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Abstract 

Accurate (5 1%) predictions for the anisotropy of the Cosmic Background 
Radiation (CBR) are essential for using future high-resolution (5 lo) CBR 
maps to test cosmological models. In many infiationary models the variation 
(“mnuh$) of the spect al r in d ex of the spectrum of density perturbations is a 
sign&ant e&t and leads to changes of around 1% to 10% in the CBR power 
spectrum. We propose a general method for taking running into account 
which uses the derivative of the spectral index (dn/d In E). Conversely, high- 
resolution CER maps may be able to determine dn/dlnk, giving important 
information about the inflationary potential. 
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The cosmic background radiation contains a wealth of information about the spec- 
trum of primeval density perturbations. This is because CBR anisotropy on a given 
angular scale arises largely due to density perturbations on a (comoving) length scale 
L zz (6/1”)100h-’ Mpc. Since the COBE detection of CBR anisotropy on angular scales 
of 10” to 90” [l], more than ten additional detections on angular scales from about 0.5” to 
20” have been reported [2]. In addition, plans are being made for a satellite-borne exper- 
iment within the decade that will map the CBR sky with an angular resolution of better 
than 1” and an accuracy that is an order of magnitude better than current measurements 
[3]. Thus, in the near future CBR anisotropy should be able probe inhomogeneity on length 
scales from about 30h-’ Mpc to 3O,OOOh-’ Mpc. 

A key to using CBR measurements to reveal the underlying spectrum of density per- 
turbations is the accurate calculation of the expected anisotropy in a given model. Much 
progress has been made in understanding and taking into account all the relevant micro- 
physics 141, and several groups are now making a concerted effort to calculate expected CBR 
anisotropies with an accuracy of better than 1% [5]. 

Much of this effort is directed at inflation, as CBR anisotropy has the potential to 
both test the inflation hypothesis and reveal important information about the underlying 
scalar-field potential [S]. Inflationary models predict approximately scale-invariant spectra 
of density (scalar metric) perturbations [7] and gravity-wave (tensor metric) perturbations 
[8], and both contribute to CBR anisotropy. The following parameters have been identified 
as important for accurately computing the expected anisotropy [9]: the power-law indices 
of the scalar and tensor spectra, nT M 0 and n M 1; the overall amplitudes of the scalar 
and tensor perturbations, often quantified by their contributions to the variance of the 
quadrupole anisotropy, Qs and QT; the Hubble parameter h = Ho/100 kms-’ Mpc-‘; the 
baryon density, which is constrained by primordial nucleosynthesis to the interval il~h’ N- 
0.009 - 0.022 [lo]; and possible contribution of a cosmological constant to the energy density 
of the Universe today n*. (In addition, some have considered the possibility of a total energy 
density less than the critical density predicted by almost all models of inflation, nonstandard 
ionization histories for the Universe, and variations in the nonbaryonic component of the 
matter density, e.g., adding a small amount of hot dark matter.) 

In this paper we emphasize that the spectral indices n and nT in general vary with 
scale and point out that for many interesting models of inflation (chaotic, natural, and 
new) the variation in scalar spectral index leads to significant corrections (1% to 10%) in 
the predicted CBR anisotropy. Conversely, this means that a high-resolution CBR map 
could be used to extract information about the variation of n with scale and thereby reveal 
additional information about the inflationary potential. We thus make the case that the 
variation of the scalar spectral index should be taken into account when calculating CBR 
anisotropy, and suggest that it is most sensibly done by using dn/dln k. 

CBR anisotropy on the sky is usually expanded in spherical harmonics, 

6T(Q)/T = ~ulmx*(n). (1) 
lm 

Inflation makes predictions about the statistical properties of the multipole moments; since 
isotropy in the mean guarantees that (al,) = 0 and the underlying perturbations in almost -. 
all inflationary models are gaussian, the variance Cl - (]a~,]‘) serves to specify all statis- 
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tical properties. (Here and throughout brackets refer to the av.erage over an ensemble of 
observers.) Measurements of the CBR temperature on the sky can be used to estimate the 
statistical properties of the underlying density perturbations. In particular, the Cl’s can be 
estimated. Because the sky is but a finite sample, a fundamental limit ,to the accuracy of 
the estimate (referred to as cosmic variance) is given by 

((C* - cyt)2) = g. 

