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Abstract

Galaxy redshift surveys provide a distorted picture of the universe due to the non-Hubble component

of galaxy motions. By measuring such distortions in the linear regime one can constrain the quantity

� = 
0:6=b where 
 is the cosmological density parameter and b is the (linear) bias factor for

optically-selected galaxies. In this paper we apply two techniques for estimating � from the Stromlo-

APM redshift survey | (1) measuring the anisotropy of the redshift space correlation function

in spherical harmonics and (2) comparing the amplitude of the direction-averaged redshift space

correlation function to the real space correlation function. We test the validity of these techniques,

particularly whether the assumption of linear theory is justi�ed, using large N -body simulations.

We �nd that the �rst technique is a�ected by non-linearities on scales up to � 30h�1Mpc. The

second technique is more useful for existing redshift surveys. From the Stromlo-APM survey we

�nd a 95% con�dence upper limit of � = 0:75, with a `best estimate' of � � 0:48. A bias parameter

b � 2 is thus required if 
 � 1. However, higher-order correlations measured from the APM galaxy

survey (Gazta~naga and Frieman 1994) indicate a low value for the bias parameter b � 1, requiring

that 
 �< 0:6.

We also measure the relative bias for samples of galaxies of various luminosity and morphological

type and �nd that low-luminosity galaxies are roughly three times less biased than L� galaxies. For

the galaxy population as a whole, we measure a real space variance of galaxy counts in 8h�1Mpc

spheres of (�28)g = 0:90� 0:05.

Subject headings: galaxies: clustering | galaxies: distances and redshifts | galaxies: fundamental

parameters | large-scale structure of universe | surveys
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1 Introduction

Galaxy redshift surveys can provide some of the most important constraints on theories of large-

scale structure, but they must be analysed with care. For pure, unperturbed Hubble 
ow, galaxy

clustering measured in both real space and redshift space would be identical and isotropic. How-

ever, in practice, peculiar velocities will distort the redshift space correlation function. Since the

amplitude of peculiar velocities depends on the cosmological density parameter 
, by measuring this

distortion we can hope to constrain the value of 
. On small scales, the e�ect of peculiar velocities

is to elongate clusters of galaxies along the line of sight in redshift space, leading to the well known

`�ngers of God'. However, on large scales, coherent bulk 
ows dominate the peculiar velocity �eld

resulting in a compression in the clustering pattern along the line of sight. This is illustrated for

Stromlo-APM Survey galaxies in Figure 1, where we show a contour plot of the full redshift space

correlation function �(�; �) as a function of separation parallel (�) and perpendicular (�) to the line

of sight. A compression of the low-amplitude � contours in the � direction compared with the �

direction is clearly visible for � �> 10h�1Mpc.

This large-scale anisotropy in redshift space clustering is most naturally expressed in terms of the

power spectrum. Kaiser (1987) has shown that in the linear regime of gravitational instability

models, the power spectra in redshift space, Ps(k) and real space Pr(k) are simply related by

Ps(k) = (1 + ��2k)
2Pr(k); (1)

where �k is the cosine of the angle between the wavevector k and the line of sight. The amplitude of

the distortion is determined by the parameter � = f(
)=b, where f(
) � 
0:6 is the dimensionless

growth rate of growing modes in linear theory. The bias parameter b relates the 
uctuations in galaxy

density to the underlying mass density in the linear regime, �g = b�� for linear bias. Several practical

methods for measuring � have recently been applied: measuring the anisotropy of the correlation

function (Hamilton 1992, 1993a; Fisher et al. 1994a), the anisotropy of the power spectrum (Cole,

Fisher and Weinberg 1994, 1995; Tadros et al. 1995) and spherical harmonics of the density �eld

(Fisher et al. 1994b; Heavens and Taylor 1994).

We follow the correlation function approach in this paper.1 Hamilton (1992) has pointed out that

the cosine �k in Fourier space transforms to an operator in real space:

�s(r; �) = [1 + �(@=@z)2(r2)�1]2�r(r); (2)

where (r2)�1 denotes the inverse Laplacian operator and � = r̂:ẑ is the cosine angle between pair

separation r and the line of sight z. The redshift space correlation function �s(r; �) is conveniently

expressed as a sum of spherical harmonics involving the �rst three even-order Legendre polynomials,

(the odd-order harmonics vanish by pair-exchange symmetry)

�s(r; �) = �0(r)P0(�) + �2(r)P2(�) + �4(r)P4(�): (3)

Hamilton gives expressions for the �l(r) in terms of integrals over �r(r) [his equations (6){(9)].

To solve the inverse problem, i.e. to go from redshift space clustering to real space clustering,

Hamilton integrates the equations describing the real and redshift space correlation functions over

planes normal to the vector r at separation r, expands in spherical harmonics and di�erentiates

1For a power spectrum analysis of the Stromlo-APM survey, see Tadros et al. (1995).
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with respect to r. Hamilton thereby obtains an explicit expression for � and �r(r) in terms of the

harmonics �l(r) of the redshift space correlation function. Further volume averaging to minimize

cancellation of terms �nally results in an equation for � involving the 0th and 2nd order harmonics

of the redshift space correlation function:

1 + 2

3
� + 1

5
�2

4

3
� + 4

7
�2

=
�0(r)� 3

R r
0
�0(s)(s=r)

3ds=s

�2(r)
: (4)

One can also write a similar expression involving the 2nd and 4th order harmonics, but in practice,

as we shall see later, the 4th order harmonic is too strongly a�ected by non-linearity to be useful.

