once this rate becomes considerably larger than the medium temperature T, 
the total weak interaction rates tend to be suppressed [lo]. Since perturbative estimates 
for the nucleon spin flip rate can be as high as N 50T around nuclear ‘densities, this could 
have profound implications for SN core physics [5, 10, 11, 121. By dramatically reducing 
the predicted SN cooling time scale it would spoil the agreement between theory and the 
observed neutrino pulse from SN 1987 A fll]. On these phenomenological grounds it has 
been suggested that axial-vector neutrino scattering cross sections might be roughly density 
independent [ 121 instead of being suppressed at high densities by the LPM effect. 

In this letter we derive a new sum rule for the dynamical spin-density structure function 
(SSF) which provides an independent theoretical argument supporting this conjecture. It 
also predicts that emissivities for weakly interacting particles should increase somewhat 
slower than the lowest order rates at high densities. 

2 The Spin-Density Structure Function 
In terms of the nucleon field operator in the nonrelativistic limit, $(z), the spin-density 
operator is given by C(X) = $$J+(z)~$( ) x w h ere r are the Pauli matrices. In the following 
we denote the momentum, coordinate, and spin operators for a single nucleon by pi, ri, 
and u;, respectively, where i = 1,. . . , Nb runs over Nb nucleons. Then, for a normalization 



volume V, we can define the Fourier transform 

g(t, k) = i J d3reeikvrg(t, r) = i fJ e-ik*riu;. (1) 
i-l 

In terms of these operators and the baryon density nb the SSF is defined as [5, 121 
\ 

S,(w, k) = & /_‘T dteiWf (o(t, k) . ~(0, -k)) , (2) 
where (w, k) is the four-momentum transfer to the medium. The expectation value (. . .) in 
Eq. (2) is taken over a thermal ensemble. 

The contribution of S, to the neutrino scattering rate (per final state density) from four 
momentum (wi, ki) to (wz, ks) can be written as $GiCjnb(3 - cos ~)S,(U, - ws, ki - k2) 
with GF the Fermi constant, CA the relevant axial-vector charge, and 8 the angle between 
ki and k2. Similarly, the rate for pair production would read iG$j?zb(3 + cos O)S,(-wi - 
w2,-ki-k2) 151. Th e axion emission rate per volume, Qa, is governed by the same’structure 
function [in an isotropic medium S,(w, k).= S,,(w, Ic) only depends on k = ]k]]: 

O” dww4S,(-w,w). 

Here, fa is the Peccei-Quinn scale and the numerical factor CN depends on the specific axion 
model [2]. N eu t rino opacities and axion emissivities are therfore mainly determined by the 
SSF at thermal energies w N k s 2’. - 

Eq. (2) implies 

J += dw --oo g wS& k) = -& ([K 40, k)l - 40, -4) , (4) 
where H is the Hamiltonian of the system of interacting nucleons for which we assume the 
following form: 

H = Ho + Hbt = (5) 
Here, r;j = ri - rj, M is the free nucleon mass, and V( rij, bi, bj) is the spin dependent 
two nucleon interaction potential. For notational simplicity we restrict ourselves to only one 
nucleon species for the moment; the general case will be discussed further below. 

For free nucleons one gets J-+,“(dw/27p) wS,,(w, k) = k2/2M, in analogy to the well known 
f sum rule for the dynamical density structure function. In the latter case nucleon number 
conservation ensures that the f sum rule even holds in the presence of velocity independent 
interactions. In contrast, the f sum for the SSF is modified in the presence of spin dependent 
interactions since the nucleon spin is in general not conserved. 

For one nucleon species the most general two nucleon interaction potential is of the form 

WI 
V(r, bi, 02) = U(r) + Us(r)bl -62 + UT(r) (3al . Pa2 a li - ul -62) , (6) 
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where r = r12, r = ]r], and + = r/r. 

U&ij)C * 
We denote the spin dependent terms by I$ = 

~j (the “scalar force”) and KT = U~(r;j) (30; * ?ij uj * ?ij - Q; . bj) (the “tensor 
force”). In order to calculate the additional commutator in Eq. (4) from Eqs. (I), (5) and 

(6) we make use of the commutation relations a;“, IY~ = iS;jcabcaf, where ;,j = 1,. . . , Nb 

and eabc ’ 
[ 1 

IS the total antisymmetric tensor in the spatial indices a, b, c. After some algebra 
and using the symmetry properties of the Hamiltonian the modified sum rule reads 