Other major (and presently dominant) sources of uncertainty include receiver noise, various 
instrumental systematic errors, foreground sources (our own galaxy, radio sources, etc.), 
limited sky coverage, and finite resolution (a map with angular resolution 8 is only sensitive 
to multipoles with Is 200’/0). 

High-resolution maps of the CBR probably offer the best means of studying the scalar 
and tensor metric perturbations predicted by inflation [11,12]. Such maps may also provide 
valuable information about the Bubble constant HO, the cosmological constant a; the baryon 
density Rg, and the total density of the Universe R; however, other measurements will 
complement the determination of these parameters. If the four parameters describing the 
scalar and tensor perturbations are measured to some level of accuracy, properties of the 
underlying inflationary potential V(4) can be determined [13]: 

VN = 1.65Q~nm~, (3) 

= 47r[(n - 1) - 3nT] vN/mp12 = 47r (n - 1) 
3 

+ 7T 1 v.AJ f mpl’, (5) 

where T 3 QT/Qs, a prime indicates derivative with respect to 4, and the sign of V’ is 
indeterminate. In addition, a consistency relation ?ZT = --T/T must be satisfied, and the 
factors of i arise from using it [14]. Subscript N indicates that the potential is to be evaluated 
at the value of 4 where the scale corresponding to the present Hubble scale (kN = Ho) crossed 
outside the horizon during inflation. This generally occurs around N N 50 e-foldings before 
the end of inflation, though the precise expression depends upon the model of inflation, the 
reheat temperature, and any entropy production after inflation. (Only the expression for 
VN depends upon the definition of N; the other two always apply.) The expression for N 
can be written as 

N 2~’ 54 + i h(-nT) + Ai ln(T~~/lo~ GeV) - 1 lny - ln h, (6) 

where Z’RH is the reheat temperature, 7 is the ratio of the entropy per comoving volume 
today to that after reheating which quantifies any post-inflation entropy production, and 
the perturbation spectrum has been normalized to COBE. (In calculating N it has been 
assumed that inflation is followed immediately by a matter-dominated epoch associated 
with coherent oscillations of the inflaton field and then by reheating.) 

The above expressions were derived in a systematic approximation scheme that relates -- 
the derivatives of an arbitrary smooth inflationary potential to CBR observables [13,15]. 
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The expansion parameter is the deviation from scale invariance, and form&y involves al,l 
the derivatives of the potential, mpl”Vk)/V ( N constant V corresponds to the scale-invariant 
limit; see Ref. [16] for a discussion of this scheme). For most potentials the deviation from 
scale invariance of the scalar and tensor spectra, quantified by (n - 1) and nT, serve as the 
expansion parameters. The above expressions are given to lowest order in (n - 1) and nT; 
the next-order corrections are given in Ref. [16]. 

The crucial point GOT the present discussion is that the spectra of scalar and tensor per- 
turbations are only exactly power laws for an exponential potential. In general, they vary 
with scale, though dn/dln k and dnT/dlnk are second order in the deviation from scale 
invariance, i.e., involve terms that are O[(n - 1)2,ng,(n - l)nT]. Since the present data 
indicate that scalar perturbations do not differ from scale invariance by a large amount, 
n - 1 = 0.10 f 0.32 [17], th e variation of the spectral indices is expected to be small. Fur- 
ther, indications are that the tensor perturbations are subdominant and in any case only 
contribute significantly to multipoles I = 2 to 50. However, we shall show that the vari- 
ation of scalar spectral index is important, given the desired precision for the theoretical 
predictions of the multipoles. 

The power spectrum for the scalar perturbations is given by 

nN + b(k/kn)(dn/dhk) + --a 

. (7) 

The contribution to the Zth multipole comes from wavenumbers k centered around Z/TO, 
where ro z 2/Ho is the distance to the last scattering surface. Recalling that the char- 
acteristic scale kN was chosen to correspond to the current horizon size, this implies an 
approximate scaling relation for the Cl’s which relates them to a spectrum with constant 
spectral index: 

If (dn/dln kI 2 3 x lo- 4, the effect of ignoring the “running” of the spectral index over the 
range 2 = 2 - 1000 is greater than one percent, which is significant compared to the accuracy 
goal for CBR anisotropy [5]. We now show that values this large are expected-in interesting 
inflationary models. 

