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ABSTRACT 

We review the experimental and theoretical status of weak radiative hyperon decays. 
Our discussion centers around a controversy over the validity of Hara’s theorem 
originally expected to be respected by these decays. After presenting the hadron- 
level theorem we describe experiments that have provided convincing evidence 
against its applicability to these decays. In the theoretical part we juxtapose the 
hadron-level and quark-level approaches and discuss the violation of Hara’s theorem 
in the latter. We review quark-modei phenomenology which offers a promising 
description of experimental data. Measurements that should be done to settle the 
theoretical controversy are pinpointed. The importance of radiative hyperon decays 
in understanding the nonlocal composite nature of hadrons is stressed. 

1. Introduction 

Hyperon radiative decays exhibit the full interplay of the electromagnetic, weak, and 

strong interactions. One would think that because of their simple two body kinematics: 

just the decay of one baryon into another with the emission of a photon, they should be 

amenable to insightful theoretical analysis and clean experimental probing. In fact, they 
have proved to be a challenge to both the theorist and experimenter. 

These strangeness changing decays are induced by the weak interactions but their 

final state photon ensures that the electromagnetic forces are also involved. Since baryons 
are strongly interacting particles, the strong force is #also important. 

The baryon octet provides us with multiple reactions of this class with varying 
quark content of the initial and final state baryons. These are the decays 

c++,P Y 
Co-n y 

A’--+n y 

=. -O 4 co y 
3” -3 A” y 

; -- +c- y (1) 

Because the weak decay, Co +n y, is completely overwhelmed by the simpler 
strangeness conserving electromagnetic decay, Z” -+ A0 y, it has not been observed. 

Except for this decay, all decays of the baryon octet have received major attention and 

been observed. 



Although decays from the baryon decuplet are also of great interest, the only 
member of the decuplet with a sufficiently long lifetime to make it accessible to 
experimental study is the a-. Its decay to a member of the octet 

a- -+ E-y 

is expected to be dominant. 

So far, however, only upper limits have been put on its branching fraction @). The Sz- 
decay to a member of the decuplet 

rR- + E,*(153O)y 

is expected to have a branching fraction an order of magnitude smaller than the octet 
mode.l** 

The weak radiative hyperon decays (WRHD) pose significant experimental 
challenges. They have small branching fractions, = 10-3, and copious photon 
backgrounds due to their more abundant decay modes involving 1~’ + w. The most 
sensitive tests require the use of polarized hypetons. Modem hyperon beams have provided 
effective tools for overcoming these difficulties. 

Theoretical difficulties manifest themselves in a long history of unsuccessful 
attempts to describe data in hadron level approaches and in the appearance of a basic 
conflict between these approaches and the quark model. For these reasons WRHD have 
been regarded as “the last low q* frontier of weak interaction physics3”, “unsolved 
puzzle4”, ” the long-standing C+ + py puzzle5”, “a puzzle which has so far defied a 
simple and widely accepted solution*“, and “a long standing discrepancy 61’. Clearly, there 
are still many unsolved questions in the domain of low q* weak interaction physics (for 
example the origin of the AI=1/2 rule, etc.). The problem of WRHD seems to be of a 
more fundamental nature, however. 

Yet, significant experimental and theoretical progress has been made in the last 
ten years. The aim of this paper is to review the present status of both the theory and 
experiments, discuss what we believe are existing problems and point to promising future 
directions. 

We follow this introduction with Section 2, a brief discussion of the 
experimental techniques, and present the basic measurements in Table 2.1. This is 
followed by Section 3 devoted to Ham’s theorem in which we try to crystallize the nature 
of the problem. Before embarking on a discussion of the experimental results, we present 
theoretical lower bounds on the WRHD branching fractions in Section 4. These bounds 
are imposed by unitarity and therefore they are very reliable. 

In sections 3 and 4 we develop general theoretical arguments and explore the 
nature of the controversy. In Section 5, we return for a more detailed description of the 
experimental measurements. Section 6 develops the hadron level formalism for 
nonleptonic and radiative hyperon decays, Section 7 explores the phenomenology of the 
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standard approaches, Section 8 looks at the single quark processes, Section 9 considers 
other approaches and, finally, we present our conclusions in Section 10. 

2. Experimental Techniques and Data Summary 

Hyperon radiative decay measurements consist of branching fractions and asymmetry 
parameters. The measurement of branching fractions requires identification of the 
hyperons and of the unique radiative decay final state. Although limited statistically, 
reliable measurements came from early bubble chamber experiments. More recent 
measurements have employed electronic techniques and most have relied on high energy 
hyperon beams at Fermilab. 

Hyperon beams can provide substantial fluxes of hyperons; furthermore, they can 
be produced with significant polarization. The direction and magnitude of these 
polarizations can be controlled thus providing an important tool for the evaluation of 
systematic uncertainties. These high energy hyperon beams with their easily controlled 
polarizations have also allowed us to make precision measurements of hyperon static 
properties. 

They have allowed us to study polarization effects in C- beta decay,7 high 
statistics weak radiative decays,* and to make precision measurements of hyperon 
magnetic momentsP‘l l Hyperon polarization has provided an extremely useful tool for 
the study of hyperon fundamental properties, although the production mechanism which 
produces these polarizations is not well understood. A number of reviews describing 
hyperon beams and the physics programs that have utilized them are available.12-15 

In recent years it has become clear that hyperon polarization itself is a complex 
process whose energy and Pt dependence is different’6-19 for each of the hyperons. This 
has provided significant challenges to our theoretical understanding of polarization 
mechanisms. 

Table 2.1 shows the present experimental status of weak radiative hyperon 
decays. Not included are some early experiments which have presented upper limits that 
have been superseded by more recent experiments which have observed the decay. The 
newer measurements are consistent with the previously measured limits. 

In Table 2.1, we list the experimental branching fractions (R), asymmetry 
parameters (a), number of events, year and place of measurement, and refer to the 
experimental group by the first author. We quote both the statistical and systematic 
uncertainty (in that order) for each measurement if available. For those decays where more 
than one measurement exists, we first combine the statistical and systematic uncertainties 
quadratically and then fotm the weighted mean for each set of measurements. 

The Z+ -+ py reaction was the fust WRHD to be observed and stimulated the 
controversy that is still with us. In Table 2.1 we have not included C+ + py 
measurements which contain less than 25 events. These are early emulsion *’ and bubble 



+ 
w 
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chamber21-23 measurements. Some of the branching fraction measurements 24.25 quote 

their results as the ratio ( X+ + pyI C+ -+ pi’). We have converted26 these to absolute 
branching fractions. Considering the difficulty of these experiments, the measurements are 
in remarkably good agreement. 

The decay rate for A”+ ny has been observed by two groups, one working at 
Brookhaven National Laboratory (BNL) and the other working at CERN. The results from 
the BNL group 27,28 are contained in two papers, the more recent 27 includes the data 

from the earlier.*’ Results from the CERN29 and ESNL experiments differ by about 2.0 

6. 

The decay Z- + C-y has now been observed by two groups. 30,31 The more _ . 
recent measurement ‘” has over two hundred events and exhibits a clear signal. 
Unfortunately, the only asymmetry measurement3’ has a large statistical uncertainty and 

is only able to provide weak evidence for the sign. 
For the Z,” decays the two modes, E” + A” y and Z” + Z.” y have both been 

observed.32-34 The limited statistics (= 100 events) in each final state severely limit the 
precision of the asymmetry and branching fraction measurements. It is very important 
that the measurements of these branching fractions and asymmetries be repeated with 
higher precision. 

None of the Q- radiative decays have been observed although a recent 
experiment35 has reduced the limit on the Q- -+ E.‘- y branching fraction significantly. 

3. Hara’s Theorem 

Weak radiative hyperon decays (WRHD) are a puzzle because of Hara’s theorem4* which 
states that the parity violating amplitude of the decay X+ + py (as well as that of 
E:- + C-y) should vanish in the limit of SU(3) flavor symmetry. This theorem is 
crucial to understanding the theoretical implications for the weak radiative hyperon 
decays. We thus start the theoretical part of this review with the presentation of Hara’s 
theorem. 

In his original paper Hara42 assumed octet dominance of the nonleptonic weak 
interactions. This assumption is experimentally well verified in all strangeness changing 
weak decays involving hadrons. It states that the weak interaction Hamiltonian transforms 
like a member of the octet of flavor SU(3). Contributions from other representations (i.e. 
the 27-plet) contained in the product 3 @ 3 @ 3 @ 3 (describing possible SU(3) 
transformation properties of the Fermi interactions of four quarks) are assumed negligible. 
Subsequently, proofs of Hara’s theorem have been given by Lo43 and Gourdin. 
Insightful comments have also been made by others.45946 In the formulation of Gourdin, 
octet dominance was not used and the requirement of SU(3) symmetry was replaced by the 
weaker requirement of U-spin symmetry (basically, simple interchange of s and d quarks). 
Our approach below is similar to that of Gourdin, Later, in Section 6 we shall place 
Hara’s theorem in a more elaborate theoretical framework. 



3.1. Gauge invariance and U-spin argunwnts 

Let us start our discussion by writing the most general parity violating coupling of 
photon to hadrons in the standard hadron-level language: 

(1) 

Invariance under the gauge transformation 

Ap --+Ap +qpx c-9 

requires the vanishing of the additional term 

generated by this transformation. 

Consequently (as required also by current conservation), we must have 

(3) 

(4) 

From (4) it follows that 

q2 F F, =-- 
2’ (5) 

m, +m* 

Since F? cannot have a pole at q2 = 0 (no massless hadrons exist), F, must vanish at 
q’ =O,;.e., for real photons. 

For real photons q’ = 
( 

qp Ed = 0 , only the third term, FJ(O), in (1) may be 
1 

nonvanishing. Since weak radiative hyperon decays are CP-conserving processes, we 
must deduce what restrictions the requirement of CP-invariance imposes upon this term. 
Under the operations of charge conjugation we have 

v/li~pvY5w24 
P 

c ~-W2i~pvY5v/14 
P 

corresponding to C-parity equal to - 1 for the diagonal term 

(6) 

describing the situation when the incoming and outgoing baryons are identical (2 + 1). 
Since the parity of expression (7) is +I, 

( I 

it cannot be coupled to the photon 
AV C, = PY = -1 if CP is to be conserved. 

In general, however, the incoming and outgoing particles are not identical, as in 
(I), and one can write an expression that is antisymmetric under the interchange of 

particles labels ( I#2 ) in the initial (and final) state 
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and which goes into itself (with + sign) under the operation (6) of charge conjugation 
Thus, expression (8) has ellen C-parity and, consequently, a coupling of the form 

[ V,io,,YsWT - V7i~,,YsY/, qpAV - - 1 
is permitted by CP-conservation. 

For 1 + p, 2 -+ C+ we get the term considered by Hara: 

(9) 

as the only nonvanishing parity violating C+py coupling permitted in the standard 
hadron level language. 

Hara’s theorem immediately follows from (10) as explained below. Indeed, since 
the weak AS = 1 Hamiltonian is symmetric under the s#d interchange one concludes 
that only the s#d symmetric part of (10) may be non zero. However, s#d 
corresponds to Cf ( UM) # p( uud) , and under the Z’ # p interchange, expression (10) is 
anti-symmetric. Consequently, the s#d symmetric part of (10) is zero. Thus, in a 
U-spin symmetric worlti the Cf + py parity violating amplitude should vanish. Similar 
considerations apply to the Z -+ C-y process since, under the s#d interchange, 
E-(ssd)#C-(dds). 

3.2. Abandoning exact SU(3) 

In the real world, the strange quark is heavier than the down quark. Consequently, with 
U-spin symmetry broken, nonvanishing parity violating amplitudes (and therefore also 
asymmetries) are expected for the C+ + py and E- + C-y processes. 

This situation has been discussed by Vasanti4’ To get a prediction for the sign 
of the resulting asymmetry let us consider his argument for the effective s + dy 

transition. This transition is described by 

M = dopv(a+bys)s q/“AV. (11) 

In Eq. (11) a and b depend on the masses ms, md and b must vanish for mS = md as 
required by Hara’s theorem. 

Since the theory is invariant under the following transformations of fields and 
masses: 



(12) 

etc. 
and (12) holds separately for each flavor we may perform transformation (12) in Eq. (11) 
for the strange quark only. Assuming for the moment that a and b are odd in quark 
masses: 

(13) 

we obtain then 

Invariance under (12) requires then s= -r,p = S and Hara’s theorem itself 
(i.e., vanishing of b for ms = md) fixes B = c. 

As far as the terms even in quark masses are concerned, one can similarly show 
that they must vanish. To this end one has to consider separately two transformations: 
s+-yy, ms +-ms and a+zy5,m, +-md. 

Thus, from (14) and (11) we obtain 

From (15) it follows that the asymmetry parameter is positive: 

(1% 

a= m,2-rni 
m,2+mi 

(16) 

8 



and close to +l if current quark masses are used ( ms w md 1 . If, on the other hand, one 
uses constituent quark masses (ms = 500 MeV, md = 330 MeV) one gets a around +0.4 
to +os. 

One might hope that a similar argument may be applied to all hadron level 
transitions 4 + B2y when baryons B1, Bz are members of a U-spin doublet (as are s 
and d in (11)) That is, one would expect positive asymmetries for the C+ + py and 
E- + C-y decays. As will be discussed at length in this review this expectation is not 
confirmed when one uses the quark model perscription for the structure of baryons. Yet, if 
single-quark transitions are dominant, the argument of Va~anti~~ is valid and leads to 
positive asymmetries for all weak radiative decays. If these transitions are not dominant, 
the above arguments still apply to the 2- -+ Z-7 decay since single-quark transitions 
are the only ones that may contribute to this decay (Section 7). 

3.3. The controversy 

It came, therefore, as a great surprise48~49 when the first measurements 24*25 indicated a 
large negative asymmetry in the Z+ + py decay. As discussed in Section 2 the most 
recent high statistics experiment performed at Fermilab’ confirms these findings and 
leaves no doubts as to the sign and size of the C+ + py asymmetry: 

a@+ +py)=-O.72+0.086~0.045 (17) 

where the quoted errors are statistical and systematic respectively. Thus, standard 
hadron-level arguments appear to be at gross variance with experiment. 

The theoretical situation became muddled in 1983 when Kamal and Riazuddin” 
(RR) reconsidered the question within the framework of the quark model. The astonishing 
result of their simple, explicitly gauge-invariant calculation was that in the quark model, 
Ham’s theorem is not satisfied in the SU(3) limit. Since the remaining assumptions 
upon which this theorem rests seem to be unshakable, their result has been considered by 
some workers as revealing a kind of pathology of the quark model. 