As well as causing anisotropy in redshift space, large-scale streaming motions also produce an

ampli�cation in the direction-averaged redshift space correlation function. For 
uctuations in the

linear regime, the direction-averaged redshift space correlation function �(s) and the real space

correlation function �(r) are related by (Kaiser 1987)

�(s) �
�
1 +

2

3
� +

1

5
�2
�
�(r): (5)

The large uncertainty in the value of � hinders comparison of �(s) with real space predictions of

galaxy clustering from various models (see, for example, Loveday et al. 1992a). In a recent paper

(Loveday et al. 1995, hereafter Paper 2), we estimated the real-space correlation function of optically-

selected galaxies by cross-correlating galaxies in the sparse-sampled Stromlo-APM Redshift Survey

with the fully-sampled, parent APM Galaxy Survey. This projected cross-correlation function is

una�ected by redshift-space distortions and may be stably inverted to give the real-space correlation

function �(r). Moreover, the large number of cross-pairs enables clustering to be measured to smaller

scales than using the redshift survey data alone. If both �(r) and �(s) can be reliably measured in

the linear regime then the value of � can be constrained using equation (5).

The above expressions (1{5) assume a plane-parallel approximation for peculiar displacements. In

order to approximate this ideal in our analyses, we use only those pairs of galaxies separated by less

than 50 degrees on the sky. This rejects about 20% of galaxy pairs, and, as Cole et al. (1994) have

demonstrated, will limit deviations from the plane-parallel approximation to no more than 5% bias

in the estimated value of �.

Throughout the paper, we use r to denote real space separations and s to denote separations in

redshift space. Error bars on measurements from survey data are estimated using the bootstrap

resampling technique (Barrow, Bhavsar and Sonoda 1984) with nine bootstrap resamplings of the

survey. Error bars for simulations are determined from the variance between ten independent

realizations.

The layout of the paper is as follows. The Stromlo-APM survey data and the N -body simulations

are described and compared in x2. In x3 we test the estimators for � using the simulations and in

x4 apply the estimators to the Stromlo-APM data. The relative bias and redshift space distortions

for di�erent galaxy types are also presented in this section. Finally, our conclusions are given in x5.
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2 Comparison of Data with N-Body Simulations

Both equations (4) and (5) assume that linear theory is valid on scales on which � can be reliably

measured. It is important to test this assumption of linearity before using these equations to

estimate �. We do this by analyzing an ensemble of CDM-like N -body simulations. In this section

we describe the Stromlo-APM survey data and the simulations, and show that the simulations are

a realistic approximation to the data.

2.1 Stromlo-APM Survey Data

The Stromlo-APM redshift survey consists of 1787 galaxies with bJ � 17:15 selected randomly at a

rate of 1 in 20 from the APM (Automated Plate Measuring) galaxy survey (Maddox et al. 1990a,b).

The survey covers a solid angle of 1.3 sr (4300 square degrees) in the south galactic cap. The APM

magnitudes have been calibrated and corrected for photographic saturation using CCD photometry

as described by Loveday et al. 1992b (hereafter Paper 1). An approximate morphological type was

assigned to each galaxy by visually inspecting the images on the United Kingdom Schmidt Telescope

(UKST) survey plates. Redshifts were obtained with the Mount Stromlo-Siding Spring Observatory

(MSSSO) 2.3m telescope at Siding Spring. Measured radial velocities were transformed to the local

group frame using v = v + 300 sin(l) cos(b) and we assumed � = 0, q0 = 0:5 and H0 = 100

km s�1Mpc�1 with uniform Hubble 
ow in calculating distances and absolute magnitudes. We

adopt k-corrections for di�erent morphological types in the bJ system as described by Efstathiou,

Ellis and Peterson (1988). More details about the survey are given in Paper 1; the construction of

the survey will be described in full in a future paper in this series.

2.2 Simulations

We use an ensemble of 10 N -body simulations from model B of Croft and Efstathiou (1994).

These simulations combine a large volume (box length = 300h�1Mpc) with a spatial resolution

of � 80h�1kpc, and so can be used to generate reasonable approximations to our redshift survey.

The N -body simulations have enhanced large-scale power over the standard CDM model by using

a nonzero cosmological constant � = �=(3H2
0
) = (1 � 
0) = 0:8. Weights were assigned to each

particle using the peak background split algorithm (Bardeen et al. 1986, White et al. 1987) and

`galaxies' selected within the APM area and with the Stromlo-APM selection function (Paper 1).

This procedure produces 10 catalogues of on average 33,500 `galaxies' each. We select a subset of

1 in 20 galaxies at random from each simulated catalogue in order to mimic the sparse sampling

strategy of the Stromlo-APM survey.