In general, the derivatives of the scalar and tensor spectral indices are related to the 
inflationary potential and its derivatives. The lowest-order expression for all the derivatives 
of n and nT can be obtained by simply differentiating the lowest-order expressions, 

nT 
4=&N 

(9) 

using the fact that to lowest order 



If n and nT are expressed as a function of N, one can use the fact that d/din k = -d/dN 
to obtain the desired derivatives even more easily. 

It is thus a simple matter to obtain the first derivatives of n and nT: 

&Z-&(mpru’) (~)+$(mp~v”) (TE!$C)2e-L(mp,~)4 (11) 

Equivalent expressions can be obtained by using the previous equations relating T and n - 1 
to the potential and its first two derivatives: 

-f&z&& (m$Nv’) fi+&-l)T+;T2, 

dnT -= 
dlnk 

-nT[(n - 1) - nT] = f [(n - 1) - fT] , 

(13) 

(14) 

where the upper sign applies if V,h > 0 and the lower if Vh < 0, and the factors of $ arise 
from using the consistency relation ?ZT = -~/7. From these expressions we see that the size 
of both dn/dln k and dnT/dh k is controlled by the ratio of tensor to scalar perturbations, 
and further, that the size of dnT/dh k depends upon the difference between n - 1 and ?‘@, 
which in many models is small. 

We now quantify expectations in several popular models of inflation. As noted earlier, 
for an exponential potential dn/d ln k = dnT/dh k f 0. For inflation models that are based 
upon Coleman-Weinberg like potentials, V(4) = Bu4/2 + B44[ln(+2/~2) - l/2], 

dn/dl.n k N -1.2 x 10-3(50/N)2, (15) 
d”‘n/d In km N -3m!/N”+‘. (16) 

Chaotic-inflation models are usually based upon potentials of the form V(4) = a& (a is a 
constant and b = 2,4, l . . is an even integer) and 

dn/dln k = -4 x 10S4 (b/2 + 1)(50/N)2, (17) 
d”‘n/dln km = -m! (b/2 + l)/Nm+‘. (18) 

For the interesting cases of b = 2 and 4, dn/dln k = -0.8 x 10S3 (b = 2, N = 50) and 
-1.2 x 10e3 (b = 4, N = 50). Finally, for the “natural” inflation model, where V(d) = 
A4[1 + cos@/f)], th e o . f 11 owing approximate expression applies for f 5 mpl (which is the 
regime where the deviation from scale invariance is significant and 1 - n = mp12/8?rf2): 

dn/dh k = - f(n - 1)2 exp[N(n - l)]. (19) 

Varying (1 - n) from 0.04 to 0.3 and N from 40 to 50, dnldh k varies from about -10q7 
to almost -lO- 3. Even though 1 - n can be large in these models, T is very small when it -. 
is, and dn/d In k never approaches (1 - n)2. 
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It is not a complete surprise that dn/dln k is similar in ail .these models. One might 
expect that (n - 1) a l/N”, so that dn/dln k = -dn/dN = m(n - 1)/N. This is true 
for new and chaotic inflation where m = 1. (The situation with “natural” inflation is more 
complicated as n - 1 depends upon N exponentiaIIy.) 

In models where (n - 1) a l/N, dn/dln k is O(no2 and necessarily not too large. Are 
there models where running is more important ? For ad hoc potentials the answer is yes. 
Consider the potential V(4) = Vo exp( --a@). Here 

t”-1)=-(2yb)” f [ 1 2-a A+;, 
where cr = 2(1 - b)/(2 - b). For CI! < 1, both (n - 1) N l/N” and dn/dln k 2: a(n - 1)/N 
can be large. (For b = 1, this potential reduces to a simple exponential and dn/dln k = 0.) 