Others, nonetheless, tried to find a place for it in the existing hadron-level 
formalism. We come back to the KR paper in Section 7 where we discuss if (and how) it 
is possible to fit this paper into the existing standard hadron-level theoretical framework 
of Section 6 as well as which of the assumptions of Ham’s theorem appears to conflict 
with the quark model. 

A resolution of the problem has been proposed51 but may be regarded by some 
as itself controversial. It is therefore of paramount importance to have a sound 
experimental input against which theoretical ideas may be tested. We shall review the 
actual status of our experimental knowledge on weak radiative hyperon decays in Section 
5. Before embarking on a tour of the experimental side of the studies of weak radiative 
hyperon decays, in the next brief section we shall present lower bounds on the WRHD 
branching fractions. These bounds are imposed by unitarity and therefore they are very 
reliable. 



4. Unitarity Bounds 

Presentation and discussion of the predictions of specific models of WRHD will be given 
in Sections 7-9. Here we gather the most important and essentially model-independent 

lower bounds on the branching fractions of WRHD, that follow from unitarity. These 
bounds result from the nonvanishing of the contribution of nB intermediate states as 
shown in Fig. 4.1 

Fig. 4.1. Unitarity-induced contribution of the nB intermediate state to the WRHD B, -+ B,f.y 
(O-weak nonleptonic decay; 0-pion photoproduction). 

The first estimate of this contribution has been made by Zakharov and 
Kaidalov.52 In their paper they considered X+ -+ py, A -+ ny and C + X-y decays. 

For the C+ + py decay, Im M(C+ + p;~) can be expressed in terms of the 

amplitudes of the C -+ Nrr nonleptonic decays and of those of pion photoproduction on 
nucleons (p + n+n). Using the results of a phase-shift analysis of the photoproduction 
of pions on protons Zakharov and Kaidalov52 estimated that the branching fraction R for 
the E+ + py decay satisfies 

R(C+ + py)>(O.69+0.40)*10+. (1) 

The above number corresponds to case (1) of Zakharov and Kaidalov (i.e., to the 
domination of the p-wave in the decay C+ + nn+, as it has been experimentally 
determined after their publication). For the A + tzy and E;- -+ X-y decays the necessary 
experimental input in the form of the relevant phase-shift analyses was not available. 
Using perturbation theory estimates of the s- wave pion photoproduction amplitudes (the 
s-wave constitutes the dominant amplitude in relevant nonleptonic decays), Zakharov and 
Kaidalov concluded that the following lower bounds for the A -+ ny and E- -+ C-y 

branching fractions should hold: 
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R(A + ny)>0.83x 1O-3 (2) 

R(E- +I-y)>O.13~10-~. (3) 

The same number for the lower bound on the A -+ n y branching fraction has been 
independently obtained by Farrar. 53 Adding an estimate of the real part she concluded that 

R(A+tzy)=(1.9+0.8)x10-3 (4) 

and that the corresponding asymmetry is likely to be positive. 
For the C+ + py lower bound Farrar found a value smaller by an order of 

magnitude from the one given by Zakharov and Kaidalov 52 in Eq. 1. 
An independent estimate of the branching fraction for the E- + C-y decay has 

been made by Kogan and Shifman.54 Their calculation of the diagram of Fig. 4.1 gives 

R(3- + C- y)>O.lOx 10-3. (5) 

Taking the real part into account they estimate 

R(E- -+X-y)y0.17x10-3. (6) 

Finally, a thorough study of the contribution of nN intermediate states to the 
weak radiative decays of C and A hyperons bas been carried out by Reid and 
Trofimenkoff.55V56 Their approach contains some technical and phenomenological 
improvements over that of Farrar. 53 Reid and Trofimenkoff55 also contain references to 
earlier papers on the contribution of the TCB intermediate states. 

We have gathered all these lower bounds determined by the imaginary parts of 
the amplitudes corresponding to Fig. 4.1 and the full predictions (which include, fairly 
uncertain, estimates of real parts) in Table 4.1. 

Table 4.1 Comparison of estimates of TCB contributiorxs to the branching fractions of WRHD. 
(in units of 10m3) 

Zakharov52 FarrarS3 Kogan54 Reid55.56 

lower lower full lower full full 
Process bound bound estimate bound estimate estimate 

c+ + PY 0.07+0.04 0.007 0.3fl.2 
O. 77 

+1.29 
-0.49 

A + ny 0.83 0.85 1.9+o.E3 I. 20 +0.46 -0.04 
- 

z +x-y 0.13 0.10 0.17 

R- 4 E-y 0.008 0.01 
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5. Specific Measurements and Techniques 

5.1 c+ + py 

Measured for the first time twenty five years ago, the large negative asymmetry in this 
reaction spurred further work in WRHDs. Figure 5.1 shows the history of this asymmetry 
measurement. In these plots we have combined in qluadrature the statistical and systematic 
uncertainties for each of the measurements. 

5; a 

-1.5 
1965 1975 1985 1995 

Year 

Figure 5.1 History of measurement of Z+ + py asymmetry parameter 

From Fig. 5.1 we see a steady reduction in the uncertainties of the individual 
measurements. Combining these measurements we find for the C+ -+ py asymmetry 
parameter, cx=-0.76-t-0.08. This is shown on Ft, ‘0 5.1 by the dashed line. Crucial to these 
experiments is the ability to produce a E + with well known and controllable 
polarization. The primary measurement is of the decay asymmetry which is the product of 
the polarization and the intrinsic asymmetry parameter, a. Knowledge of the polarization 
comes from the measurement of a decay which has a known a parameter in the same 
beam or from a reliance on some other method of the determination of the polarization. 
Knowledge of the production polarization through known phase shifts has provided this 
for the low energy experiments. 

These measurements utilize a variety of techniques to produce the polarized C+ 
needed for asymmetry measurement which is illttstrated in Table 5.1. The fact that the 
polarizations are derived from different reactions and are of differing magnitudes but that 
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the experiments still give consistent values of a lead one to the inescapable conclusion 

that a is large and negative in the decay C 
+ 

+ p]‘. 

Table 5.1 Properties of X+ + py asymmetry experiments 

Experiment Laboratory Reaction C+ Momentum Polarization 

GeVlc % 

Foucher* Fermilab p cu-+x ,x+ 375. 12. 

I Kobayashi3* KFK 

Manz25 CERN 

Gershwin24 LBL 

+ + 
7r +p+K Z 1.7 87. 

- + 
n-p --+ K C 0.42-0.50 = 1 O-90 

K-p 
- + 

+n I: 0.5 40. 

The branching fraction measurements are plotted in Fig. 5.2 and give a similarly 
consistent picture. Again these experiments use different techniques and have differing 

systematic uncertainties. Their weighted mean and standard deviation is 

(f + py)/( C+ +all)=(l.23+0.06)*10-3 

and is represented by a dashed line in Fig. 5.2. 

G 
8 1.5- 
5 I, 

s _------ 

.- Ti 

t 

1:: 

------ 

f 

i l.O- 
z .- 
r 

i 
tb 

1965 1975 1965 1995 
Year 

Figure 5.2 History of measurement of C’+ + py branching fraction 
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Needed in these experiments is both the ability to produce sufficient samples of 
polarized hyperons as well as careful control of systematic uncertainties. We illustrate 
how this is done by looking in some detail at one of these experiments. 

The experiment of Foucher et al. 8 is shown in Fig. 5.3. In this classic high 

energy charged hyperon beam experiment, the Cs’ are produced by 800 GeV protons 

incident on a small Cu target at the ensrance of a large “hyperon” magnet. The latter 
serves as a magnetic channel selecting particles within a narrow momentum and angle 
range thus defining the transverse momentum, pt, and Feynman x, xf, of the produced 
hyperons. Reversing the sign of the targeting angle reverses the sign of the hyperon 
polarization. Since this can be done by changing currents in magnets upstream of the 

“hyperon” magnet. the resolutions and backgrounds in the spectrometers are not affected. 
This is a powerful technique for controlling systematic uncertainties. 

I I I 

Om 25 m 50 m 75 m 

Fig. 5.3 Cf -+ py Apparatus of Foucher et. al.8 

The charged beam had a mean momentum of 375 GeVlc and provided a large flux 
(=I000 Cf per second) of E+ at the decay region indicated in Figure 5.3. The 
momentum and direction of the beam particles were measured by the magnets and 
detectors of the hyperon spectrometer. The decay products of the C+ were measured by 
the photon and baryon spectrometers. 

High spatial resolution detectors in the hyperon and baryon spectrometers of Fig. 
5.3 allowed excellent mass resolution. The required trigger was simple in that it only 
required the conversion of a neutral photon into a charged electromagnetic shower in a set 
of steel plates. This means that C+ decaying through the Cf -+ py were recorded at the 
same time as C+ + pn” decays, thus providing a measurement of the beam polarization 
from the well known decay properties of the Z+ -+ pn” Fig. 5.4 shows a mass squared 
distribution (Mx2) of the missing neutral 
where we assume the hyperon track is a I: 

P 
article (X “) for the hypothesis Cf + pX” 

and the baryon track is a proton. 
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c++pn” (48M) 
/‘A 

2400 

- 2000 
5 
g 1600 

-0.02 0.0 0.02 0.04 0.06 

M2xo [GeV2] ~+--+px” 

Fig, 5.4 Event distributions of the mass squared of the missing 
neutral particle (X “) for the hypothesis Z 

+ 
-+ p X0 

-0.01 -0.005 0 0.005 0.01 

M2xo [GeV2] P+pX” 

Fig. 5.5 Same as Fig. 5.4 after selection criteria are imposed. Note that one can estimate 

the background from the C+ + pX” peak. 
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Note the size of the event sample, the small shoulder corresponding to the 

radiative decay, and the peak corresponding to the decay of beam kaons. Imposition of 
selection criteria on the energy and angle of the neutral particle* results in the event 
distribution of Fig. 5.5. Here the radiative decays are clearly seen above a relatively small 
background. The larger event sample and the ability 1.0 change the direction of polarization 
allowed this experiment to compete favorably with Kobayashi et. al38 even though their 
X+ polarization was much larger as indicated in Table 5. I. 

The measurements of Kobayashi et. a13* and Foucher et.al’ used very different 

experimental techniques. Not only were their Cf produced with different energies and 
polarizations, but also different methods of idelntifying the radiative decays were 
employed. Yet the fact that both experiments give similar and unambiguous results as 
shown in Figures 5.1 and 5.2 should reassure the reader that there are no hidden sources of 
systematic uncertainty. The X’ + p y branching fraction and asymmetry parameter are 
the most precisely measured of any of the radiative decays. There is no way of escaping 
the fact that the asymmetry is large and negative. Statistically, it is almost ten standard 

deviations from zero. 
By reversing the currents in the magnets shown in the experiment of Fig. 5.5, a 

measurement’6.57 has been made of a WRHD of an antibaryon, z- -+ py. Its 
measured decay parameters are consistent with CPT invariance. 

5.2 A”+ ny 

This decay presents special problems to the experimenter since both the initial and final 

states are neutral. Although the asymmetry has not been measured so far, two 
measurements have been made of the branching fraction. 27,29 The first measurement29 
utilized A” from the decay Z- + h”n- in the CERN charged hyperon beam. The 
momentum and the direction of the A” were de:termined from the momentum and 
direction of the 6- and TC-. Although the A0 resulting from the E- decay are polarized, 
the small event sample from this experiment (31 events) allowed for a measurement of 
the branching fraction only. 

The second experiment3p27,28 utilized a very different technique. A stopping 
beam of K- produces A”s through the reaction K-p + Aon’. Measurement of the 
energy and direction of the two photons from the :r” decay fixes the kinematics of the 
A”. In this case the A” is unpolarized. As can be seen from Table 2.1 the two 
experiments are in poor agreement differing by about 2 CT. High intensity charged hyperon 
beams are available at Fermilab which could produce large fluxes of polarized A” from 
Z- decays. Definitive measurements of both the branching fraction and asymmetry could 
be made at Fermilab. 
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5.3 ?+A”yand?-+C”y 

The identification of these all neutral topologies relies on the observation of the decay 
A”+ pn- for the Z;“+ A” y or the electromagnetic decay Co-+ A” y for the 
Z’+ C” y. Both of these 2 WRHDs have been measured32,33 in Proton Center 
neutral beams at Fermilab. The geometry of these experiments was similar and is 
illustrated in Fig. 5.6. In each case a high energy proton beam impinged on a small 
target. A large high field magnet served to deflect charged particles and produce a 
collimated neutral beam containing 2 as well as mlore copious amounts of A”, K”, and 

neutrons. The 2’ component can be identified because it is the only source of A” which 
do not originate in the target. (Since the Xc” lifetime is very short, A” produced by its 
decay appear to come from the target.) Because the Z” were inclusively produced, one 
does not have direct measurement of their momenta. However, from the reconstruction of 
the direction and momenta of the A0 from its decay A’+ pl”-, one can combine this 
with photons in the same event to determine the Z’ direction and momentum. 

Fig. 5.6 Simplified version of the apparatus of Teige et al.33 

We note that these experiments were done as subsidiary measurements in 
existing experimental configurations and each contained less than 100 events. These 
pioneering measurements demonstrated the versatility of high energy neutral hyperon 
beams in extracting the parameters of the E.” WRHDs. Enhanced statistical precision is 
clearly needed, however. This is particularly important for the determination of the 
asymmetry parameters since at this time one is not even sure of their signs. 

The Fermilab neutral kaon facility now under construction may offer the best 
possibility for new information on the E” WRHDS.~~ This experiment has as its 
primary goal the measurement of CP violating parameters in the kaon system and has 
excellent photon detection capabilities. Utilization of the Z” component of this beam has 
the capabilities of increasing the statistics of the Z’ WRHDs by one to two orders of 
magnitude. 
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5.4 E- + z-y 

This decay presents experimental challenges because of its small branching ratio 
(5: 10e4), the small polarization of the 8- (= lo%‘), and the need to identify the C- 
either directly or through it major decay mode Z- + nrr- in order to suppress 
backgrounds. The branching fraction was first measured in the CERN hyperon beam31 

3o with a sample of 11 events. More recently the Fermilab group with about 200 events 
was able to improve on its value as well as present weak evidence that the asymmetry 
parameter is positive. The measurement of the asymmetry parameter is of particular 
importance since this is the most accessible WRHD that cannot proceed by a two quark 
diagram (Fig. 7.1). Consequently, an improved measurement would help shed light on 
the other processes. 

5.5 51- + E,- y and Q- + =*(1530) y 

Neither of these decays have been seen. The considerably lower fluxes of rZ- in hyperon 
beams(com aredto C- and 3- 
unpolarized9*60 

) coupled with the observation that Cl- are produced 
make these branching fractions and asymmetry parameters particularly 

difficult to measure. Tertiary beams of polarized fJ- have been produced and used to 
measure the a- magnetic moment. 61 However since they involve using polarized 
hyperon interactions to produce polarized Sz- in a spin transfer mechanism, there is a 
further reduction in Q- beam rate. While a new experiment might be expected to push 
the f2-+E- y branching fraction to a level where it might be seen, a measurement of 
the asymmetry is not on the near horizon. 