The kinetic nucleon recoil term is in general negligible compared to the V-dependent terms 
which govern the inelasticity of axial-vector interactions. If V(r, ur, 02) 2 --a/rs with o > 0 
and s < 2 the eigenvalues of H are bounded from below and the r.h.s. of Eq. (7) is finite 
as long as Us(r) and UT(T) are integrable. This is the case for typical meson exchange 
potentials with hard core repulsion [13, 14, 151. A ssuming the three terms in Eq. (6) to be of 
similar size the r.h.s. of Eq. (7) is roughly proportional to the average interaction energy per 
nucleon W. At zero temperature and for SN core densities and compositions, W N 30 MeV 
corresponding to an average binding energy of about 10 MeV per nucleon. For T 2 10 MeV 
nucleons are bound more weakly and W should be considerably smaller. We can therefore 
write 

J +m du --oo 2~ wSu(w, k).- 4W 5 100 MeV , (8) 

where the inequality is a conservative bound reflecting our poor knowledge about the equa- 
tion of state for hot nuclear matter. Since it involves bound state energies, Eq. (8) is a 
nonperturbative result and will play an important role for the high density behavior of weak 
interaction rates below. 

The dependence on the momentum transfer-k in Eq. (7) is expected to be only modest. 
In fact, for k s 2’ 5 50MeV, we have (k-r] << 1 within the range of the potential T, N l/m, 
which is determined by the pion mass rn, N 140 MeV. We can thus go to the long wavelength 
limit [4, 5, 7, 11, 121, k 3 0, using S,(w) s S,,(w, k 4 0). Eq. (7) then simplifies to 

J +oQ dLd --oo gwSu(w) - - -j$w , (9) 

First, note that the scalar force does not contribute to Eq. (9) because it conserves the 
total nucleon spin ~(0, k 4 0) [see Eq. (l)]. B e ow 1 nuclear densities the nucleon-nucleon 
(NN) interaction is dominated by one-pion exchange (OPE) leading to a tensor force. This 
contribution induces a spin orbit coupling and does therefore not conserve the total nucleon 
spin. Thus only the tensor force contributes to Eq. (4) in the long wavelength limit. This 
agrees with the lowest order bremsstrahlung &zulation for k + 0 [15]. Finally, note that 
the r.h.s. of Eq. (9) is positive as it should be since the interaction induced correlations 
reduce ( HT) below the value for free nucleons, (HT) = 0. 
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An additional sum rule [5, 11,121 can be obtained by integrating Eq. (2) and using Eq. (1) 
in the long wavelength limit: 

(10) 

Note that for free nucleons Eqs. (9) and (10) yield So(w) = 27rrb(w), whence only elastic 
scattering on the medium is possible in the absence of NN interactions. 

3 Dilute Medium Limit 
At low densities, i.e. for large average inter-nucleon spacing, the interaction energy CV in 
Eq. (8) is much smaller than the kinetic terms from the free Hamiltonian. In case of the 
long wavelength limit, Eq. (9), we.can therefore treat HT as a small perturbation and write 
to lowest non-trivial order in HT: 

(HT)= %Cexp(-~~/T)Re[l(nlH~In),] . 
n 

(11) 

Here, J% Ho are the eigenvalues and eigenstates of the free Hamiltonian Ho, respectively, 
In), are the eigenvectors of Ho + HT to first order in HT, and 2 = C, exp (-EE/T) is 
the normalization factor. Assuming nondegenerate eigenstates for simplicity and applying 
standard first order perturbation theory for In), we can express everything in terms of zeroth 
order quantities. Dropping the index 0 from now on, Eq. (11) re d uces to the negative definite 
expression 

(HT) = -fj C e-Eg I cEm” I( HT),~/’ , (12) 

c#m m 

where (HT)mn =o(~IHTI~)~- Th is matrix element is expected’to vary in Em - E, over a 
scale 2 3mz/M N 50MeV where m, is a typical momentum scale in the NN interaction 
potential. Therefore, for T 5 50 MeV the thermal factor in Eq. (12) can be approximated 

by S(Em - En). Converting the sum over m into an integral over Em Fermi’s golden rule 
finally gives W N -(Hz-)/% = r,/@+ H ere, I’,, is the average perturbative NN scattering 
rate mediated by HT which is a measure for the spin fluctuation rate. The spins fluctuate 
on a time scale ‘given by the inverse energy scale of the tensor force which causes the spin 
fluctuations. At high densities we use I’@ s -2r(HT)/Nb as an effective spin flip rate. 