Intermediate inflation provides an even more interesting example [18]. These models 
are based upon a potential of the form V(4) = ~4~~. Inflation occurs for 42 1 b2/16xm& 
and never ends. (In order to construct a successful model of inflation the form of the 
potential must eventually change or intermediate inflation must be part of a first-order 
inflation model.) The interesting feature of intermediate inflation is that (n - 1) depends 
upon the number of e-folds since the beginning of inflation, n - 1 = (25 - 4)/(4Nb + b). Not 
worrying about how inflation ends and noting that dN = -dNb, it foIIows 

dn (n - 1)2 

- = b/2 - 1 * dlnk (21) 

Unlike the previous examples where (n - 1) depended upon l/N and thus was of order 
fezu x 10m2, here (n - 1) can be arbitrarily large. Thus, dn/dln k too can be large: taking 
b = 3 and n - 1 = 0.9, dn/dln k = 0.02. 

As mentioned earlier, the running of the tensor spectral index is expected to be less 
important because the tensor perturbations are likely to be subdominant and only contribute 
significantly for 1 ,$ 50; in addition, dnT/dh k is smaller (being proportional to the difference 
between n - 1 and nT which is often smaII). For the potentials discussed above dnT/dh k = 
0 (exponential), -2 x 10-7(u/mp1)4(50/N)4 (new), -2.0 x 10-4b(50/N)2 (chaotic), and 
-?r2/4(n - 1)2 exp[N(n - l)] (“natural”). 

Figure 1 displays the CBR angular power spectrum for b = 6 chaotic inflation (where 
dn/dln k = -O.OOZO), calculated without and with the running of the scalar spectral index. 
The correction due to the running of scalar index is significant (about 10%) and potentially 
measurable. The results shown have been calculated using the power spectrum in Eq. (7). 
We have also calculated the Cl’s using the approximation in Eq. (8), and the maximum error 
in any Cl is less than’ 0.6%. Thus, for’applications requiring 0( 1%) accuracy, it should be 
sufficient to calculate a model with a fixed n and then scale the results according to Eq. (8) 
to obtain Cl’s for dn/dln k # 0. We aI so note that the correct k-space power spectrum is 
simple to include in any Boltzmann code. 

In summary, expectations for Idn/dln kj in popular inflationary models range from -2 x 
low3 to around -4 x 10m4. Of course, the value of dn/dln k in “the model of inflation” could 
be larger or smaller. At the high end of this range, neglecting the running of scalar spectral 
index leads to errors of lo%, more than an order of magnitude larger than the accuracy 
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desired [19]. Th e running of the scalar spectral index can be into account easily, accurately, 
and with generality by using dn/dln k. Based upon the models we have looked at one could 
adopt dn/dln k N (n - 1)/N as a default estimate. 

If the running of the scalar spectral index is large enough to detect, the third derivative 
of the scalar potential can be measured [16]: 

Vr/mPl = &39fi[-7(dn/dh k)/r + 0.9T + 4(n - I)] QT. (22) 

The feasibility of determining dn/dln k from a high-resolution map of the CBR sky is cur- 
rently under study [20]. 

Two final points. First, what about the next-order corrections? They involve O[(n - 
l)“, n$, . . -1 terms: corrections to dn/dln k, n, QT, Qs and the d%/dln k2 term in the 
expansion for n. Provided that the deviation from scale invariance is not too large, they 
should be small (less than about 1%) because they are suppressed by an additional factor 
of O[(n - l),nT]; e.g., dn2/dln k2 = -5 x 10-5(50/N)3 f or-new inflation, which leads to a 
correction at 1 = 1000 of about 0.5%. If the d%/dln k2 should be larger, its size might be 
turned to good purpose; because of the qualitative difference between it and the d/din k 
term it might possibly be measured, revealing information about the fourth derivative of 

V(4)- 
Last, but perhaps not least, the running of the scalar spectral index is also of some 

relevance when extrapolating a COBE-normalized spectrum to astrophysical scales; e.g., 
the correction to us is about -3% for dn/dln k = -low3 [21]. 
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FIG. 1. Predicted angular power spectra for b = 6 chaotic iniIation with (solid) and with- 
out (broken) the ruuning of the scalar spectral index (n = 0.92, h = 0.7, Ci, = 0.025, and 
dnldlnk = -0.002). -. 
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