6. General Theoretical Framework 

Great interest in weak radiative hyperon decays was stimulated both by the apparent 
disagreement between Hara’s theorem and experiment and by the argument that 
nonetheless these hyperon decays should appear simpler and more susceptible to 
theoretical description than the nonleptonic ones. In the latter case the presence of two 
strongly interacting particles in the final state requires consideration of all complications 
due to final-state strong interactions while in WRHD one of the two outgoing particles is 
a strong-interaction-blind photon. Thus, final-state strong interactions appear to be absent 
in WRHD whose description may consequently be expected to be less dependent upon 
unknown details of strong interaction dynamics. 

However, as the problems with Hara’s theorem indicate, this expectation is 
misleading. Proper description of weak radiative hyperon decays is, most probably, at 
least as difficult as that of nonleptonic ones where there is no consensus as to the relative 
size (and sometimes also sign) of the contributions from various physical mechanisms. 
The standard general theoretical framework used in the description of nonleptonic decays is 
not disputed, however. Most attempts at a description of WRHD fit into a similar 
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standard framework. These two frameworks constitute two parts of a single theoretical 
scheme that unites weak couplings of pseudoscalar and vector particles to baryons. This 
general theoretical scheme has been known for years.62 It has been reviewed recently 
anew in an updated form6365 which takes into account the development of the quark 
model in the intervening years. In this section, we describe this general scheme of the 
weak couplings of pseudoscalar and vector particles ‘to baryons. We shall consider here the 
requirements imposed by the conditions of gauge invariance only very briefly. Their 
further discussion is shifted to appropriate sections of this review where we show how 
calculations of various papers fit into the general sch’eme presented here. 

Let us therefore consider the couplings B.B M (where B. denotes the initial 
(final) baryon and M is pseudoscalar (P) or vector r(V) particle) in( fhe presence of weak lff 

interactions. 
In general, the weak interaction Hamiltonian may act in any one of the three legs 

of the BiBr.M coupling as shown in Fig. 6.1. 

Fig. 6.1 abc. Diagrams for the weak BiB,,.M coupling. 

The cross denotes the action of the weak Hamiltonian 

We postpone the discussion of the boson-leg contribution (c) for the moment 
and focus on diagrams (a) and (b). To stress similarities between the weak couplings of 
pseudoscalar and vector particles, we shall consider both of them alongside each other 
starting from a fairly extensive discussion of the troublesome parity violating amplitudes. 
This will be followed by a brief presentation of the standard approach to the parity 
conserving amplitudes. 

6.1 The contribution of baryon poles 

6.1.1 Parity violating amplitudes 

Let us consider the action of the parity violating part HP’V’ of the weak Hamiltonian in 
the baryon legs of Fig. 6.1. The intermediate states .B, may be the ground B, (,$$“) and 
the excited B *(g-), B *(x+),... baryon states. The Lee-Swift theorem66 requires that 
in the SU(3)‘1symmetry’limit the matrix elements of HP”’ between the ground states 
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vanish. Therefore, the contribution of the intermediate ground states B, x’) is generally 

neglected. The dominant contribution is then expected to come rom the excited 

B,* (j$-) baryons. 

6.1.1.1 Pseudoscalar particles - nonleptonic decays 

General expressions for the parity-violating (s-wave) Bi + BfM nonleptonic hyperon 
decay (NLHD) amplitudes are 

f P = Au u. 
.f 1 

(1) 

It is straightforward to show that for the pseudoscalar mesons, the excited B * II 
baryons contribute to the A amplitude as follows 

where 

g I3 ,B t’hrt*i 
f n* 

bfi*gB B,p 
+ t1* 1 

m. - 171 
L n* mf-mn* 

I 

(2) 

(3) 

with b,,, = b *. (from hermiticity and CP invariance). In Eq. 2. 
strong (parity”ckserving) couplings of pseudoscalar mesons to the 

BB*P(43*BP) are 
,$$+, 1/2-) pair of 

baryons 

(4) 

20 



The standard current algebra form67 is obtained from (2) through the use of generalized 

Goldberger-Treiman re1ations65.68 

gs*BP =4( mkf* - m,)cp,B*B 
P 

= g,,,, = $(ql - m,*)g,BB* (5) 
P 

where fp is the decay constant of the pseudoscalar meson P and gf*B = - BB* is the gA 
axial vector coupling constant. 

In the soft meson limit qfi + 0, i 
the use of Eq. 5 reduces Eq. 2 to 

the standard commutator relation’of the approximation AcA to A : 

45 ACT = lim A = - 

q+o fpa 

42 

=+fpa -\ fl[ 
B 

(6) 

where Qt is the axial charge. Away from the soft rneson limit, we have 

1~ B Bn*Bi 

C 

i 

gA* n*bn*i + ‘fi*gA 1 (7) 
mi - m 

n* mf -mn* 

where the second term describes this part of the contribution from the excited intermediate 

states Bn, IT- 
v i 

that vanishes in the qp + 0 mi = mf 
( 1 

limit and therefore cannot be 
absorbed into the standard commutator term of current algebra. The advantage of current 
algebra approach over that of the pole model appears in the limit of exact SU(3), when 
the second term in Eq. 7 vanishes and, consequently, no information on the x- poles is 
needed. 

For further discussions of the relationship of the genera1 scheme to the quark 
mode1 calculations we need to establish a connection (if any) between the above 
considerations and the quark model. That such a connection exists has been observed by 
Korner and Gudehus.h9 In 1979 Korner, Kramer. and Willrodt7’ proved that the soft 
meson approach and the quark mode1 are totally equivalent in a group theoretical sense. 
The question has been discussed also by Desplanclues, Donoghue, and Ho1stein.64 We 
shall come to the questions of dynamics in the quark mode1 after completing our 
presentation of the standard genera1 scheme. 
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6. I. I .2 Vector particles - radiative decays 

For the vector particles, we have [wo possible (vector and tensor) strong 
couplings of vector mesons tmo the (x’ ,x-) pair of baryons: 

gBn*BiVyp +fB,*BiViopvqv 1 YS’i 

gB,B,lJ~y; -fs,.BnJ&v% yS”n* 1 (8) 

with 

g,,,.,,v = gB,B,.v 

f B,.B,V = fB,Bn.V’ (9) 

From Eq. 3 and 8 it follows that: (1) the contribution from the vector coupling gBwBv to 
the parity violating B, + B, V amplitude is 

c .“+ 
I- 

(1 

[ 

b,*g B .B,V gB,B,.V n*t b# 
- (10) 

m, -mn* mj - m,, I 
&‘5q y, ysui 

B - n* 2 

and thus it determines A, in Eq. 1 while, (2) the contribution from the tensor coupling 

f B*BV 
is 

(11) 

and thus it determines A3 in Eq. 1. 
When the vector particle under consideration is a photon, standard application of 

the requirement of gauge invariance to the gB*By and fB*By couplings implies (as in the 
Section on Hara’s theorem) that 

gB*By = 0. (12) 

Only the contribution from the tensor coupling fBeBy survives then leading 
(through Eq. I I) to the standard gauge invariant form of the BiB+.y parity violating 
coupling used in the derivation of Hara’s theorem. 
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6. I .2 Parity conservitzg amplitudes 