We measure the variance of simulated galaxy counts in 8h�1Mpc spheres in real space to be (�28)g =

1:20 � 0:16. Since the simulations were evolved until the mass 
uctuations (�2
8
)m = 1:0 (Croft

and Efstathiou 1994), then the e�ective bias factor for `galaxies' identi�ed from the simulations is

b = (�8)g=(�8)m � 1:10 � 0:08. A density parameter 
0 = 0:2 was used for the simulations and

hence we expect to measure � � 0:35� 0:03 from redshift space distortions in the simulations.
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2.3 Real and Redshift Space Correlation Functions

We estimate the redshift-space correlation functions from the survey and the simulations using the

density-independent estimator for �(s) discussed in Paper 2,

1 + �(s) =
wgg(s)wrr(s)

[wgr(s)]2
: (6)

Here wgg(s), wgr(s) and wrr(s) are the summed products of weights of galaxy-galaxy, galaxy-random

and random-random pairs respectively. Note that the relative densities of galaxy and random points

measured at separation s are automatically accounted for by this estimator | there is no need to

assume an overall galaxy density ng. This estimator, due to Hamilton (1993b), is insensitive to

variations in galaxy density and provides a very stable estimate of �(s). For the simulations, we

have the real space coordinates for each particle as well as redshift information, and so the real

space correlation function �(r) for the simulations can be calculated using the same estimator.

To calculate the real-space correlation function �(r) for the survey data, we measure the projected

cross-correlation function between the redshift data and the angular data from the fully-sampled

parent catalogue,

�(�) =

Z
+1

�1

�(
q
�y2 + �2)d�y; (7)

where the integral extends over all line-of-sight separations �y for pairs of galaxies with constant

projected separation � = y� (� is the angular separation and y is the distance to the galaxy of

known redshift). This projected function is inverted numerically to give an estimate of �(r), which

is una�ected by redshift-space distortions. See Saunders et al. (1992) and Paper 2 for a detailed

description of this estimator.

In Figure 2 we compare the clustering of galaxies in real and redshift space for the Stromlo-APM

data and for the N -body simulations. For the Stromlo-APM measurements, the error bars come

from the scatter between nine bootstrap resamplings of the survey (Paper 2) and for the simulations,

the error bars show the scatter between ten realizations from the ensemble of simulations (Croft and

Efstathiou 1994). Averaging over these realizations, �(s) for the simulations is well �t by a power-

law over 1{30 h�1Mpc with parameters 
s = 1:66�0:12 and s0 = 5:9�0:5. The real-space function

�(r) has power-law parameters 
r = 2:06 � 0:15 and r0 = 5:8� 0:4. We see that the simulations

indeed match the observed clustering of galaxies reasonably well, except that the simulations tend to

overestimate the clustering amplitude on non-linear scales r �< 3h�1Mpc. As discussed in Paper 2,

�(r) inferred from the cross-correlation of redshift survey galaxies with the APM data is not expected

to be reliable much beyond r � 20h�1Mpc, and so the `bump' at r � 30h�1Mpc should not be

regarded as a serious discrepancy.

2.4 Galaxy Peculiar Velocities

If the N -body simulations are to be used to check the e�ects of non-linearity in the real data,

then it is important to compare the amplitude of small-scale, peculiar velocities in the simulations

with those in the data. By comparing estimates of clustering in redshift space and real space,

one can constrain the galaxy peculiar velocity distribution f(w) (eg. Bean et al. 1983, Davis and

Peebles 1983). The redshift space correlation function �(�; �) is given by convolving the real space
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correlation function �(r) with f(w),

1 + �(�; �) =

Z
1

�1

[1 + �(r)]f [w3+H0�(1 + �)�1r3]dw3; (8)

(Bean et al. 1983), where r2 = �2 + r2
3
, r3 = � � w3=H0 (the subscript 3 denotes the line-of-sight

component of a vector quantity) and hwi = �H0�(1 + �)�1r is the mean streaming velocity in an


 = 1 Universe.

We have measured �(�; �) in four � bins each of width 2h�1Mpc centred on 1, 3, 5 and 7h�1Mpc

| Figures 3a and b for the data and simulations respectively. We have calculated the best-�t rms

peculiar velocity, hw2i1=2, for three models for f(w), a Gaussian,

f(w) =
1p

2�hw2i1=2 exp
 
�w2

2hw2i

!
; (9)

a jwj3=2 distribution,
f(w) =

0:476

hw2i1=2 exp
 
�0:7966jwj3=2

hw2i3=4
!
; (10)

and an exponential distribution,

f(w) =
1p

2hw2i1=2 exp
 
�p2jwj
hw2i1=2

!
: (11)

The optimum value of hw2i1=2 for each distribution was calculated by maximizing the likelihood

L =
Y

��bins

[2�Varf�(�; �)g]�1=2 exp
"
�(�o(�; �)� �p(�; �))2

2Varf�(�; �)g

#
; (12)

where �o(�; �) is the observed redshift space correlation function, Varf�(�; �)g is the observed

variance in �o(�; �) from bootstrap resampling and �p(�; �) is the predicted correlation function

from (8). The continuous, dashed and dot-dashed lines in Figure 3 are the best �t curves for the

Gaussian, jwj3=2 and exponential models respectively. The best-�t values of hw2i1=2 together with
95% con�dence limits as estimated from likelihood ratios are given in Table 1.