4 Saturation. of Spijn Fluctuation Rates 
We now use the sum rules Eqs. (9) and (10) to determine the qualitative form of S,(w, k) in 
the long wavelength limit. To this end let us introduce the dimensionless quantity S,(Z) G 
TS,(sT) with z = w/T as in Ref. [ll]. D u,e to the principle of detailed balance, S,(w, k) = 
Su( -w, -k)ewiT, it is sufficient to specify So(s) for 2 > 0 only. 
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Introducing the dimensionless effective spin flip rate 7g = I’,/T, we can write the sum 
rule Eq. (9) as 

J 0 
(13) . 

where in a newly born neutron star y0 does not increase beyond a few. 
Furthermore, since in a hot SN core the thermal energies are expected to be considerably 

higher than the interaction energy W, within a first approximation we can neglect spin 
correlations in the second sum rule Eq. (10) and write 

J . 0 
+O” $$?u(x) (1 + e-l) 2: 1. (14) 

For the following discussion we consider the general case of an ensemble of neutrons 
and protons with fractional number densities Y, and Yr. Introducing the isospin operators 
r; for nucleon i, ui in the definition of S, [see Eqs. (2) and (I)] has to be multiplied by 

[l t (+I cA,p/2+[l - (&I CA,n/2- Here, cA,p and (7 A,n are the relevant proton and neutron 
axial-vector charges. Moreover, there will be additional terms proportional to ri .rj in the 
interaction potential Eq. (6). H owever, this Ieaves our discussion qualitatively unchanged 
since the additional is&pin operators appearing under the expectation values only lead to 
additional factors of order unity. If correlations among different. nucleons are absent the 
r.h.s. of the sum rules Eqs. (13) and (14) get multiplied by (Y.,Cj,r + YnC&)/(C&, + C&J. 

Parametrizing the high w behavior of S, by S,(w) cx w+, classical collisions wquld lead 
to n = 2. On the quantum mechanical level the deviation of S,(w) from 27r6(~) is to lowest 
order in the strong interactions given by nucleon bremsstrahlung. Using a dipole like OPE 
potential without a hard core cutoff yields n = 5/2 and n = 3/2 in the case of one and two 
nucleon species, respectively [5, 15, 16, 171. The non-existence of the f.sum Eq. (13) in the 
latter case stems from the unphysical r -“divergence of this potential at T = 0. Except for s 
waves this divergence indeed leads to an infinite (HT). If one regularizes the potential by a 
hard core repulsion f sum integrability is restored. 

This motivates the following representative ansatz: 

Su (2) = x5,r+ b for x > 0, 

where a and b are positive constants. The sum rule Eq. (13) is sensitive to the high energy 
behavior and therefore mainly to a. In contrast, the sum rule Eq. (14) probes the “infrared” 
regime which is sensitive to b. Eq. (15) is of the form expected from nucleon bremsstrahlung 
where b accounts for the LPM effect. 

We can now pick a number for a, determine the corresponding value of b numerically from 
Eq. (14) and compute the f sum Eq. (13). ‘Th e result is plotted in Fig. 1 as a function of a. 
Most importantly, from the expected density and temperature dependence of W we expect 
the f sum to increase monotonically towards the SN core before saturating at a yalue of 
order unity. As a consequence, the thermally averaged axial-vector neutrino scattering cross 
section (0~) which dominates the neutrino opacity should roughly scale as T2 being density 
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independent as naively expected (see Fig. 1). Furthermore, the ::axion emission rate from 
Eq. (3) approximately scales as nbF,T 3. The lowest order axion emissivities should therefore 
be multiplied by I’,/PL whenever this ratio is smaller than 1. Here, l?& is the lowest order 

spin flip rate extrapolated from the dilute medium limit. For example, FL N 32 MeVpi4T,b/2 
for the standard OPE calculations [15, 16, 171, h w ere p 14 is the mass density in 1014 gcmw3 

+nd GO =. T/lOMeV. A turn over in (aA)/T' and 6ja/(nbT3) typically only occurs at 
y0 2 16 and is the less pronounced the stronger So(w) falls off at large w. The absence of a 
decrease of these quantities at high density is therefore rather independent of uncertainties 
in the exact saturation value for yg. 

5 Summary 
Neutrino opacities and axion emissivities are governed mainly by the SSF. We have derived a 
new sum rule for the SSF which corresponds to the f sum rule for the density structure func- 
tion but depends on the nucleon spin flip interactions. Our treatment so far assumes absence 
of possible pion and kaon condensates. Employing an infrared regularized bremsstrahlung 
spectrum for the functional form of the SSF we have shown that the effective spin fluctuation 
rate I?, must saturate somewhere below N 150 MeV which is within factors of a few of SN 
core temperatures. Neutrino scattering cross sections should therefore exhibit the naive T2 
scaling whereas axion emissivities should increase somewhat slower than the lowest order 
rates at high densities. There is no turnover of weak interaction rates towards the SN core. 
These results have an important impact on SN cooling simulations and. their application to 
the derivation of axion mass bounds. They are also relevant for the rates for URCA processes 
and emission of right handed neutrinos. 
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Figure Captions 

Fig. 1. The f sum Eq. (13) h c aracterized by yO as a function of the parameter a (solid line). 
Also shown in arbitrary units are the axion emission rate per baryon Q=/nb (dashed line) 
and the thermal axial-vector neutrino scattering cross section (CA) (dotted line) normalized 
to a fixed temperature. The physical range is where the f sum is smaller than a few. 
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