Let us now consider the parity conserving amplitudes. Since the matrix elements 

~~~~@;~4~(~~) vanish in the SU(3) limit (just as in the Lee-Swift theorem), 
I 

II 2 and the excited B,,, 1 2+ 
v 1 

states may contribute significantly to 

the parity conserving amplitudes. In simple models the contribution from the ground 
states is assumed to be dominant. Consequently, with 

(13) 

we have the following expressions for the parity conserving (p-wave) B, -+ B,fM 

amplitudes. 

and 

+E*‘ii i0 
f /J vqvui 2 

i 

1+ 
42 z 

f Bf BnVani “fngBnBiV 
+- 

mi - tti,, mf -*tl 
I 

(14) 

are vector (tensor) parts of the 6\ B, V or B, B,/ V coupling constants. 

6.2 The quark model and QCD 

As mentioned before, for the parity violating NLHD amplitudes the soft meson 
approximation and the quark model results were shown to be equivalent in a 
group-theoretical sense. Such an equivalence leaves plenty of room for the dynamics. The 
modern way of supplementing the quark model with the dynamics involves introduction 
of quantum chromodynamics and its subsequent treatment through the application of the 
operator-product expansion and the renormalization-group techniques. 71 
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The effective operator employed to analyze AS = I weak interactions has the 

form72-74 

H &js=l = 
G, sin 8(, cos 0 

c xciOi +h.c. 
245 i 

(16) 

where the four-quark operators 1 I 0, are the lowest-dimension operators appearing in the 

operator-product expansion and are defined by 

Ol=HA-HB 

01=HA+HB+2H,:+2HD 

03=HA+HB+2H,:-3HD 

04=HA+HB-H, 

0 

with 

(17) 

(18) 

l-y E y”(l+ ys), r,” = YV-yd (19) 

The long-distance physics resides in the matrix elements of the Oi operators. The 
“penguin” operators O,, O6 ( see Fig. 6.2.) have a (V - A)(V + A) chiral structure 
whereas the remaining Oi operators are (V - A)( V .- A). 
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Fig. 6.2. Diagrams corresponding to the effective AS = 1 Hamiltonian: 
(a) nonpenguin (b) penguin. 

Operators 0,, 0, 0, and O6 transform like SU(3) octets and are AI = x 
operators. OJ and O4 a;e 27-plets carrying Al = x and Al = g respectively. The 
coefficients ci contain the short-distance effects of hard gluons and are calculated by 
studying the QCD renormalization group equations. Without QCD evolution one has 
C, = 1, C, = x, c3 = xs, C, = $$, cs = c6 = 0. For the case under consideration a 
typical set’4-76 of these coefficients is 

c - 
1 

2.5 c2 - 0.08 c3 - 0.08 c4 - 0.40 

c5 --0.05+-0.1 C6 - -0.01 + -0.05. (20) 

Thus, radiative QCD corrections result in the enhancement of the octet Al = 1/2 
0, operator and the suppression of the AI = ;r/, 04 operator.73.77 This dynamical 
argument goes some way towards the explanation of the Al = x rule. Furthermore, with 
penguin operators being flavor octet Al = x objects, a further enhancement of the 
ill = %A amplitudes is predicted. The standard values, of the penguin coefficients cs, c6 are 
small: they vanish in the limit of mc = mu because of GIM cancellation. They are too 
small by a factor of order 5 to provide a satisfactory explanation of the AI =x 
rule.76,78 

In the baryon sector, however, this Al = s rule is readily explained as an 
automatic consequence of color symmetry. The relevant argument, known as the 
Pati-Woo theorem79*80 implies the vanishing of the matrix elements of the Al =x 
operator O4 between the baryonic states. Actually, one can show 76 that 

(B’~OiIB) = 0 for i =: 2,3,4. (21) 

Thus, the net effect of the QCD-enhancement factors is just to change the overall 
size of the Pati-Woo-allowed baryon-to-baryon weak matrix elements of diagrams (a) and 
(b) in Fig. 6.1. It cannot change such qualitative characteristics of quark model 
calculations as the violation of Hara’s theorem in this model, that is the basis of the 
controversy regarding the WRHD. The QCD colnsiderations of this section might, 
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however, be more important in the boson-leg diagrams (Fig. 6. lc) where the Pati-Woo 
theorem does not apply. 

6.3 The boson-leg contribution 

At the quark level the boson-leg contribution (Fig. 6.1~) is often identified with the 

factorizable amplitude. The factorization prescription corresponds to the insertion of the 
vacuum state between the quark bilinears of the 4-quark Fermi interaction. In the case of 
nonleptonic hyperon decays, upon invoking PCAC, the use of factorization prescription 
gives a contribution that vanishes in the SU(3) limit.*’ At the hadron level the strength 

of the kaon-pole diagrams relevant in the parity conserving amplitudes is governed by the 
Kn transition matrix elements. It has been stressed63976 that quark model estimates of 

(4%nk I > K involve substantial cancellations and cannot be reliably computed. 
Application of chiral Lagrangians to provide phenomenological estimates of these matrix 
elements indicates that kaon pole terms are small1 in comparison to the baryon pole 
terms.63 For a thorough review of the meson sector relevant here see a recent paper by 
Cheng.78 In other phenomenological studies of N’LHD the kaon pole contribution is 
substantial, however.82*83 This disagreement constitutes just one example of the lack of 

general consensus concerning the relative magnitudes of various contributions in the 
nonleptonic hypcron decays. We shall discuss other such disagreements in the next 
section. 

Since the decays of hyperons to other ground-state baryons and vector mesons are 
kinematically forbidden, we know even less about the boson-leg contribution for vector 
particles. Consequently, the contribution of this type of diagram in the weak radiative 
hyperon decays is often treated with the help of free parameters. Indeed, as Gilman and 
Wise75 put it 

“while sometimes disguised in the language of the operator-product expansion, 
much of the short-distance analysis boils down in the end to finding the local 
operators which correspond in a particular model to the amplitude for the 
transition of an s-quark to a d-quark plus photon”. 

7. Phenomenology of the Standard Approach 

7.1 Pole models 

As it has been discussed in the previous section, the standard schemes for the description 
of the nonleptonic and weak radiative hyperon decays belong to the same general 
theoretical framework. Thus, it is quite plausible that our present phenomenological 
knowledge of NLHD might be useful in providing not only a background but also some 
important input needed for an understanding of WRHD. Accordingly, we must present 

first a brief overview of the present phenomenological situation in the NLHD sector. 

26 



7.1.1 Nonleptonic hyperon decay5 

As mentioned before, there is no consensus as to what are the relative sizes of 
various contributions to the NLHD amplitudes. Before we present the conflicting 

theoretical views, let us therefore recall the model,-independent characteristics of these 
decays. These are given by SU(3) fits to the relevant experimental amplitudes, obtained 
as follows. 

For the parity violating amplitudes, the soft-pion approximation (Eq. 6.6) can 
further be reduced through the use of the commutation relation 

(1) 

where Q” is an SU(3) generator. 
After working out the action of Q” on the baryon states 

(QUIEi) = Iq>. (“, 12’ = (@I) one finds that the current algebra approximation ACA is 
given in terms of the matrix elements of the parity-conserving part Hp.c. of the weak 
Hamiltonian between some baryon octet states B, B’ 

(BIH~.C~B’) (2) 

The SU(3) parameterization of this matrix element is 

(3) 

where B’, B on the right-hand side are standard .3x3 matrices corresponding to the 
baryons in question and S = A, is the (s#d symmetric) octet spurion representing the 
weak Hamiltonian. SU(3) fits to the s-wave amplitudes 84 give .‘A = -2.5. Similar 
fits5’*63785-87 to the p-waves yield ,‘A = -1.8 to - 1.9. These experimental numbers 
still constitute a problem for the valence quark model (current algebra)88 in which one 
obtains .z = -1. 

Existence of relatively good SU(3) fits to the NLHD amplitudes indicates that in 
these decays SU(3) is a fairly good approximate syrnmetry. Thus, the Lee-Swift theorem 
should be satisfied fairly well in the real world. Still, one may wonder how big the 
(BIHP.V’I B’) matrix elements could be when SU(3) is weakly broken. Theoretical 
estimates of the ratios (BIH~~~~IB~)/(BIH~.~.I ‘) B performed by Golowich and 
Holstein89 in the context of the bag model indicate that they are of order of 1% in NLHD 
(5% in WRHD). As far as WRHD are concerned, the above considerations support, 
therefore, the assumption of the overall SU(3) symmetry used in the proof of Hara’s 
theorem. 

The origin of the discrepancy between the valence quark model and the 
experimental values for the .‘A ratio has not been yet agreed upon. LeYaouanc et al. 

proposed9’ that the departure of the phenomenologically determined .‘/;: ratio from its 
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valence quark model/current algebra value is due to a nonvanishing contribution of the 
second term in Eq. 6.7 (which vanishes for degenerate octet baryons). In explicit quark 
model calculations, they have found that this term is of the order of 50% and negative 
with respect to the commutator term. Using the pole model fit of Gronau ** for the 
p-waves (which, when experimental baryon masses are used, needs j$$ = -1.18) they were 
able to explain both the value of ‘A observed in the s-wave amplitudes and the relative 
size of s-wave and p-wave amplitudes (the s:p ratio). 

General theoretical scheme of the previous section admits, however, 

contributions from other intermediate states besides the (56, 0+)x’ and (70, l-)1/2- 
baryons discussed in LqYaouanc et. aL9’ A thorough study of the contributions from 
radially excited (56, 0’) x’ b ar ons as well as K* and K mesons has been carried out y 
by Bonvin.82 His calculations confirm general qualitative features of LeYaouanc et. ai9’ 
i.e.. that the SU(3) symmetry breaking part of the contribution of (70, I-)x- is 
significant and interferes destructively with the commutator contribution, thus partially 
curing the problem of the s:p ratio. Hoyever, he also finds that the contributions from 
the meson-leg diagrams and the (56, 0’) )/2+ radially excited baryons are far from being 
negligible. As a result, his decomposition’s of the amplitudes A and B into different 
contributions are totally different from those of LeYaouanc et. al. 9o 

Another approach for alleviating the -‘A problem has been proposed by 
Donoghue and Golowich” who considered the effects of quark sea on the soft-meson 
approximation A cA. Both the QCD sea (corresponding to the enhanced pen&din 
contribution)91 and the sea generated by unitarity on the hadron leve192 increase ‘A of 
the soft pion contribution substantially (to around -1.6). This is close to the experimental 
value extracted from p-wave amplitudes. For the s-waves the j$$ ratio is further enhanced 
to around -2.2 or even -2.5 by the SU(3) symmetry breaking in energy denominators of 
the intermediate states.93 

In fact, under certain assumptions a value of - 1.6 for the .‘A ratio of the soft 
pion contribution has been determined phenomenologically by Pham.94 His 
determination raises further doubts as to the validity of the previous decompositions82.90 
in which the value (4 

.f d =- 
soft pion 

I was used. The bigger value of the soft-pion .fA 
ratio was utilized in a recent update on the pole model by Nardulli.83 His decomposition 
of the amplitudes again differs significantly from LeYaouanc et. a19’ and Bonvin. 82 In 
view of the uncertainties just discussed, a recent claim 95 that nonleptonic hyperon decays 
can be well understood should be considered as over optimistic. 

In conclusion, no generally agreed upon explanation of the ,fA problem in NLHD 
exists. This situation is Olle of the reasons for the proliferation of various results for 
WRHD - all obtained in the framework of the same general theoretical scheme. 

7.1.2 Weak radiative hyperon decays 

As discussed in Section 6 the tensor couplin, ~7 contribution from the intermediate 
(70, l-)1/2- baryons leads to the standard form, Eq. 3.9 of the parity violating coupling 
of photon to baryons. Estimates of the contribution from the t/2- baryons were 
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performed by many workers96-‘00 at the time when the CERN experiment25 was being 
carried out and again, more recently 83,‘01”02 when a new wave of experimental results 

became imminent. Originally, the most extensive calculations were performed by Gavela 
et a1.96 To find out the contribution from the t/z- baryons, they evaluated the 
parity-conserving t/2- + x_’ y s-wave decay amplitudes in the quark model following 
the old Copley et al. methodlo and identified the results with the phenomenological 

couplings fBBay in Eq. 6.8. 
For the particular decay C+ + py, nonvanishing contributions come from 

N *+ ( 28) (Fig. 6. la) and 1 *+ ( 28) (Fig 6.1 b) members of the (70, l-)x- multiplet. 
In the limit of exact SU(3) one has 

f ,,N’+ y = fzyr 

h 
N”E’ 

= $..+,, 

(4) 

Using Eq. 6.9 and Eq. 6.3, one obtains then that in the SU(3) limit these two 
contributions cancel each other in expression Eq. 6.11. In this way, contributions from 

tensor couplings f * satisfy Hara’s theorem. Since the parity conserving C+ + py 

amplitudts in the :Je’model are proportional to the difference ,LL~+ -p,, of baryon 
magnetic moments (i.e., f‘ BB,y in Eq 6.15), the final result for the asymmetry and the 
branching fraction of the C+ + py decay is very sensitive to the value of /.L~+ - p,,, a 
feature already observed by Farrar.53 Thanks to the fact that the experimental value for 

P -p is significantly bigger than the quark model result, Gavela et a1.96 were able 
to$aint large negative C+ + py asymmetry. (This would not have been the case had 
they used the physical X+, p masses and the additive quark model for the evaluation of 

P , p .) This and other results of Gavela et a1.96 are compared with the results of later 
ex$i&nts (see Table 2.1) in Table 7.la (branching fractions) and Table 7. lb 
(asymmetry parameters). It is seen that their predictions went wrong in several places. 

The contributions of the C* and N* resonances to the parity violating 
C+ + py amplitude have also been estimated in the bag mode1.100 As in 
Gavela et a1.96, Hara’s theorem was satisfied by the cancellation of the contributions 
from these two resonances. Despite such similarities, the overall size of the parity 
violating and parity conserving amplitudes was found to be over an order of magnitude 
smaller than experimentally observed. 

One may wonder if contributions from other intermediate states such as decuplet 
baryons could not bring theory in agreement with experiment. This does not seem to be 
the case, however. First, in the quark model such contributions vanish since the decuplet 
wave function is symmetric. 79t90 Second, explicit considerations of decuplet 
contribution by Scadron and Thebaudlo4 have yielded predictions that totally disagree 
with the present data on WRHD. 
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7.2 Quark models 

Pole model calculations of the parity violating amplitudes B(x+) -+ B’(~+)Y 

consist in the explicit evaluation of the contribution from the intermediate vZ2- states. 
Thus, a good knowledge and understanding of both the parity conservin 

B*(K) + @+)r amplitudes and the parity violating (qK)Iq +s+ f 
matrix elements is needed in such calculations. In connection with this requirement, tt 
should therefore be recalled from Section 6.1.1 that in the related case of nonleptonic 
hyperon decays and in the limit of exact SU(3), the current algebra/quark model approach 
enables us to bypass the need to know anything about the x- poles. Thus, the quark 
model should provide a simple and transparent way of understanding the salient features of 
pole model calculations. Furthermore, calculations of weak radiative hyperon decays in 
the quark model may be more reliable than in the pole model. One might then also hope 
that in the quark model the questions of SU(3) symmetry breaking can be dealt with more 
easily. 

7.2.1 Single quark processes 

Within the quark model framework, the simplest assumption one can make is that the 
radiative weak decays originate from a strange quark decaying into a down quark with the 
emission of a photon (Fig. 7. la). That is, one may assume that contributions from other 

h Y L-+-d s-u s 

C-d 

P- Lu 

h h uAd - 

(4 (b) (cl (d) 

Fig. 7.1 a-d Representatives of usually considered quark diagrams. a) single-quark 
emission b) two-quark bremsstrahlung c) three-quark transition d) internal radiation. 

processes such as those shown in Figs. 7.lbc are negligible. The contribution from 
diagram (d) is suppressed by the presence of two W-propagators. It is a great virtue of the 
quark model that the general structure of the complicated contributions from baryon poles 
can be summarized through such simple quark diagrams. In fact, from the presence of the 
u quark in the structure of diagrams (b, c, d) in Fig 7.1 it follows immediately that the 
amplitudes of the Z- -+ C-y and Q- --+ Z- y decays may receive contributions from 
single-quark processes (Fig 7.la) only. Now, assumptions similar to the dominance of 