For the survey data, we see that the exponential velocity distribution model gives a slightly better

�t to the observations than the jwj2=3 or Gaussian distributions. There is no obvious trend of

hw2i1=2 with separation �, the 95% con�dence range for hw2i1=2 is roughly 200{1100 km s�1, with

a maximum likelihood value around 500 km s�1. Note that our survey does not provide a strong

constraint on small scale peculiar velocities simply due to the sparse-sampling strategy we have

employed. It would be interesting to compare f(w) for the morphological and luminosity-selected

subsamples de�ned in Paper 2, but unfortunately, the errors on �(�; �) for these subsamples are too

large to test for variation of hw2i1=2 with galaxy type or luminosity.

For the simulations, there is little to choose between velocity distribution models. There is a slight

trend of decreasing hw2i1=2 with separation �, but the rms peculiar velocities remain larger than

for the survey data on all scales. The simulations will therefore tend to slightly overestimate non-

linearity in galaxy clustering on scales up to 8h�1Mpc.
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3 Testing Estimators for �

In the preceding section we showed that the simulations have comparable two-point clustering statis-

tics to the survey data and that small-scale peculiar velocities are slightly larger in the simulations

than in the data. Therefore we can conservatively say that if the simulations obey linear theory on

a certain scale then linear theory should also be applicable to the survey data on that same scale.

In this section we investigate the scales on which linear theory is obeyed by the simulations.

3.1 Anisotropy of �(�; �)

The redshift space spherical harmonics �l(r) in equation (4) are given by an integral over the full

redshift space correlation function �(r; �),

�l(r) =
2l+ 1

2

Z
1

�1

�(r; �)Pl(�)d�; (13)

where Pl(�) is the lth order Legendre polynomial. We can measure �(r; �) by comparing the

observed, weighted sum of galaxy pairs wdd(r; �) at separation r and direction cosine to line of sight

�, with the expected background bgr(r; �) for an isotropic, unclustered distribution. The line of

sight direction is de�ned as the bisector in angle of each pair.

Since Pl(�) is an odd function for odd l and an even function for even l, the odd-l harmonics vanish

and the even-l harmonics are given by

�l(r) = (2l+ 1)

Z
1

0

�
wgg(r; �)

bgr(r; �)
� 1

�
Pl(�)d�

� (2l+ 1)��

2
4 X
pairs(r)

wiwjPl(�)

bgr(r; �)

3
5� �l0: (14)

Here we have replaced the integral over �(r; �) with respect to � by the weighted and appropriately

normalised sum of Pl(�) for all galaxy pairs at separation r. The wiwj are the products of the

weights of each galaxy in the pair, given by equation (1) of Paper 2 and �l0 is the Kronecker delta

symbol, equal to unity for l = 0, zero otherwise. The background bgr(r; �) is obtained by linear

interpolation in � from a pre-calculated look-up table. We do not interpolate between r-bins, since

the �l(r) are calculated in the same separation bins in which bgr(r; �) is tabulated. This look-up

table is generated in ten �xed steps in � log r and �� using a large catalogue of random points

with the same selection function and within the same boundaries as the data, and using the same

weighting scheme,

bgr(r; �) =
[wgr(r; �)]

2

wrr(r; �)
: (15)

Here wgr(r; �) and wrr(r; �) are the summed weights of galaxy-random and random-random pairs

respectively. This de�nition of the background does not require one to estimate the mean density of

the data and random catalogues to normalize �; instead the normalisation is determined using only

those galaxies at separation r and cosine direction �. Such an estimator gives more stable estimates

of � on large scales than traditional estimators (Hamilton 1993b; Paper 2).

In Figure 4 we plot the �l(r) measured from the simulations as the points with error bars. Also

shown by the curves are the linear-theory predictions for the �l(r) for a biased, low-density CDM
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model (� = 0:2, b = 1:10, � = 0:35). In this theory, � = 
0h determines the shape of the real-space

correlation function, and � determines the redshift-space distortions. The value of the bias factor b

was chosen to match the estimated value of bias in the simulations (x2.2).

We use the power spectrum of Efstathiou, Bond and White (1992) and equations (6){(9) of Hamilton

(1992) to calculate these linear-theory predictions. We see that the direction-averaged correlation

function �0 measured from the simulations agrees well with linear theory on scales as small as

2h�1Mpc. Non-linearity is a far more severe problem for the quadrupole (�2) and hexadecapole (�4)

harmonics. The quadrupole harmonic is expected to be negative in the linear regime (Hamilton

1992) and so we plot ��2 in Figure 4. The measured �2 is in fact positive on scales r �< 15h�1Mpc

suggesting that the non-linear `�ngers of God' dominate �2 on these scales. The amplitude of �2 is

lower than that predicted by linear theory until r � 30h�1Mpc, suggesting that non-linearity may

a�ect �2 out to these scales. Beyond � 55h�1Mpc the data is too noisy to measure �2 reliably.