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diagram (a) worked very well for baryon magnetic moments and so one might think that 
it should work for the WRHD as we11.1°5 In 1979, treating the magnitudes of the parity 
violating and parity conserving amplitudes as free parameters (compare Eq. 6.3), Gilman 
and Wise75 found, however, that this assumption is totally incompatible with the 
existing data. Their estimates of the branching fractions in the single-quark emission 
model are presented in Table 7. la. 

7.2.2 W-exchange diagrams and the violation of Haras Theorem 

First attempts to include diagram (b) from Fig. 7.1 have been made by Kamal and 
Verma.lo6 Considering both diagrams (a) and (b) but neglecting (c), treating the overall 
sizes of the corresponding amplitudes as free parameters and antisymmetrizing the 
contributions from various diagrams of type (b) to satisfy Hara’s theorem, they carried out 
a fit to the then-existing data. Their two solutions, shown in Tables 7. lab are seen to be 
incompatible with the present data. The antisymmetrization prescription imposed by 
Kamal and Vermalo6 does not belong to the quark model, however. It constitutes an extra 
condition inconsistent with the standard prescriptions of the quark model (as this model is 
formulated today). In fact, if one follows the rules of the quark model closely and pays due 
attention to the question of gauge invariance at the quark level, one finds that the 
W-exchange diagrams of Fig. 7.1 b violate Hara’s theorem, as observed by Kamal and 
Riazuddin (KR)50*‘09 in 1983. 

The KR calculation proceeds as follows. The contribution of the diagram of 
Fig. 7.1 b is proportional to 

u(2e. p, + &$-,P sdrLPu 

(pu +q)* -d 
(5) 

where E is photon polarization, 9 its momentum, p, momentum of the final u quark 
and m its mass. 

The term proportional to E. p, vanishes after the integration over quark 
momenta in the final baryon. lo6 To evaluate the leading term in Eq. 5 it is sufficient to 
approximate the quark propagator by l/(q.pu)= l/(qm) and to use the static 
approximation for Dirac spinors. Taking the limit of exact SU(3) one then obtains, after 
the nonrelativistic reduction, the following parity violating Hamiltonian for the sum of 
all relevant W-exchange diagrams 

HP’V’ 0~ P.(u++(d+&). (6) 

The expectation value of this operator sandwiched between the SU(6) spin-flavor 
internal wave functions of C+ hyperon and proton is nonzero. The origin of this 
surprising result and, in particular, its connection with the pole model is not clear in this 

calculation, however. Since the assumptions upon which Hara’s theorem rests seem 
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unshakable, the result of Kamal and Riazuddin has been dismissed by some workers as 
exhibiting just a kind of pathology of the quark model. Others, nonetheless, tried to find a 
place for it in the existing hadron-level formalism. 

In their original paper Kamal and Riazuddin claimed that of all assumptions used 

in the derivation of Hara’s theorem, it is I he assumption of Al = 1/2 octet dominance that 
is not satisfied in the quark model. However, the proof by Gourdm 44 (see Section 3.1) is 
not based on this assumption. Moreover - as it might have been expected from the 
related case of NLHD and the Pati-Woe theorem 79Y80 - and as it has been checked by 

explicit calculations’ ’ -octet dominance is satisfied by the quark diagram (Fig. 7. I b) in 
question (see next section). 

An attempt to obtain the violation of Hara’s theorem in the standard pole model 
through the contribution from the a priori possible infrared singularities ‘lo has been 
refuted by M. K. Gaillard. I ” Indeed, such singularities could appear in Eq. 6.1 I in the 
limit of exact SU(3) only if the B*(,$$-) states were degenerate in mass with the ground 
states (i.e., if nzX = 1~1~~ f mN = miv* before the SU(3) limit is taken). Then, in the 
limit q, = mz - ‘~2~ 40 one would obtain from 6.11 a nonvanishing El transition 
amplitude. However. the physical B*( x-) 

@+) g 

states are nondegenerate in mass with the 
round states and, consequently, expression in 6.11 must vanish in the SU(3) 

limit. In a subsequent paperI” Liu assigns the quark model violation of Hara’s theorem 
to the contribution from multiquark, Mn = (2q)(2q) l++ intermediate state in the meson 
leg (Fig. 7.1~). This ad hoc assignment does not help, however, in identifying which of 
the original assumptions of Hara is violated. 

One might wonder if the violation of Hara’s theorem exhibited by the naive 

quark mode1 would not vanish in a more elaborated quark scheme such as the relativistic 
bag model. However, the calculations performed by Lo ’ l2 in the framework of the MIT 
bag model (though with broken SU(3)) have yielded the parity violating amplitude much 
bigger than the parity conserving one. If Hara’s theorem were satisfied in the bag model, 
one would expect the opposite inequality. 

7.2.3 Quark model jits 

Whether we do understand the origin of the violation of Hara’s theorem in the quark mode1 
or not, it is of great interest to try to describe the experimental data in that approach. The 
relevant calculations have first been carried out by Verma and Sharma. ’ O7 They have 
studied the combined contribution from the diagrams (a) and (b) of Fig. 7.1 
(Contributions from diagram (c) have been found negligible in the bag model 
ca1culations.“2 They also vanish in the SU(6)w symmetry approach discussed in Section 
7.3.3). The magnitude of Hara’s theorem violating diagrams (b) has been given by direct 
calculation in terms of the Fermi coupling constant without free parameters. On the other 
hand, the single-quark emission diagram has been expressed in terms of two parameters 
(one for the parity violating and one for the parity conserving amplitude, compare Section 
6.3). With the experimental value for the Z- + C-y branching fraction setting one 
constraint for these t\vo parameters, there is only one parameter in their approach. 
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Alternatively, one may treat the asymmetry of the Z- + C-y decay as an equivalent 

parameter. Verma and Sharma consider three models for the single-quark transition 
amplitude. These models yield three different values for the asymmetry in question. Two 
models give branching fractions which are not in total disagreement with the data. In the 
first model (cq) constituent quark masses are used in expression (3.15) yielding 
(r(S- -+ C-y) = +0.4. In the second model (Id), motivated by an estimate of 
long-distance hadron-level contributions to the effective s + dy vertex performed by 
Palle’ ’ 3, they used 01( Z- -+ X:-y) = -0.4. Predictions of the two models are given in 
Table 7.1 ab. Both models yield much too small branching fractions for the Z” + Ay 
decays. In addition, the branching fraction of the A + ny process in model (cq) is in 
disagreement with the most recent data. As far as asymmetries are concerned, the 
Z” + Coy decay asymmetry is predicted in both models to be close to -1 while 
experiment does not support a large negative value. (Verma’ has corrected the erroneous 

positive sign for this asymmetry reported by Verma and Sharma.lo7) Model (Id) is seen 
to be the best of all models presented so far, but it still strongly disagrees with the data 
for the %” + Ay branching fraction and the Z” + Coy asymmetry. Further work in the 
framework of quark models’ I4 has not improved considerably upon the description of 
Verma and Sharma. lo7 

A very important feature of the quark model is that it gives a positive 
asymmetry for the 6” -+ Ay decay, as suggested by recent experimental findings. This is 
in disagreement with the predictions of papers 96,106. m which Hara’s theorem is enforced. 
On the whole, it may be seen from Table 7.lab that the quark model seems to describe 
the essential features of the data better than previous hadron-level calculations. Thus, it is 
interesting to see if and how the quark model violations of Hara’s theorem can be 
understood in hadron-level language originally employed in the proof of this theorem. In 
the next section, such an explanation based on the vector-dominance model (VDM) is 
given.5’ 

7.3 Vector-meson dominance 

The idea of vector-meson dominance of photon couplings to hadrons (Vector Dominance 
Model, VDM) is thirty years old. Although there is still no consensus as to whether one 
should treat VDM as a purely phenomenological prescription or as something more 

fundamental (though the first point of view is now widely accepted) the usefulness of 
VDM cannot be disputed since it is generally acknowledged that “vector mesons never 
miss”. As an example supporting this statement, one may cite the calculations by 
Schwingerl I5 who has shown that - when one combines the idea of vector-meson 
dominance with by now standard assumptions concerning the spin-flavor symmetry of the 
ground-state baryons - one obtains a parameter-free prediction for baryon magnetic 
moments. In particular, one obtains for the proton ,u~ = 2m 

N 
b 

m = 2.5. (Thus. if the 
idea of constituent quark masses is accepted, this means that t e $alue of the magnetic 
moment of the proton is close to 3 just because there are three quarks in a baryon and two 
in a meson!) Schwinger’s model is still one of the best parameter-free models of 
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baryon magnetic moments.’ l6 Another VDM calculation of Schwinger given in the 
same paper is that of the celebrated 7~” + 2y decay. His VDM calculation gives 
T,,( n” -+ 2 y) = 7.3eV to be compared with the experimental value of 7.8 f 0.5 eV. 
Apparently, for some still not well understood reasons, the quark mode1 and vector-meson 
dominance are forced to give very similar results. That is, the existence of a connection 
between VDM and the quark model is very likely. Now, as far as WRHD are concerned, it 
was precisely the quark model calculation in which Hara’s theorem was violated. Since 
VDM is formulated in terms of hadron-level concepts (which were used in the proof of 
this theorem), VDM might be expected to shed some light on the origin of the violation 
of Hara’s theorem in the quark model. To be able to pursue this line of thought51 we 
shall first present the vector-dominance model and its possible connection with the quark 
model. The connection in question is known as “the Kroll-Lee-Zumino scheme”. 

7.3.1 The Kroll-Lee-Zumino scheme 

On a purely phenomenological level, vector-meson dominance states that the coupling of 
photon to hadrons, Hl , H2, may be obtained by (1) evaluating the expression (see Fig. 
7.2a) 

(7) 

where Ji are currents built out of quarks and VP is a vector meson and then (2) 
performing the substitution 

VP +“Ap 
gV 

63) 

where e2/4,r = H37 and (for V =p) g, = fpNN = 5.0. It is the phenomenological 
prescription of Eq. 7 and 8 that leads to all VDM successes. 

This prescription has been criticized soon after its introduction since it is 
apparently incompatible with gauge invariance. Indeed, the condition that the 
vector-meson-mediated coupling of photon to hadrons (Fig. 7.2a) leads to prescription 
(Eq. 7,8) requires the introduction of the following photon-vector-meson coupling 

m2 
eJVpA 

P’ (9) 
gv 

At q2 = 0 the vector-meson propagator in the diagram of Fig. 7.2a cancels rnc 
from (9) leading to prescription (8). Through the diagrams shown in Fig. 7.2b the 
iteration of coupling (9) leads then, however, to a nonvanishing photon mass thus 
violating gauge invariance. 
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(4 (b) 

Fig. 7.2 (a) vector-meson-mediated coupling of photon to hadrons. 
(b) vector-meson-induced photon mass term. 

A possible resolution of this problem was proposed in 1967 by Kroll, Lee, and 
Zumino’ l7 (KLZ). A good account of the KLZ idea and VDM itself is given by 
Sakurai.1 ‘* In brief, the contribution of terms in (9) to the photon mass requires the 
introduction of a photon mass counterterm 

which, together with vector-meson mass term and the photon-vector-meson coupling of 
Eq. 9 may be combined to form 

(11) 

At this point, KLZ redefine the vector-meson and photon fields as well as 
electric charge by 
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V-$+V’ 
SV 

1 1 
:+-=+ 
e sv e 

eA = e/A’ 

(i.e. e’=e[l-i$+...j=e). (12) 

Then, the expression ( I I) reduces to a mass term for the new vector field Vi, 
while Eq. 7 gives the coupling of the (new) photon field A; to quarks in hadrons 

‘9f2 IAL J;h >. (13) 

In addition, the kinetic term 

( V p” = q% - v/l 1 (14) 

from the original vector-meson Lagrangian gives rise to the following explicitly 
gauge-invariant hadron-level photon-vector meson coupling of the primed fields: 

-!. e. V;VF’P’ 
2 gv 

(15) 

At q2 = 0 the hadron-level coupling of expression (15) vanishes and, 
consequently, in the new (primed) formulation the real photon couples to hadrons solely 
through the explicitly gauge-invariant coupling to quarks in Eq. 13. 
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In other words, according to KLZ, vector-meson dominance provides effective 

means of translation of the quark-level contribution (Eq. 13) into the standard 
hadron-level language (Fig. 7.2a). In the process of this translation the explicit gauge 
invariant formulation in terms of quarks and the primed fields V’, A’ becomes replaced by 
the effective VDM prescription of Eq. 7 and 8. This is precisely what is needed for an 
understanding of the origin of the violation of Hara’s theorem in the quark model.51 

7.3.2 The quarkNDM approuch and the violation of Haras theorem 

According to Zenczykowski” the quark model contribution calculated by Kamal and 
Riazuddin generates, through the KLZ mechanism, a nonvanishing F,(0)iifyP y5ui .Ap 
coupling in the effective hadron-level theory (see Section 3). Such a parity violating 
coupling may be non-zero for vector mesons, and hence, by VDM, also for photons. 
With nonvanishing F, (0) the assumptions of Ham are not satisfied and the theorem may 
be violated. Thus, according to the KLZ mechanism and Zenczykowski5 l . the origin of 
the violation of Hara’s theorem in the quark model is the neglect of the “contact” 
photon-quark interaction (Eq. 13) in all standard hadron-level proofs of Hara’s theorem. 
This identification of the quark model amplitudes with the effective LifyPyy,ujAp 
coupling confirms that the violation of Hara’s theorem cannot arise in the pole model (see 

Section 6) from the tensor couplings fReBy in Eq. 6.8 as attempted by Liu”’ and 
refuted by Gaillard.’ ’ ’ Instead, it indicates that the resulting effective Fry, ySuiAp term 
arises from nonvanishing effective vector couplings g * in Eq. 6.8 and 6.10. It 
should be stressed here that the introduction of nonvanisBhi$ strong coupling g 

B*By 
is 

not an independent assumption. It is the only logicall?, consistent way to obtain a 
nonzero effective F, (0)51 y y u.Ap coupling in a pole model. The vector couplings for .f P 5 t 
the parity violating B’ -+ By and the strong B* + By transitions are either both zero as 
usually thought or both nonzero as suggested by VDM. 

By the KLZ mechanism, the effective g,*,y couplings are then equivalent to 
the couplings obtained in the quark model calculation of the B* + By decays.lo3 In 
principle therefore, using the quark model calculations of the B* + By decays one should 
obtain violation of Hara’s theorem in the pole model. Calculations of Gavela et al.96 did 
employ the quark model to evaluate the B* --;r By amplitudes. However, their 
identification of the quark model results with the tensor couplings has led to the 
enforcement of the Hara theorem, and - not surprisingly - to results different from those 
obtained in genuine quark models (see discussion after Eqs. 7.21 and 7.22 in Section 
7.3.4). One also has to bear in mind that in the related case of NLHD the quark 
model/current algebra approach seems superior to the pole model in the SU(3) limit 
because no information on the x- poles is then needed. One may expect a similar 
(purely practical) superiority of the quark modelNDM approach over the g- pole model 
also in the case of WRHD. Consequently, direct calculation of WRHD in the quark/VDM 
approach may not only be simpler and more transparent but also more reliable (at least at 
present) than the direct pole model calculations of the type performed by Gavela et. al.96 
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Depending on one’s view concerning the meaning, importance and range of 
validity of the vector-meson dominance approach, one may accept or reject the above 
explanation of the violation of Hara’s theorem in the quark model. If the KLZ scheme is 
accepted. there is no doubt that what is being calculated in the quark model is the 
F,(0)iTt.yp ySuiAp coupling in the effective hadron-level theory. (In the anapole 

moment calculations of Musolf and Holstein 119 , the vector-meson mediated contribution 
differs in an essential way from the original VDM.) If, on the other hand, the KLZ 
scheme is not accepted, we have two independent (quark model, VDM) schemes both 
indicating the violation of Hara’s theorem. Their common conclusion is then more 
credible precisely because of the accepted independence of these schemes. 

It should be noted that from the purely technical point of view the origin of the 
violation of Hara’s theorem in the quark model is very simple. It results from the fact that 
- due to the tensor SU(6) structure of baryon wave functions in the quark model - the 
connection between the spin and space degrees of freedom in the quark model is different 
from that in the hadron-level language.‘*’ It is easy to see this in the naive quark model. 
Namely, in the most naive quark model the diagram of Fig. 7.1 b represents a scattering 
amplitude of free quarks. As such it just camot be simply fitted into the standard 
hadron-level language in which the concept of free quarks does not exist. As demonstrated 
by the more sophisticated potentia15’ or bag model] I2 calculations the use of confined 
quarks does not remedy this situation. This result is expected in all QCD inspired 
approaches with built-in short distance contributions ofbee quarks. 

It was argued by Zenczykowski 12’ that this conflict between the quark level 
calculations and the hadron level arguments seems to be intimately related to the notion 
of point in space-time. Namely, one of the problems posed by the standard quark model is 
how the gauge transformations on quark fields located at xl, x2, x3 should be translated 
into a gauge transformation on the effective hadron field located at the system center of 
mass ( x = X, + x2 + x3 ( I/ 3 in the simplest case). Perhaps the KLZ mechanism should be 
regarded as a (technical?) trick that does just this. Consequently, a deeper understanding of 
issues involved seems to be related to the composite and nonlocal nature of hadrons. 120 

In fact, it is precisely through the description of composite quantum systems that the 
naive view of underlying continuum-spacetime local reality has been invalidated by Bell’s 
theorem and associated experiments. The character of this review does not permit us to 
even attempt to pursue these matters in any detail. It is tempting, however, to speculate 
that the controversy over Hara’s theorem may be quite closely related to such fundamental 
issues. 

On the other hand, one might argue here that the quark-level calculation exhibits 
just a pathology of the quark model which, consequently, should be modified to conform 
to the standard hadron-level requirements. Indeed, for confined quarks their treatment as 
free particles is bound to lead to inconsistencies or paradoxial results. Such arguments 
should be treated with all due respect. 

However, given: 
l the experimentally observed apparent deviation from the expectations based on 

Hara’s theorem, 
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l the great success of the simple quark model in providing the basis for 
our understanding of hadrons in general, and 

l the pragmatic success of the VDM idea, 
a serious consideration to the strict quark modelNDM approaches should also be given. 
After all, it used to happen repeatedly in the history of physics that we did not take our 
theories seriously enough. For all the above reasons we are inclined to think that Hara’s 
theorem is indeed violated in nature. 

Extensive studies of the VDM approach to WRHD have been carried 
OUt 51.93,108.121 Let us turn therefore to the phenomenology of the vector-dominance 

model. 

1.3.3 Parity violating couplings of vector mesons to baryons 

Application of the VDM idea requires a calculation of the relevant parity-violating AS = 1 
couplings of vector mesons to baryons. The most reliable route is to utilize the SU(6)W 

symmetry approach 122T’23 and [o predict these couplings from those known empirically 
from NLHD. First calculations along these lines have been carried out by McKellar and 
Pick.‘24 The interrelation of the SU(6)W and quark model schemes has been discussed 
thoroughly by Desplanques, Donoghue, and Holstem 64 (DDH). The possible SU(6)W 
diagrams are displayed in Fig. 7.3. They correspond precisely to appropriate quark model 
diagrams. 

Diagrams (bl), (b2) and (cl), (~2) (referred to also as ((b) and (c)) of Fig 7.3 in 
general contribute to all the NLHD. On the other hand, diagram (a) corresponds to the 
usual factorization contribution and it does not contribute to NLHD in the SU(3) limit. 
The appearance of diagrams (c) may be understood in the quark model as due to the 
presence of quark sea in physical hadrons.9’-93 Because of the symmetry of baryon wave 
functions, contributions of diagram (d) are zero in the SU(6)W symmetry limit for both 
pseudoscalar and vector mesons M. 

The SU(3) structure of the B, + B,l.P parity violating amplitudes of 
Desplanques et. al.64 has been expressed by ienczykowski5’ as (see also Lee125) 

f(b+) T’r([P+,S][Bj.B;])-+b Tr([P+,S]{Bi,Bj}) 
(16) 

where P is the standard 3 x 3 matrix corresponding to the pseudoscalar mesons and b, c 
are reduced matrix elements for the SU(6)W diagrams of Figs. 7.3b and 7.3~ respectively. 
By CP invariance the parameters a, 6, c are real. From Eq. 16 one can see that the 
SU(6)W/quark model approach gives the soft-meson structure of Eq. 3 (as it must in 
accordance with Korner et. al. 7o and Desplanques et. a1.64) with 

++g 

(17) 

41 



Bf I 

-T--r- B’ 

M 

(4 

Bf 
I 

1 i-Bi 
M 

(b 1) 

I 
Bf-i i Bi 

M 

@ 2) 

Bf-Y rBi 
M 

@ 2) 

; 

Bf 
I 

I 

----I f-j’ 
M 

Cd) 

Fig. 7.3a-d SU(6)w quark-line diagrams. 

The values of the reduced matrix elements b, c are determined from experiment 
to be (in units of 10e7) 

b = -5 
c=+l2 (18) 
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and thus the normalization of the contribution from the diagrams (b) and (c) to the 
Bi 4 B+.V parity violating amplitudes is fixed. 

For (transverse) vector mesons, the contributions from the diagrams of Fig. 7.3 

have been identified64.‘24 wtth the vector coupling IYf yP rsui&*fl of Eq. 6.1. 
For vector mesons the SU(3) structure of the contributions from the diagrams (b) 

and (c) is more complicated5’ than in the pseudoscalar case 

--&{-47+B;V+Bi)-Tr({S,V+}B;Bi) 

+ 2[ 7-r( SB;)Tr( BiV+) + Tr( SBi)Tr( B;V+)]} 

+--&{-Tr({S,V+}B;Bi)-57’r({S,V+}BiB;) 

+ zTr(SV+)7-r( BiB;)}. 
(19) 

Together with the factorization contribution of diagram 7.3a, Eq. 19 constitutes 
the strict analog in the vector-meson sector of Eq. 16. The latter reduces to the 
well-known soft meson/current algebra result for nonleptonic hyperon decays (Eq. 3). 

As in Eq.16 and 3, the action of the weak Hamiltonian is represented by the 
A[ = x octet spurion s. Thus, the octet dominance assumption of Hara is satisfied in 
the troublesome (b) type (W-exchange) diagrams of the quark modelNDM approach. 

Since diagram (a) does not contribute to NLHD in the SU(3) limit, the size of 
its contribution to B, + B,V parity violating amplitudes cannot be determined by 
symmetry arguments. Various theoretical assumptions lead to a very wide range for the 
size of this term.1°8,121’124 It was argued by ienczykowski,1°8*‘21 that the 
theoretical determination of its value may be prone to similar uncertainties as the 
determination of the value of c which in the simple quark model - in total disagreement 
with experiment - is zero. In fact, as mentioned before, in many approaches the size of 
the contribution to WRHD from such “single-quark” diagrams is treated as a free 
parameter. A similar approach was adoptedlo8,121 in VDM. 

7.3.4 Parity violating couplings of photons to baryons 

Expressing the photon couplings through the standard VDM assumption linking the 
photon with the linear combination of vector mesons 

(20) 
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(&y. + IS the additive SU(3)-breaking parameter) the resulting parity violating 
amplitudes are readily calculated5 ’ 
e~~=,!J37,g=s.0): 

from Eq. 19 (up to an overall VDM factor x,; 

24-E J;; 
A(:’ + Aj’) = --b + -d’ 

96 2 

A($ --j fy) = -Ib - zd’ 
3 2 

(21) 

where d’ is expressed by c’ and the unknown reduced matrix element a corresponding to 
Fig. 7.3a through 

d’ = ((I + E)C - 8a)/27 (22) 

The contributions from the SU(6)W diagrams (b) violate the Hara theorem (as is 
manifest in Eq. 21) and correspond exactly to the SU(3) limit of the quark model 
calculations of W-exchange processes, which were carried out by Verma and Sharma.lo7 

The W-exchange terms in Eq. 21 correspond to the sum of the contributions 
from diagrams (bl) and (b2) in Fig. 7.3. The weights of the individual contributions of 
these two diagrams are given in Table 7.2. The entries in Table 7.2 are proportional to 
the numerators X(B~ ~l.rrrnn~~~)(~~~~“‘~~l~) 
Z(Bf IHp,“.IN)(II”I.~flllnRI Bj) 

(diagram (bl)) and 
( dtagram (b2)) of the pole model contributions. As 

mentioned in Sections 7.1.2 and 7.3.2, Gavela et. al.96 enforced Hara’s theorem by 
requiring the cancellation of the contributions from the s- and u-channel poles. This 
procedure corresponds to the subtraction of the weights of diagrams (bl) and (b2). It is 
inconsistent with the quark model prescription of Eq. 21 and with the pole model 
corresponding to it since energy denominators associated with diagrams (bl) and (b2) are 
of the same sign. 

From Table 7.2 one can see that in the subtraction procedure one obtains the 

vanishing of the parity violating C+ + py amplitude in the SU(3) limit (E + 1). From 
Table 7.2 one can also determine the relative signs of the amplitudes corresponding to the 
prescription of Gavela et. al. 96 with respect to those given in Eq. 21. To do this one has 
to express the SU(3)-breaking mechanism of Gavela et al. 96 in the language of quark 
diagrams. This has been done by ienczykowski.93 Basically, the SU(3) breaking of 
Gavela et al.96 comes from the energy denominators describing the propagation of the 
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Table 7.2: Weights of quark diagrams (bl) and Cb2) for the s-wave amplitudes 

diagram (bl) 

1 

-27 

1 -- 
6 

1 

6& 

0 

1 

3 

diagram (b2) 

2fE -- 
9Jz 
2+& 

18 

2+& 
643 
2+& 

-- 
9& 

0 

intermediate (70, I-) i- states m between the action of the weak Hamiltonian and the 
photon coupling to baryons. When SU(3) is broken the energy differences in these 
denominators are different for diagrams (bl) and (b2). They are 

AO-6s 

for diagrams (bl) and 

for diagrams (b2). Here A.w = 570MeV is the (56,0+)$+ - (70,1-)i- splitting, and 
6s = 190MeV is the strange-nonstrange quark mass difference. Let us denote 
x = 6s / A.w (= l/3). Up to an overall normalization the weights for diagrams (bl) 
should be multiplied by 1 / (1 - x) while those of diagrams (b2) by 1 / (1 + x). This leads 
to the formulas for parity violating amplitudes presented in Table 7.3 (for clarity we have 
put E = 1, this does not invalidate our discussion below). 

We see that the signs of the C+ + py and Z’ -+ Coy parity violating 
amplitudes calculated according to Gavela et. al.96 are identical with those of the SU(3) 
breaking VDM/quark model (and those of Eq. 21), while for Z.” -+ hy they are opposite. 
For the A + ny decay these signs are also opposite since x = 1 I 3 < 1 I 2. If E = 2 I 3 
is reintroduced the corresponding inequality is still satisfied: 

l+& 5 
x=1/3<-=- 

3+& 11 
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Table 7.3. Parity violating amplitudes with SU(3) breaking effects 

1 Hara’s theorem satisfied ’ Hara’s theorem violated 
Process ~ 

Gavelay 1 VDM/quark mode193Y107 

(bl)-(b2) 

c+ -+py i I 2x I 2 -_- --- 
3d2 X2 ’ - 36 ‘-x2 

I 2(2 -x) -- 
6211 ‘-x2 

1 1 --- 
34 1+x 

L-l- 
3 1-x 

This comparison of the signs of parity violating amplitudes readily translates into a 

statement about the signs of the asymmetries (when pc. amplitudes are treated in a 
standard manner, see next Section) and explains why - while in Gavela et. a1.96 all 
asymmetries are negative - in the VDM/quark model approach one obtains positive 
asymmetries for the A -+ n y and 5 + Ay decays (see Section 7.4). 

Thus, there is a very important qualitative difference between the results of the 
two contradictory ways of treating the W-exchange processes in quark-model-inspired 
frameworks. 

Namely: 
If Hara’s theorem is enforced in the SU(3) limit by the cancellation of the s- and 

u-channel contributions ((bl) and (b2) quark diagrams) all the relevant asymmetries are of 
the same sign. On the other hand, if the quark model recipe is sfrictly followed, the 
Hara’s theorem is violated and the asymmetries of the A + ny and E,” + Ay decays are 
opposite to those of C+ + py and E:” -+ Coy. Please note that for the E.” -+ Ay decay 
the difference between the two prescriptions is that of a change of sign only. 

Before proceeding to the discussion of VDM fits, we should mention here that 
the application of VDM to the description of WRHD was first attempted in Gavroglu et. 
a1.126 Several essential ingredients of the approach of ienczykowski51Y108*121 were 
missing in that paper, however. In particular, only the factorization diagrams (Fig. 7.3a) 
were treated with the help of VDM. Furthermore, the Lee-Swift theorem was violated and, 
most important of all, the crucial assumption of SU(6) has not been made. 

More recently, an empirical rule correlating the radiative and pionic decays of 
hyperons (and reminiscent of the VDM-based connections between the two) has been 
pointed out by Brown and Paschos.‘27 In fact, the order of magnitude of the WRHD 
branching fractions can be determined from the pionic decays of hyperons and the VDM 

ideas as follows. The NLHD branching fractions into a channel with neutral pion (e.g., 

Z+ + plr”) are of order ,$$. Replacing pseudoscalar meson with vector meson is 
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equivalent to a change in group-theoretical factors which - in both cases - are of the same 
order. Thus, the whole difference in the branching fractions R of weak radiative and 
nonleptonic hyperon decays is attributed to the VDM fzxxor s, i.e., 

R( WRHD) = R(NLHD) - = 1.8*10-3 (23) 

1.3.5 VDiU fits 

The controversy surrounding WRHD concerns the parity violating amplitudes only. 
Unfortunately, experiments do not provide an unambiguous determination of these and 
parity conserving amplitudes. From the measured branching fractions and asymmetries 
one can determine the two amplitudes up to an interchange of their magnitudes only. 

Consequently, comparison with experiment of various models of the parity 
violating amplitudes must also involve other models: those of the parity conserving 
amplitudes. Although no controversy regarding the general structure of the latter exists, 
they are very sensitive to various numerical details. Therefore - if a meaningful test of 
various approaches to the parity violating amplitudes is to be made - it is obvious that 
one should adopt such a description of the parity conserving amplitudes that is least 
dependent on such details. The best way would then probably be to exploit somehow our 
experimental knowledge of the parity conserving amplitudes in the related case of NLHD. 
The use of specific models for NLHD does not seem to be a good choice since there is no 
consensus as to the relative sizes of the contributions from the various possible 
intermediate states (see Section 7.1.1). Even when one considers only the ground-state 
baryons in the intermediate states, the transition from the NLHD to WRHD still involves 
two sources of phenomenological uncertainties. 

The first of them was noted twenty years ago by Farrd3: it is the high 
sensitivity of the model to the precise values of baryon magnetic moments. Now, the 
prediction of the standatd additive quark model for the difference of the magnetic moments 
of the C+ hyperon and the proton differs from the measured difference by a factor of 
around 3. This strong nonadditive SU(3) breaking has not been explained in any scheme 
as yet 128-130 . Since the parity conserving amplitude of the C+ + py decay is 
proportional to this difference, it is important that we use here the experimental values 
and not the additive quark model predictions.96 Similarly, we should not trust too much 
the detailed numerical predictions of the quark model for other magnetic moments. 

The second uncertainty, first pointed out by &nczykowskil’*, appears when 
spin symmetry is applied to relate the couplings of pseudoscalar mesons to those of 
vector mesons. It turns out that the relevant relation - as it emerges in standard pole 
models - leads to a strong violation of the vector-meson analog of the Lee-Sugawara 
relation1319132 For NLHD this relation reads 
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and it relates decay amplitudes of the X+. A and E- hyperons into other ground-state 
baryons and z”, rr-, lr mesons respectively. Since the Lee-Sugawara relation (Bq. 24) is 
well satisfied for the parity conserving NLHD amplitudes (at the 12% level) the violation 
of its vector-meson analog is not what one would expect on the basis of spin symmetry. 

One can build the Lee-Sugawara relation into the model in such a way that it is 
preserved also in the vector meson sector (that is, that Eq. 24 is satisfied for rho 
couplings). This corresponds to assuming that for the parity conserving amplitudes the 
weak Hamiltonian transforms63 effectively as A,. 

In an analysis of these ambiguities”*, fits to the WRHD data were performed 
with respect to the parameter d’ of Section 7.3.3. The fits favor the Lee-Sugawara 
relation for rho meson couplings. In the favored approach the parity conserving WRHD 
amplitudes are given by 

(25) 

In Eq. 25 C is an overall normalization factor (negative by convention) and fh is 