The hexadecapole harmonic �4 has an amplitude on scales r �< 15h�1Mpc exceeding the linear

theory prediction by several orders of magnitude (in fact it is comparable to the direction-averaged

correlation �0) and on larger scales, it's measurement is too noisy to be useful.

Equation (4) gives physically reasonable estimates of the quantity � over a range of scales 21{42

h�1Mpc: � = 0:06� 0:43, 0:47� 0:48 and 0:02� 0:35 respectively at separations of r � 21, 30 and

42 h�1Mpc. Comparison with the linear theory prediction suggests that the �rst of these estimates

(at r � 21h�1Mpc) is probably biased low by non-linearity, but the second two estimates appear to

be in the linear regime.

3.2 Ratio �(s)=�(r)

With an N -body simulation, one has the advantage of being able to estimate the real space corre-

lation function directly by using the real space locations of the simulation galaxies in (6), as well

as via inversion of the projected correlation function (7). The former estimate of �(r) is useful

for studying e�ects of non-linearity in the simulations, whereas the latter, noisier, estimate gives a

more realistic assessment of what we can hope to measure from real data. We have used the ratio

�(s)=�(r) measured with both �(r) estimates in equation (5) to estimate � on a range of scales.

These estimates are presented in Figures 5a and b for the direct and projected estimates of �(r)

respectively.

In Figure 5a, we see that � appears to converge (assuming that b is independent of scale) by scales

r � 5h�1Mpc. Beyond r � 20h�1Mpc, the measured correlation functions are too noisy to usefully

constrain �. We have calculated the maximum-likelihood value of � from the simulations over the

separation range 5{20 h�1Mpc, and �nd � = 0:56. This is shown by the horizontal line in the �gure.

The dotted lines show the 95% con�dence limits on �, the points at which the likelihood has fallen

by a factor of 6.82 from its maximum value. This range is 0:19 < � < 0:94.

In Figure 5b, we see that the estimates of � using the projected �(r) estimate show, unsurprisingly,

larger error bars. On scales 5{20 h�1Mpc, the measured values of � are consistent with the `direct'

estimation of �(r). Over these scales, the maximum-likelihood value of � is 0.59, with 95% con�dence

limits 0:04 < � < 1:13.

Values of � estimated from the ratio �(s)=�(r) are rather larger than the intrinsic � � 0:35 for

the simulations. Part of the reason for this may be that scales � 8h�1Mpc are mildly non-linear
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(x3.3), and hence b8 may be slightly biased with respect to blin. Additionally, the error bars on the

ratio �(s)=�(r) are large and the 95% con�dence limits certainly include � = 0:35. In the following

subsection we use the ratio of the volume integrals, J3, of the galaxy correlation function in order

to obtain a less noisy estimate of �.

3.3 Ratio J3(s)=J3(r)

A less noisy estimator of galaxy clustering is the volume integral over the correlation function,

J3(r) =

Z r

0

x2�(x)dx: (16)

We measure J3 as follows. The contribution to J3 on scales 0{rmin, where rmin is the smallest scale at

which �(r) was measured, is calculated from extrapolation of a power-law �t to �(r), �(r) = (r=r0)
�
 ,

J3(rmin) =
r


0

3� 

r
3�

min

: (17)

This contributes to less than 1% of J3(8h
�1Mpc) for rmin = 0:1h�1Mpc, and so the validity of

extrapolating a power-law to zero separation is not crucial. Contributions to J3 from scales over

which �(r) has been measured are determined simply by multiplying the volume of each separation

bin by the value of � measured in that bin,

J3(r
hi

k ) = J3(rmin) +
1

3

kX
i=1

[(rhii )
3 � (rloi )

3]�i: (18)

Note that each measured � is already weighted towards the outer edge of each bin, simply due to the

increasing number of total galaxy pairs with separation (assuming that the bins are narrow enough

that �(r) does not change signi�cantly across the bin), and so nothing is gained by interpolating

between bins. Note also that as each contribution to J3 is added to the sum over bins, the current

value of J3, being an integral quantity, corresponds to the radius of the outermost edge of the last

bin added.

In Figure 6, we plot � determined from the ratio J3(s)=J3(r) from the simulations using J3(r)

obtained by (a) integrating the direct estimate of �(r) and (b) integrating the projected estimate

of �(r). We see that non-linearities a�ect the J3 integral to slightly larger scales (about 15h
�1Mpc)

than � estimates. On a scale of 17:8h�1Mpc we �nd a value � = 0:29 � 0:23 from Fig. 6a and

� = 0:36 � 0:43 from Fig. 6b. Although rather smaller than the estimates from �(s)=�(r), these

values are consistent given the size of the error bars.

3.4 Conclusions from Simulations

We have analysed an ensemble of CDM-like N -body simulations, which give a reasonable match to

the real and redshift space correlation functions measured from the Stromlo-APM Redshift Survey

and which have comparable, but slightly larger, peculiar velocities hw2i1=2. We �nd that the 2nd

and 4th order spherical harmonics of the redshift space correlation function are severely a�ected

by non-linearities to scales r � 30h�1Mpc, and so one needs a reliable measurement of the �l on
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scales r �> 30h�1Mpc in order for linear theory to be applicable. This is in agreement with the

Fourier-space harmonic analysis of Cole et al. (1994).