the ratio of two invariant SU(3) couplings. Both C and fh can be determined by 
symmetry from NLHD. Possible uncertainties result from the imprecisely known value 
of the fh ratio (which NLHD determines to be around -1.8 to -1.9) and the experimental 
error in the value of the ~1~ transition moment ( ~2 = 1.61+ 0.08 . Because of strong 1 
cancellations, the A + ny amplitude is particuhtrly sensitive to such details. In Table 
7.lab we display the original fit of i?enczykowski.108*121 In this paper we update this 
fit (VDM Update in Table 7.1) using the most recent experimental data (including the 
new measurements of the A + ny and E- + Z-y branching fractions). Since the fits 
are sensitive to the precise value of the j.l= transition moment we decided to present 
their results in a semi-quantitative way. Results shown in Table 7.lab are obtained for 

% =- 1.8 when JL, deviated by 1.0 or 1.5 standard deviations from the experimental 
number. The normalization constant C differs by a few percent from its value determined 
from NLHD. The fits exhibit a good agreement with the experiment with a possible 
exception of the E.” + Z”y asymmetry. The fitted value of d’ is near -0.25 to -0.28. 
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We should note here that in the related charmed baryon decays the 12: + p$~ 
decay receives contributions only from the factorizable diagram of Fig. 7.3~1. Although 
one has to keep in mind that SU(4) is not such a useful symmetry as SU(3), the 
measurement of the asymmetry in the A: -+ pQ, decay could still provide some 
independent information on the sign (and size) of the reduced matrix element a. 

7.4 Reliability of VDM and quark model fits 

We feel it worthwhile to address now the question of the numerical reliability of the 
quark/VDM fits of Table 7.1 ab. In general, unless there are some substantial cancellations 
in the amplitudes, the expected errors of VDM fits are 1520% for the branching fractions 
and fo. 15 for the asymmetries. The differences between the predictions of various papers 
utilizing the quark model route and those where the VDM/symmetry approach108Y12’ 
was employed, originate mainly in the parity conserving amplitudes. The two most 
important differences in the treatment of the parity conserving amplitudes which lead to 
the observed diversity of predictions are as follows: 

(1) the quark model route implicitly assumes standard additive expressions for baryon 
magnetic moments, while the VDM/symmetry approach108,121 takes into account the 
experimentally observed nonadditivities. 
(2) in the quark model approach, the parity conserving single-quark amplitude, Fig. 7. la, 
is treated as a free parameter while in the other 108,121 . tt is fixed by symmetry from 
experimentally known parity conserving amplitudes of NLHD. 

Points (1) and (2) above account for the bulk of differences between the 
predictions of various versions of the quark model and &nczykowski. ’ OS, ’ * ’ 

To exhibit the connection between the VDM and the quark model calculations 
we shall rewrite Eqs. 25 in a form which explicitly displays the contributions from 
two-quark (W-exchange) and single-quark (s -+ dy) processes. Using the additive quark 
model for the baryon magnetic moments, the formulas (Eqs. 25) reduce to 

J31 
B(z+ + py) = -$2(1- &) - s] 

B(C -3 Ay) = - -&cf~(2+E)+S] 

B(E” 

56 
B(E- +E-y)=-TC’-r. (29) 
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where: &= 
l>lu 

/ NL \ =x is the SU(3) breaking parameter, C’ is some overall 
normalization parameter, and s is the single-quark contribution, given in the symmetry 

approach by: 

A-= 
c 1 

;;-+I (1-r) (30) 

and thus negative (for ‘A = - 1.8 ). 
The terms independent of s in Eq. 29 correspond to the W-exchange two-quark 

processes with -‘A = -1. Note that for negative s the B(A + ny) and B(Z’ + Ay) 
amplitudes exhibit cancellations between the single- and the two-quark processes. 

Let us now discuss the reliability of the VDM fits of Table 7.lab for the 
individual decays as well as their connection with various quark model predictions. 

7.4.1 c+ + py 

The branching fraction is correct. The asymmetry is large and negative. Its exact size 
depends on how one treats SU(3) breaking in the parity conserving amplitude. Strict quark 
model calculations tend to give smaller parity conserving amplitudes, smaller 
asymmetries (around -0.6) and smaller branching fractions. If the expGmentally observed, 
but theoretically not understood nonadditive SU(3) breaking in pZ+ -pP is used as a 
guide for what to expect in this amplitude a value of about -0.8 to - 1 .O is predicted. (If 
Hara’s theorem is enforced in quark-model-inspired framework,96 the asymmetry in the 
SU(3) breaking case is also negative - recall discussion in Section 7.3.5). 

7.4.2 A + ny 

This is the case of strong cancellations in the parity conserving amplitude. In the 
symmetry approach of ienczykowski ’ 08, ’ * * with JA fixed at -1.8, the experimental 
uncertainty in the value of ,uXA magnetic transition moment permits any value of the 
branching fraction up to about 1.7 x 10s3. Two-quark (W-exchange) contribution to the 
parity conserving amplitudes (corresponding to ‘A = -1) leads to a positive asymmetry 
of the decay. The asymmetry remains positive also for .fz = -1.8 when the size of the 
corresponding single-quark parity conserving amplitude is determined by symmetry from 
NLHD (see Eq. 29). In quark models, where this amplitude is treated as a free parameter, 
the only constraint on it is an upper bound resulting from the known Z:- -+ C-y 
branching fraction. If the most recent small value3’ of this branching fraction is not used 
then - due to the cancellations in Eq. 29 - one can obtain a change of sign of the whole 
parity conserving amplitude. This leads to a wide range of predictions for the A --+ tzy 
asymmetry in the quark model (- -0.60 in Verma and Sharmalo7, 0.0 in Uppal and 
Verma’ 14). In addition, the cancellation in the parity violating amplitudes between the 
W-exchange and single-quark processes are also non-negligible. A conservative estimate 
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for the asymmetry in the VDM/symmetry approach is +0.4 to +0.9. (On the contrary, in 
quark-inspired pole models in which Hara’s theorem is enforced by the cancellation of the 
s- and u-channel contributions 96 this asymmetry has a tendency to be negative (c.f. 
Section 7.3.4)) 

7.4.3 E0 + Ay 

In the symmetry approach of ienczykowski ‘O*,’ 21 the cancellation in the parity 
conserving amplitude is weaker than in A + ny (see Eq. 29). The symmetry approach 
gives then for the branching fraction a value in the range 0.8 * 10m3 to 1.0 * 10m3, 
while the asymmetry is predicted to be positive and around +0.7. Dependence on the size 
of the single-quark parity conserving amplitude is fairly weak. Therefore, in quark models 
where this amplitude is treated as a free parameter, the size of the single-quark 
contribution is limited to - at the very most - around one third of the two-quark 
contribution. Thus, no change of sign of the whole parity conserving amplitude is 
possible. Consequently, the sign and the approximate size of the asymmetry constitute 
stable predictions of the VDM/quark model approach. Indeed: explicit quark model 
calculations give positive and substantial asymmetries. 107,114 

Present data are consistent with this prediction. Recall from Section 7.3.5 that if 
Hara’s theorem is enforced upon the quark-inspired pole modelg6 the asymmetry for this 
process is predicted negative. Thus, since the 3” + Ay asymmetry is experimentally 
accessible,58 its precise measurement should settle the theoretical question of the 
breakdown of Hara’s theorem in the SU(3) limit. 

When the single-quark parity conserving amplitude is determined by symmetry from 
NLHD, the contributions from the single-quark and W-exchange processes add rather than 
cancel. The parity conserving amplitude is then dominant and the branching fraction is 
expected to be around 4.0 x 10w3. Consequently, the asymmetry should be small. The 
experimental value of the Z- -+ C-y branching fraction limits the size of the 
single-particle parity conserving amplitude so that in those quark models in which this 
amplitude is treated as a free parameter no change of sign of the whole 5 -+ Coy parity 
conserving amplitude is possible. As a result, the sign of the 5 -+ Coy asymmetry is 
predicted in the VDM/quark model approach as negative. In the approach of 
ienczykowski I ‘*, ’ 21, one expects a(?’ + C” y) = -0.3 to - 0.4. The theoretical error 
on this value could be bigger than +0.15 because of cancellations in the parity violating 
amplitudes. The agreement with the experimental value of +0.2+0.32 is satisfactory. It 
should be noted, however, that a substantial positive experimental value for this 
asymmetry would add to the puzzle of WRHD, as essentially all models (whether 
satisfying or violating Hara’s theorem) predict negative (and most often large) 

asymmetries. 114,‘2’ One can see the origin of this result from Table 7.2. Namely, on 
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account of the vanishing contribution from diagram (b2) the sum (Hara’s theorem 
violated) and the difference (Hara’s theorem satisfied) of contributions from diagrams (bl) 
and (b2) are identical. Recent measurements of the Z:- + C-y branching fraction limit 

the size of d' and reduce the cancellation between the W-exchange and single-quark 
contributions in the parity violating amplitude of this decay. The net effect for a fit is 
then a more negative (Table 7.1 b) asymmetry ( CX(Z” + Z” y) - -0.4 to - 0.5). 

7.4.5 z- -3 x-y 

In the symmetry approach. the parity-conserving single-quark s + dy amplitude is 
determined by symmetry from NLHD. The measured value of the Z- + C-y branching 
fraction requires then that the parity violating amplitude is bigger than the parity 
conserving one. Of the two a priori possible signs for d’, the fit rejects the positive 
vaIue.‘08.121 Consequently. the asymmetry was predicted to be large and positive, 
around +0.6. For a smaller branching fraction like the one reported recently by the E761 
collaboration- 3’ d’ must be less negative (= -0.25) and an even bigger positive 
asymmetry is predicted. This constitutes a firm prediction of the VDM/symmetry 
approach. It is encouraging that it agrees in sign and size with the arguments of 
Vasanti.47 In the quark models discussed so far in the literature, our experimental 
knowledge of NLHD is not used in the determination of the single-quark parity 
conserving amplitude. As a result, in these models, the Z- -+ C-y asymmetry and 
branching fraction are essentially two free parameters. 

7.4.6 Q- + Z-y 

Since both this decay and the preceding one are due to the same effective s + dy process, 
the asymmetry of this decay is predicted in the “symmetry/quark model” approach to be 
the same as in the S- + X:-y decay. If one relates the hadron-photon coupling in 
E--+X-yand Q--+Z- y decays by the quark model route, the ratio of the branching 
fractions of the Q- + Z y and E- -+ C-y decays should be75 around 3.7. For the fit 
of ienczykowski lo8.’ 2l this gives for the Q- + Z-y branching fraction the value of 
around l.O*lO-“. On the other hand, if one uses the recent measurement 30 of the 
E:- + C-y branching fraction as an input, one predicts a smaller value of around 
0.45 * IO-“. Unfortunately, the theoretical error of the “symmetry/quark model” route is 
here bigger than in the estimates of the other branching fractions: in a similar 
electromagnetic A -+ Ny transition there is a 30% discrepancy in amplitude between the 
symmetry/quark model approach and the experiment. Consequently, a more conservative 
symmetry expectation for the ratio of the Q2- + Z-y to E- + C-y branching fractions 
is 2.5 to 5.2. Taking into account the experimental errors on the Z:- + C-y branching 
fraction one expects the Q- + Z-y branching fraction to be in the region 
(0.25 - 0.75) * IO-‘. This is still in agreement with the experimental upper limit35 of 
0.46 * 10-j. 
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In both the quark model and VDM approaches discussed here the SU(3) breaking 
in parity violating amplitudes was treated additively. On the other hand it is well known 
that in baryon magnetic moments SU(3) is broken in a nonadditive way. 128,129 A 

characteristic feature of these nonadditivities is that the contribution from nonstrange 
quarks is smaller in strange baryons than in nonstrange baryons.128 If this observation is 
considered a guide for what may happen in the parity violating WRHD amplitudes, one 
might expect diminished parity violating amplitudes in Z radiative decays leading to 
smaller asymmetries in 5 + hy and Z.” -+ C”y decays. 

The above discussion indicates that the combined VDM and symmetry approach 
does appear quite promising from the phenomenological point of view. Clearly, to make 

definite statements, we need more precise data on the asymmetries of WRHD. Particularly 
important here are the Z” -+ Ay and 5 + C-y asymmetries. A positive sign of the 
Z.” + Ay asymmetry would signify that Hara’s theorem is violated (in the SU(3) limit), 
while a negative sign would indicate that the theorem is satisfied. A remeasurement of the 
=’ + Coy asymmetry is also badly needed. If it is indeed positive, as the only 
iZeasurement33 seems to indicate, it would add yet another puzzling twist to the long- 
standing enigma of WRHD. 

7.5 Effective chiral Lagrangians 

Effective chiral Lagrangians and chiral perturbation theory provide a different hadron-level 
approach to the problem of nonleptonic and weak radiative hyperon decays. However, 

’ already in 1971 it has been observed by Holstem 48 that the large negative asymmetry of 
the C+ + p y decay cannot be explained in a chiral approach as long as it satisfies Hara’s 
theorem in the limit of exact SU(3). 

Theoretical work within the framework of chiral perturbation theory has not 
changed this conclusion. In a recent extensive study along these lines Neufeld133 gives a 

couple of numerical predictions obtained when the counterterms of the theory are assumed 
small (as expected in the approach). He then finds that the asymmetry of the 5 -+ C-y 
decay is restricted to the interval (-0.4, +0.3). Using the most recent experimental data on 
the branching fractions and asymmetries of the Z’ + Ay and 1,” + C” y decays he also 
predicts a negative asymmetry (-0.7 or -0.3) in the A + ny decay. Finally and most 
importantly, he obtains (a(Z+ + py)(SO.2, m a g reement with Hara’s theorem and in 
gross disagreement with data. A similar conclusion has been obtained by Jenkins et. 
al. 134 It should be stressed that the agreement between theory and experiment claimed by 
Jenkins et. al.134 . tor the remaining (but C+ -+ py) decays is somewhat illusory: the 
asymmetries and amplitudes of different decays are described with the help of several 
independent free parameters. 
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8. Analysis of the s + dy Transition 

In the preceding sections two views concerning the violation of Hara’s theorem by the 
quark model have been mentioned. According to the first view, this violation should be 
regarded as a result specific to the quark model, a result that indicates the need to deepen 
our understanding of the connection (as provided by VDM) between the quark level 
description of hadrons and the standard language of the effective hadron-level theory. 
According to the second view, Hara’s theorem must be satisfied and, consequently. its 
violation in the quark model should be considered as exhibiting a kind of pathology of the 
quark model that has to be cured. Since the violation originates from the W-exchange 
diagrams, all those WRHD to which such exchanges can contribute suffer from the above 
controversy. Fortunately. there does exist a subclass of WRHD to which such processes 
cannot contribute. These are the E- + C-y, n- + Z-y and !X + Z*- y decays. Due 
to their quark content (lack of a u quark) diagrams (b), (c) and (d) of Fig 7.1 are absent 
leaving diagram (a) as the sole contributor. Thus, both experimental and - being free from 
the above controversy - theoretical studies of these decays are very important. In this 
Section, we shall present results of the theoretical studies of the 5 + C-y and 
W + Se y decays. 

As shown in Section 3.2 general arguments of Vasanti47 lead to the conclusion 
that the asymmetry in the decays induced by the single-quark s -3 dy transition should be 
positive (Eq.3.16) 

a=+o.4 to +I (1) 

(the size depends on whether constituent or current quark masses are used). The VDM Iits 
to all WRHD”* predict an asymmetry around +0.6 to +0.7 (Table 7.1 b) in nice 
agreement with Eq. I. Although these fits are fairly successful, they do not address the 
question of the calculability of the effective s + dy transition. Rather, they relate one of 
the corresponding parameters to the experimentally observed parity conserving NLHD 
amplitudes and thus shift at least part of the question to the NLHD sector where no 
general consensus exists. Accordingly, the VDM/symmetry approach regards the effective 
s -+ dy transition as incalculable at present: it should become calculable only when a 
better theoretical understanding of NLHD is achieved. 

8.1 Short distance QCD estimates 