On the other hand, the direction averaged correlation function �0 is only weakly a�ected by non-

linearity; non-linear e�ects become unimportant on much smaller scales, r � 5h�1Mpc. Thus the

more practical method for determining � from present-generation redshift surveys is by comparison

of the direction-averaged redshift-space correlation function with the real-space correlation function.

By using the J3 volume integral over �, one decreases the random noise in �, at the expense of

increasing the scale of non-linearity to � 15h�1Mpc. In practice it will probably be worthwhile

estimating � from both �(s)=�(r) and J3(s)=J3(r). We expect the J3 ratio to give the less noisy

results.

4 Results from Stromlo-APM Survey

4.1 Constraints on �

We have measured the spherical harmonics �l(s) of the Stromlo-APM redshift space correlation

function in the same way as for the simulations (x3.1). The results are shown as the points with

error bars in Figure 7. The curves show the same linear theory predictions as in Figure 4. We

see pronounced e�ects of non-linearity and very large error bars on the �2 and �4 harmonics on

scales smaller than 20h�1Mpc. The direction-averaged correlation function �0 is well matched by

the linear theory prediction on all scales. On scales of 21, 30 and 42 h�1Mpc, the estimated values

of � are 0:41� 0:17, �0:03� 0:29 and 0:23� 0:31 respectively.

We expect the ratios of the direction-averaged clustering in redshift space and real space to give

more reliable estimates of �. In Figure 8a, we plot our estimates of � from the redshift survey, as

determined from the ratio �(s)=�(r). Although there is quite a wide scatter in the � estimates on

di�erent scales, there is no obvious systematic trend with separation, and so we have calculated

the maximum-likelihood value of � using the three data points in the range 5{12 h�1Mpc. We �nd

� = 0:36 with 95% con�dence limits �0:03{0.75. Using the J3(s)=J3(r) ratio (Fig. 8b), we �nd a

value of � = 0:48� 0:12 at r = 17:8h�1Mpc.

All three estimates of � give consistent results and all exclude the possibility of � �> 0:75 at very

high con�dence.

4.2 Disentangling 
 and b

Ideally, of course, one would like to know the values of the density parameter 
 and the bias

parameter b individually. Cole et al. (1994) have discussed how it may be possible with future

redshift surveys to separate the determination of 
 and b by studying the scaling of non-linear

e�ects. An alternative approach is the study of high order correlations to constrain the (possibly

non-linear) biasing model using weakly non-linear perturbation theory. Gazta~naga and Frieman

(1994) have used high order moments of APM galaxies to constrain biasing models. To be consistent

with non-linear perturbation theory, one should allow the possibility of non-linear bias, in which

case second- and third-order non-linear bias coe�cients can be chosen which match the observed
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high order correlations. However, the observations are very well �t by an unbiased, low-density

CDM model with b � 1. Applying Occam's razor, this seems the more natural solution.

4.3 Relative Biasing of Di�erent Galaxy Types

Despite the uncertainties in the value of galaxy bias with respect to the mass, one may study

the relative bias of galaxies of di�erent type by comparing their clustering properties. There are

two independent ways to measure the relative bias factors: (1) by comparing real-space clustering

in the linear regime and (2) by measuring the redshift space ampli�cation of clustering due to

equation (5). One thus has a consistency check on measurements of � and relative bias parameters.

We have already compared the clustering of galaxies of di�erent luminosity and morphological

type in Paper 2. In that paper we concentrated on the small-scale (power-law) regime of galaxy

clustering. Here we study clustering in the linear regime. We analyse galaxy subsamples from the

Stromlo-APM survey of low, middle and high luminosity, and of early and late type. These galaxy

samples are de�ned in Table 1 of Paper 2.

In Figure 9 we plot the relative bias values bt = �tg(r)=�gg(r) for each sample over a range of scales.

We have divided the real-space cross-correlation of each sample with the parent APM galaxy sample

(Paper 2) by the real-space cross-correlation function of the `all galaxies' sample, hence the relative

bias for the `all galaxies' sample is de�ned to be unity. The error bars are determined from the one

sigma scatter in bt from the nine bootstrap-resampled versions of the survey data. Given that our

estimates of �(r) are unreliable beyond r � 20h�1Mpc, we see no obvious trend of relative bias with

scale in the linear regime. We have therefore calculated the maximum-likelihood value of bt over the

range 5{12 h�1Mpc. These values, along with the 95% con�dence limits, are given in Table 2. We

see that low-luminosity galaxies (sample b), are only about one third as strongly clustered as middle-

luminosity galaxies, in accordance with the �ndings of Paper 2. High luminosity galaxies (sample d)

appear to be about thirty percent more strongly clustered than middle-luminosity galaxies, although

the 95% con�dence limits do allow for no di�erence in clustering, again in accord with Paper 2.

Early type galaxies (e) have a very similar bias parameter to luminous galaxies, whereas late type

galaxies have a bias parameter midway between that of low and middle-luminosity galaxies.

Figure 10 shows the relative bias values determined from the ratio J
tg
3
(r)=J

gg
3
(r). These results

show smaller scatter than the �tg(r)=�gg(r) ratios and give consistent results in the linear regime.

The relative bias measured at a separation of r = 17:8h�1Mpc is shown in Table 2.

The parameter most commonly used for normalizing clustering models and theories to observations

is the variance of galaxy counts in 8h�1Mpc radius spheres, (�28)g,

(�28)g =
1

V 2

Z Z
V
�(r12)dV1dV2: (19)

We estimate (�28)g by Monte-Carlo integration of the observed real-space correlation function for

each of the galaxy samples using 500,000 randomly chosen pairs of points inside an 8h�1Mpc radius

sphere. Results are given in Table 2. As we see from Figure 6, (�28)g may be mildly a�ected by

non-linearity, and so we do not expect bt and (�8)g to be directly proportional. Note the signi�cant

di�erence in (�28)g for galaxies fainter than L� and those around L� and brighter.

In Figure 11 we plot estimates of � for each galaxy sample. In order to estimate � for galaxy sub-

samples, we have measured the redshift-space cross-correlation function of the given galaxy sample
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with the all-galaxies sample using the estimator

1 + �tg(s) =
wtg(s)wrr(s)

wtr(s)wgr(s)
: (20)

Here the subscript t denotes galaxies of speci�c type, g denotes all galaxies and r denotes random

points (cf. eq. 6). Comparing this with the real-space cross correlation function �tg(r) gives an

estimate of � via equation (5). Once again, the error bars come from the scatter between bootstrap

resamplings. Estimates of � and 95% con�dence limits over the separation range 5{12 h�1Mpc are

given in Table 2. Clearly, negative values or lower limits on � are not physically reasonable, but

the upper limits are still useful. For instance, for bright galaxies (d) we can say that � < 0:9 with

95% con�dence.

In Figure 12 we plot estimates of � using the ratio J3(s)=J3(r) for each subsample. In Table 2, we

give the value of � and its one sigma error at r � 17:8h�1Mpc

Now, if the `true' bias factor btruet (ie. the bias with respect to the mass) is related to the relative

bias factor by btruet = b0bt, (so that b0 is the bias factor for the `all galaxies' sample) then the product

bt� for all galaxy samples should be a constant equal to 
0:6=b0. While we do �nd some scatter

in this quantity between the di�erent samples, the results are consistent (
0:6=b0 � 0:2{0.6) within

the 95% con�dence limits.

5 Conclusions

We have used large and realistic N -body simulations to investigate the e�ects of non-linearity on

two estimators for the quantity � (eqs. [4] and [5]). We �nd that non-linearity is important in the

2nd order spherical harmonic �2(s) of redshift space clustering to scales as large as 30h�1Mpc. In

contrast, the direction-averaged correlation function �0(s) is only weakly a�ected by non-linearity on

scales r �> 5h�1Mpc. Therefore the most practical method for constraining � with existing redshift

surveys is by measuring the ampli�cation of direction-averaged redshift space clustering over real

space clustering. An alternative approach, modeling the non-linearity, has recently been used by

Cole et al. (1995).

Using the projected cross-correlation of Stromlo-APM galaxies with the parent APM galaxy survey

enables a reliable determination of �(r) on linear scales r �> 5h�1Mpc. The ratio �(s)=�(r) on

scales 5{12 h�1Mpc yields a value � � 0:36. The integral J3 is less noisy than �(r) and on a scale

r � 17:8h�1Mpc J3(s)=J3(r) provides the estimate � = 0:48� 0:12. Although a little lower than

estimates of � from peculiar velocity analyses (eg. Hudson et al. 1995, who �nd � = 0:74� 0:13),

the large errors on all current estimates of � means they are all consistent. See Dekel (1994) or

Strauss and Willick (1995) for a review of recent measurements of �.

The Stromlo-APM survey is a powerful sample for constraining � since the large volume probed

enables us to reliably measure redshift space galaxy clustering in the linear regime, whereas many

previous analyses have been limited to measuring �(s) in the non-linear regime. Cross-correlation

with the fully-sampled APM galaxy survey enables us to measure �(r) much more accurately than

using the angular correlation function w(�), and thus the technique of using the ratio �(s)=�(r) [or

J3(s)=J3(r)] comes into its own for this survey.
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With linear theory and 2-point clustering statistics alone one cannot separate the contributions of


 and b to �. However, as Gazta~naga and Frieman (1994) have discussed, higher order correlations

may be used to constrain biasing models. Their analysis of APM galaxies favours a linear bias

parameter b � 1, although to be strictly self-consistent, one should allow for a non-linear bias

model in non-linear perturbation theory, in which case one can always match the observed skewness

of APM galaxy counts in cells by adjusting the non-linear bias parameters. Further work is clearly

required in constraining possible biasing models.

As we have seen in Paper 2, di�erent classes of galaxy have di�erent clustering properties, and so

not all galaxies can have exactly the same biasing parameter. In particular, low-luminosity galaxies

are about three times less strongly clustered than L� galaxies on large scales, and so bL� � 3b<L� .

An interesting test would be to see if high order clustering of low-luminosity galaxies also predicts

a lower value of bias than for L� galaxies.