One may be more optimistic with respect to the calculability of the s + dy decay. The 
main idea underlying many papers was to calculate the effective s + dy transition from 
the first principles of QCD. In QCD, the diagrams of Fig. 7.1. should be understood as 
indicating the flow of flavor only. When one-gluon exchanges are added, diagram (a) of 
Fig. 7. I corresponds then to the sum of diagrams (al, a2, b, c) shown in Fig. 8. I. 
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Fig 8. labc The s -+ dy transition in QCD. 

The electroweak diagram (al) of Fig. 8.1 has been widely discussed727135 and 
found totally negligible due to GIM cancellations. Its contribution to the Z- + C-y 
branching fraction is of order of 10m8. We shall discuss the contribution of the remaining 

two diagrams (a2) after considering diagrams (b) and (c). 

55 



8.1.1 The penguirr 

Analyses of the penguin diagram (b) have been carried out by Kamath136 and Eeg137. 

Both authors estimated the contribution of the penguin diagrams to the branching 
fractions of the processes Z- -+ 2-y and Q- -+ Z-y as 10e8- 10e7 and 10m5- 10e4 
respectively if standard values of the penguin coefficients cs, c6 (Section 6.2) are used. 
Even if these contributions were to be underestimated by a factor of 5 or so91V138 the 
penguin diagram is totally negligible for the 5 +X:-y decay for which the 
experimental branching fraction is of order of 10w4. Thus, the penguin-induced positive 
(+0.8) E- + C-y asymmetry137 will certainly be swamped by other effects. For the 

n-+z- y decay the penguin contribution is not that small and might be observable. 
The predicted asymmetry’37 is -0.9. 

8.1.2 The modijied penguin 

A penguin-type diagram with photon emitted from the loop (diagram (c) in Fig. 8.1) has 
been considered by Eeg’37 and analyzed in more detail by Gaillard, Li and Rudaz.6 The 
coefficient function associated with the corresponding operator (not considered in Section 
6.2) is not suppressed by GIM cancellations. Furthermore, the use of current quark 
masses (m, >> md) appropriate in such a short-distance description ensures comparable 
strength for the parity violating and parity conserving amplitudes and therefore this 
operator - if dominant - would yield larger (and negative in explicit calculations) 
asymmetry parameters for the C+ + py decay. To estimate if it is really dominant, one 
needs to know the gluon content of ground state baryons. Using a bag model 
framework139, Gaillard, Li, and Rudaz6 show that the E- + 2-y branching fraction due 
to this diagram is at most lo6 and thus much too small. A similar result has been found 
for the Q- -+ Z-y decay by Eeg137 who estimated that diagram (c) contributes at most 
10% of the standard penguin contribution. Although explicit calculations indicate that (c) 
is negligible, it has been argued’ that such calculations may be very sensitive to the 
details of the model employed (in bag model large cancellations conspire to give overall 
small branching fractions). Apart from the question of the overall size of its contribution 
diagram (c) suffers from yet another drawback, however. This drawback has been identified 
by Gilman and Wise75 in the case of a dominant s + dy effective transition and it 
persists for diagram (c) even though the spin structure of the 3 quark + gluon wave 
function is different139 from ordinary. In their paper, Gilman and Wise have shown that 
the dominance of the s + dy effective transition relates the branching fractions R of the 
C+ + p y and Z:- + C-y decays: 

[R(X+ + py)/R(Z- -+ Z-y)],, - 10-l. 

Similar result was found to hold if diagram (c) is dominant:6 
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R(C+ + py)/R(E- -+ C-y) - 0.2-0.4. 
(at most 0.7) 

(3) 

This is still a factor of (at least) 10 smaller than the experimental value of 
around 10. Consequently, diagram (c) - being severely bounded from above by the 
experimentally known Z- -+ C-y branching fraction - cannot be dominant in the 

C+ -+ py decay. 

8.1.3 The QCD enhanced electroweak diagram 

We return now to the discussion of the effective single-quark transition of diagrams (a) in 
Fig. 8.1. Although original calculations72’135 have indicated that this diagram is totally 
negligible on account of GIM cancellations, this is no longer so if gluon corrections are 
considered. The standard GIM power suppression of the type (M: - mz)/rn$ 
characteristic of diagram (al) get:, replaced by In( mz /mU ) 2 factors when two-loop graphs 
(a2) are considered.54*140 This enhances the effective sdy vertex by 3 orders of 

magnitude. 2S4 Phenomenological studies of the implications of this enhancement have 
been carried out by Singer and collaborators.2,5*141 The main result of their 
investigations is that the QCD-enhanced short-distance effective s + dy transition is still 
negligible in the Z- + C-y decay, but that its contribution to the R- -+ Z-y decay 
might be dominant. The branching fraction of the R- + Z:-y decay is predicted to be 
around 0.07 * 10m3 and it is similar to the estimate (10m2 - 10-l) * 10v3 of the penguin 
contribution.14* Since diagrams (a2) and (b) predict opposite asymmetries for the 
n-+s- y decay (-+I for (a?), -0.9 for (b)) the measurement of the characteristics of 
this decay might discriminate between the two, unless there are other effects that dwarf 
their contributions. 

That this might be so should be obvious from a comparison with the 
VDM/symmetry prediction which is a factor of at least 5 bigger than either of the 
contributions of diagrams (a2) and (b). 

8.2 Long distance contributions 

The main difference between the VDMLsymmetry approach and the explicit short-distance 
calculations is that the former does include all the effects (although only implicitly), 
while the latter may not if the short-distance processes are more severely affected by 
long-distance effects than we think. In principle, there seems to exist a kind of 
equivalence between the quark-level and hadron-level approaches. This equivalence has 
been discussed in the literature.sl~64*65~93Y98,1 12.l43 

In practice, hadron-level unitarity-induced lower bounds may exceed 
short-distance results indicating the failure of our short-distance techniques. This happens, 

for example, in the Z:- + C-y decay. The long-distance, hadron-level unitarity-based 
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prediction for the branching fraction of this process has been calculated by Kogan and 
ShifmanS4 and updated by Singer’ as 0. I8 * 10e3. This, although a little too big, is still 
in fair agreement with experiment. This exceeds the purely short-distance effects by a 
factor of 10. Consequently, the asymmetry of the Z- + C-y decay should be dominated 
by hadron-level effects. It has been estimated by Singer’ as -0.1350.15. The long-distance 
calculations of Palle’ I3 give for it a value of -0.6. 

Similar hadron-level unitarity-based calculations of the R- + E-y branching 
fraction yield a value of 0.01 * 10W3, much smaller than the short-distance estimates of 
the diagrams (a2) and (b). Consequently, it has been argued* that in the Q- 46-y 
decay the short-distance calculation is reliable and that the Sz- + 2-y branching fraction 
should be around 0.1 * I Om3. Unfortunately, however, there is no agreement on the size of 
long-distance effects in this decay either: calculations of Palle’ l3 yield a branching 
fraction of around 0.15 * IO-3 while the VDM/ symmetry approach predicts an even 
bigger value of at least around 3.7* R(Z- + T-y)*70% = 0.3* 10e3 if the recent value 
for the branching fraction R(C 
&nczykowski. log) 

+ Z-y) is used ( 0.7*10e3 in the original fit of 

As the above presentation demonstrates, there is no consensus on the s + dy 
single-quark transition. Predictions of various conflicting papers have been gathered in 
Table 8.1. Comparison data is from Table 2.1. Recall that general arguments of 
Vasanti47 predict a significant positive asymmetry for both the Z- -+ X:-y and 
R- +z- y processes. One can see that the measurements of the R- + 5-y branching 
fraction and of the asymmetries of both the Z- + C-y and Q- + Z-y decays can 
differentiate between the proposed theoretical approaches. 
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9. Other Approaches 

As it has been argued in preceding sections, the problem of WRHD appears to be linked 
to the question of hadron compositeness and nonlocality. Although most theorists who 

grappled with the puzzle of WRHD would perhaps agree with this statement, the 
meanings they assign to the word “nonlocal” may be very different. 

In particular. the KLZ mechanism seems to involve the very notion of point in 
space-time in its translation from the component to the composite level. In other 
approaches “nonlocality” is usually a synonym for the more traditionally understood 
“long-distance effects”. The term “long-distance effects” does not presuppose the method 
of their evaluation, either. Thus, various hadron-level calculations are thought of as a 
phenomenological way of their evaluation. Inclusion of intermediate baryon states is one 
such way (see comments by Eeg ‘37 and Palle] l3 ). Another way is provided by unitarity 
calculations of Section 4. 

In quantum chromodynamics “long-distance effects” translates as 
“nonperturbative effects”. Consequently, apart from lattice simulations, there does not 
exist any way of actually calculating them from first principles of QCD. A possible 
phenomenological way to deal with this situation has been proposed in the form of QCD 
sum rules. This technique has been applied to the WRHD by Khatsymovsky144-146, 
Balitsky, Braun and Kolesnichenko4*147 and Goldman and Escobar.14* 

Since the contribution from the effective s -+ dy vertex (Fig. 7. la) can be 
estimated in the QCD sum rule approach to be negligible (see also Goldman and 
Escobar14*) attention is focused41144‘147 on the W-exchange processes of Figs 7.1 bc. 
The quarks in the initial and final states of these processes are not (almost) free in the 
sense of the naive quark (or bag) model (see Section 7.3.2) since they enter the 
calculations through pointlike baryon currents with proper quantum numbers. 
Consequently, in the limit of exact SU(3) symmetry, Hara’s theorem is satisfied in the 
QCD sum rule approach. In these papers 4,‘44*‘47 it is the contribution of type (b) 
diagram in Fig. 7.1 that gives rise to large asymmetry in the C+ -+ py decay. 
Unfortunately, the original calculations ‘44*147 yielded a large positive a(X+ + py) 
asymmetry (the asymmetry parameter in these papers is defined with an opposite sign to 
that usually adopted ‘44.‘47,14g). Note that in the calculations of Khatsimovsky the 
asymmetries of the z+ + py and Z” + Ay decays are of the same sign as it might have 
been expected. Indeed, Hara’s theorem satisfying QCD sum rule approach should be 
compatible with the standard pole model of Gavela et al.g6 at least as far as the relative 
sign of these two asymmetries is concerned. As discussed in Section 7.3.4, the equality 
of these two signs is a general feature of any quark-based approach in which Hara’s 
theorem is enforced by the cancellation of contributions from diagrams (bl) and (b2). 

More recent calculations of Balitsky, Braun and Kolesnichenko4 did give a large 
negative value for (X(x+ + py). It is not clear, however, what significance should be 
assigned to this new result.‘4g.‘50 In fact, in his last paper Khatsymovsky145 
concluded: “calculations carried out by means of sum rules are very unreliable in the case 
of complex processes”. Predictions of the QCD sum rule approach are compared with the 
data in Table 9.1. Clearly, to claim real success. calculations4 should be extended to and 
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explain the remaining WRHD. In particular, their prediction for the asymmetry of 
Z” -+ Ay decay is crucial. 

Another approach to the problem of nonperturbative effects of quark confinement 
in QCD has been to connect the large -NC limit of QCD with the idea of describing 
baryons as soliton solutions of chiral Lagrangians as originally proposed by Skyrme. An 
attempt to describe WRHD in the context of the Skyrme model has been made by Kao 
and Schnitzer.151 As shown in Table 9.1 the model fails badly when it is compared to 

the data from Table 2.1. 

Table 9.1. Estimates of nonperturbative effects 
(branching fractions R in units of 10m3) 

process YCD sum rules 
W- exchange 

Khat..144-146 Balitsky4 Gz% 
+ 

C -+PY R 0.8 0.5 to 1.5 0.047 

asvm +I -0.85f0.15* -1.0 

A+ny R 2.1-3.1 

asym +O.lO to +0.15 

E” + Ay R 1.1 
asvm +0.9 

6 a 4’~ R 

asym 
- 

z -+X-y R 0.1 to 0.2 
asym +0.4 

R- +5-y R 0.2 to 0.4 

*originally predicted positive 147 

Skyrme Data 
model 
Kao”’ 

0.013 I .23f0.06 
-0.13 -0.76f0.08 

1.23 1.65fO. 12 
+0.98 

0.67 I .06+0.16 
-0.29 +0.43+0.44 

1.04 3.56f0.43 
-0.95 +0.2*0.32 

0.42 0.128+0.023 
-0.015 l.Ofl.3 

<0.46 

10. Conclusions 

Experiments have continued to confirm the large negative value of the asymmetry 
parameter in C+ -+ py. This fact, which signaled the controversial nature of WRHD 
through its violation of Hara’s theorem, remains with us and refuses to be ignored. New 
measurements have improved our knowledge of the branching fractions of A + ny , and 
Z- + C- y The measured 3- + C-y branching fraction approaches the unitarity bound 
while the limit on the R- + Z- y branching fraction is within a factor of about 5 of the 
unitarity bound. 

What are the prospects for further experimental progress? The Fermilab charged 
hyperon beam still offers the best possibility of measuring the A + ny asymmetry 
parameter through the decay chain E- + Arc-, A + ny which provides a polarized A’. 
Improvements on the only existing measurement of the E- + C-y asymmetry 
parameter are certainly possible. More challenging but also possible are the measurements 
of the R- + 3- y branching fraction and asymmetry parameter. It is the Fermilab 
charged hyperon beam that offers the only possibility of measuring these decays in the 
foreseeable future. The only limitation will be the availability of beam time and the 

ingenuity of the experimenters. 
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Present measurements of the decays E” + Ay and 5 + Coy are severely 
limited by statistics, each having only about 100 events. A study of these reactions is 
being planned as part of the Fermilab program5’ which will investigate CP violation in 

the neutral kaon system. It is possible tl,at the number of events could be increased by 
one or two orders of magnitude. As we leave argued at length in Sections 7.3.4 and 7.4, 
precise measurements of the asymmetric:; of these decays are very important: they could 

help settle the theoretical controversy concerning the validity of Hara’s theorem in the 
SU(3) limit. In particular, measurement of the E” + Ay asymmetry is absolutely 
crucial. 

At present there is no consensus among theorists as to how the quark-model 
violation of Hara’s theorem should be interpreted. The two contradictory points of view 
are: 
(I) Violation of Hara’s theorem is a pathological feature of the quark model. 
Consequently, the quark-level approaches have to be somehow modified to ensure that in 
the SU(3) limit this theorem is satisfied. This would presumably require some sort of 
wave function modification as it is the group-theoretical structure of the composite state 
of three quarks that directly leads to the result in question. No such proposal has been put 
forward that would describe experimental data in a satisfactory way. 
(2) Violation of Hara’s theorem is not an artifact of the quark model, but a feature of 
nature itself. This would mean that we lack a deep enough understanding of the quark 
model and its connection to the standard hadron-level language. Through the Kroll-Lee- 
Zumino scheme this seems to entail that vector meson dominance is more than a mere 
phenomenological model. The quark/vector-dominance model describes the data better than 
models in which Hara’s theorem is enforced. 

Whether one accepts (1) or (2), it is clear that what radiative hyperon decays 

probe is the composite nature of hadrons. 
The problem of radiative hyperon decays bears some resemblance to the story of 

baryon magnetic moments. In fact, it is precisely through the proton magnetic moment 
measurement of Stern, Estermann and Frisch’52 that hadron compositeness was revealed 
to us for the first time. At that time the experimental results were not interpreted as 
indicative of proton substructure, however. Although the measured value of the magnetic 
moment was in sharp disagreement with (hadron-level) theoretical expectations, ‘53 the 
explanation of baryon magnetic moments in terms of constituents was proposed only 
thirty years later. The successful explanation was based on the dubious assumption of the 
additivity of (Dirac) magnetic moments of three free quarks in spin-flavor symmetric 
state. It is precisely the same set of qualitative features of the three-quark states in the 
quark model that leads to the violation of Hara’s theorem in weak radiative hyperon 
decays. For this reason we believe that study of these decays should teach us a lot about 
how quarks combine to form hadrons. The present results and the prospect of new 
experiments should provide a stimulus for further theoretical progress. 
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