In conclusion, we �nd that a relatively low value of � is favoured by the Stromlo-APM data; we can

certainly exclude an unbiased, 
 = 1 model at more than 95% con�dence. We thus conclude that


 < 1 and/or that galaxies are positively biased, ie. more strongly clustered than the underlying

mass distribution.
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Tables

Table 1: Constraints on galaxy peculiar velocities (km s�1) for survey data and simulations.

Model Gaussian jwj3=2 Exponential

� hw2i1=2 95% conf ln(L) hw2i1=2 95% conf ln(L) hw2i1=2 95% conf ln(L)
SurveyData

1:0 434 144 799 �10:6 442 158 867 �10:2 476 179 1156 �9:8
3:0 408 241 841 �4:3 468 260 925 �4:0 569 303 1106 �3:7
5:0 425 169 836 �3:0 446 179 896 �2:9 493 194 1063 �2:8
7:0 327 0 805 0:5 355 0 898 0:5 355 0 1140 0:5

Simulations

1:0 679 571 812 �6:3 727 592 870 �5:7 857 686 1084 �6:2
3:0 624 466 844 0:0 669 488 928 0:5 783 543 1146 0:8

5:0 474 355 628 6:8 505 372 685 6:6 586 415 832 5:9

7:0 497 338 709 6:1 531 359 772 6:1 615 403 930 6:0

Table 2: Relative bias b� and bJ3 , variance in 8h�1Mpc cells (�2
8
)g, and redshift space distortion

factors �� and �J3 for galaxy subsamples

Type b� 95% conf bJ3 (�28)g �� 95% conf �J3
a All 1:00 1:00 1:00 1:00� 0:00 0:90� 0:05 0:36 �0:03 0:75 0:48� 0:12

b Faint 0:31 0:05 0:56 0:32� 0:18 0:40� 0:10 1:91 0:35 3:46 0:85� 0:71

c Middle 1:05 0:85 1:26 1:15� 0:13 1:62� 0:16 0:26 �0:12 0:65 0:59� 0:29

d Bright 1:34 0:78 1:89 1:45� 0:35 1:20� 0:15 �0:11 �1:14 0:91 0:19� 0:43

e E&S0 1:39 0:83 1:95 1:36� 0:35 1:28� 0:25 0:44 �0:13 0:99 0:27� 0:59

f Sp&Irr 0:78 0:62 0:95 0:87� 0:12 0:66� 0:05 0:30 �0:16 0:75 0:33� 0:45
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Figure Captions

Figure 1 A contour plot of the full redshift space correlation function �(�; �) measured from the

Stromlo-APM Redshift Survey as a function of separation parallel (�) and perpendicular (�)

to the line of sight and smoothed with a

8<
:

1 2 1

2 4 2

1 2 1

9=
; smoothing �lter. The contours are

plotted in �xed steps in log � from �3 to 1. Solid contours show values � � 1, dashed contours

show values � < 1 (i.e. in the linear regime).

Figure 2 Comparison of the Stromlo-APM (solid symbols) and N-body (open symbols) correlation

functions in (a) redshift space and (b) in real space.

Figure 3 (a) The redshift-space correlation function �(�; �) plotted as a function of separation �

along the line of sight for four bins in projected separation �. The points with error bars

show �(�; �) calculated from the Stromlo-APM survey. The curves show predictions for three

peculiar velocity distribution functions | see text for details. (b) As (a) but for an ensemble

of CDM-like N-body simulations.

Figure 4 First three spherical harmonics for the redshift-space correlation function measured from

N-body simulations (symbols) and predicted by � = 0:2, � = 0:35 linear CDM theory (curves).

Filled circles and the continuous line shows the direction-averaged correlation function (�0).

Star symbols and the dashed line show the negative of the quadrupole harmonic (��2). Open
circles and the dotted line show the hexadecapole harmonic (�4).

Figure 5 Estimates of � as a function of separation from the N-body simulations using equation (5),

(a) uses `direct' estimation of �(s) and �(r), (b) uses the projected cross-correlation estimate

of �(r) (Eq. 7). The horizontal line shows the maximum-likelihood �t to � over the range

indicated and the dotted lines show 95% con�dence limits on �.

Figure 6 As Figure 5 but using the volume integrals J3 in place of �.

Figure 7 First three spherical harmonics of the redshift-space correlation function measured from

the Stromlo-APM survey. The linear theory curves are as in Figure 4.

Figure 8 (a) Estimates of � as a function of separation for the Stromlo-APM survey data using

�(s) and �(r) in equation (5). The horizontal line shows the maximum-likelihood �t to � over

the range indicated and the dotted lines show 95% con�dence limits on �. (b) Same as (a),

but using the volume integrals J3 in place of �.

Figure 9 Relative bias factors for subsamples of the Stromlo-APM Survey, determined from the

ratio �tg(r)=�gg(r).

Figure 10 As Figure 9 but using the volume integrals J3 in place of �.

Figure 11 Estimates of � for subsamples of the Stromlo-APM Survey, determined from the ratio

�tg(s)=�tg(r).

Figure 12 As Figure 11 but using the volume integrals J3 in place of �.
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