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Abstract 

We present two simple analytical methods for computing the gravity 

wave contribution to the cosmic background radiation (CBR) anisotropy; one 

method uses a time-dependent transfer function, the other method uses an 

approximate gravity-wave mode function which is a simple combination of 

the lowest order spherical Bessel functions. We compare the CBR anisotropy 

tensor multipole spectrum computed using our methods with the previous 

results of highly accurate numerical methods. Our time-dependent transfer 

function is more accurate than the time-independent transfer function found 

by Turner, White, and Lidsey; however, we find that the transfer function 

method is only good for 1 5 120. Using our approximate gravity-wave mode 

function, we obtain mnch better accuracy; the tensor multipole spectrum we 

find differs by less than 5% for I _< 120, less than 10% for 1 < 160, and less 

than 25% for 160 < 1 5 250 from the numerical result. Our approximate 

graviton mode function should be quite useful in studying tensor perturba- 

tions from inflationary models. 
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1. Introduction 

The cosmic background radiation (CBR) anisotropy places stringent constraints on the- 

ories of the early Universe. Among these theories, the best studied are the inflationary 

models, which are strongly motivated because they solve the famous problems (the flat- 

ness problem, the smoothness problem, the structure formation problem) of the standard 

cosmology. Tensor (gravity-wave) and scalar (density) metric perturbations are generated 

in the very early Universe due to quantum fluctuations arising during inflation. Both 

tensor and scalar perturbations contribute to anisotropy in the temperature of the CBR. 

While the scalar contribution to the CBR anisotropy involves more complicated physics, 

the tensor contribution.to the CBR anisotropy arises only through the Sachs-Wolfe effect 

[l] as follows. As photons of the CBR propagate toward us from the last scattering sur- 

face, their paths are perturbed by the metric perturbations due to the primordial gravity 

waves. The perturbed energies of these photons result in temperature fluctuations in the 

sky that we observe. The CBR temperature fluctuation is conventionally expanded into 

spherical harmonics: 

$(O,~J) = C ahYI,(fl, 4) 
h 

(i.i) 

In this paper, we present two simple analytic methods of computing the tensor contribu- 

tion to the variance in the CBR temperature multipole moments, (la,,/2), one method 

makes use of a time-dependent transfer function, the other uses an approximate gravity- 

wave mode function which is a simple combination of the lowest order spherical Bessel 

functions. Our methods provide adequate accuracy for normalizing the tensor perturba- 

tions arising from inflationary theories to the observable CBR anisotropy. Our method 

using the approximate gravity-wave mode function is accurate enough to be used in 

studying the CBR anisotropy tensor multipole spectrum to large 1 (I ,$ 250). 
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We use the results by Dodelson, Knox, and Kolb [2] as the standard for compari- 

son. They considered a Universe with both matter and radiation, and used numerical 

methods to evolve the photon distribution function using first-order perturbation the- 

ory of the general relativistic Boltzmann equation for radiative transfer. Their results 

(which we refer to as “Boltzmann”) should be equivalent to the results obtained using 

the Sachs-Wolfe formula (see below). The “Boltzmann” method has no simple analytical 

formulation, and the exact result using the Sachs-Wolfe formula involves complicated 

spheroidal wavefunctions (31; hence it is of great interest to find a simple transfer func- 

tion, or a simple approximate graviton mode function, which can be used analytically to 

compute the CBR anisotropy tensor multipole moments to sufficient accuracy. 

Our first method has been motivated by the tensor transfer function found by Turner, 

White, and Lidsey (TWL) [4]. Th eir transfer function takes into account the effect of the 

Universe becoming matter-dominated gradually. The tensor multipole moments obtained 

using their transfer function, however, differ from the “Boltzmann” results by up to over 

30% for 1 < 100. The reason for this substantial discrepancy is that their transfer function 

contains no time evolution, although they did give the expression for the time-dependence 

of the transfer function for short wavelength modes. We modify their transfer function 

by accounting for the difference in time evolution between long and short wavelength 

modes. 

Our second method has been motivated by intuition. Since the gravity-wave mode 

function is analytically known for both matter and radiation dominated eras, it should 

be possible to construct asimple approximate gravity-wave mode function by smooth 

interpolation. As expected, the resultant mode function is much closer to the true mode 

function than the much used matter-dominated mode function. When used in computing 

the CBR anisotropy tensor spectrum, the approximate gravity-wave mode function gives 

very accurate results. 
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‘2. Gravity wave contribution to CBR anisotropy 

The rms temperature fluctuation averaged over the sky for a given experiment is given 

(q) = -gg(luh12w> (2.1) 

where U; is the appropriate response function for the experiment. For an experiment 

with two antennas of Gaussian beam width u separated by angle 6, the temperature 

difference between the two antennas is measured; the response function is 

w, = 2[1 - P,(cose)] ,-(‘+1’2)202. (2.2) 

We have followed the notation of Ref.[4]. 

Tensor perturbations generated by inflation are stochastic in nature (51. Let us ex- 

pand the gravity-wave perturbation in plane waves 

h,(x, T) = (2s)-3/d3kh;(r)e;k .z-‘~.~, (2.3) 

where E& is the polarization tensor and i = X, + in the transverse traceless gauge (in 

which hr,e = hsj = 0). We have 

hi(O) = A(lc (2.4) 

where a’(k) is a random variable with statistical expectation value 

(a;(k) ai( = IC-36(3)(k - q) 6,,, (2.5) 

and the spectrum of gravity waves generated by inflation is 

H2 8V A2(k) = - - _- 
7rZMp2n - 3x M& ’ (2.6) 

where V is the value of the inflaton potential when the mode with comoving wavenumber 

k crosses outside the horizon during inflation. -. 
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The tensor contribution to the variance of the multipoles is given by 

(lo,m/2) = 36n2 ;; T;;; /dkA2(k) lfi(k)[‘, 

where 

Ff(k) = ~ Jo”,’ dr ~ [ ~~1 ~i~~~~~--~;1~), 

(2.7) 

(2.8) 

where r., is the conformal time today, rr,ss is the conformal time at last scattering. We 

need to find the graviton mode function hi(r). 

Inflation gives rise to a spatially flat and perturbed Friedmann-Robertson-Walker 

universe with the metric 

9 w = R2(d Iqw + hJ, (2.9) 

where q,,” = diag(1, -1, -1, -I), hLrv is a small perturbation, and r is the conformal 

time. The cosmic scale factor R(T) is 

R(T) = [T/TO + 61’ -I&, 

for a Universe with both matter and radiation. We have defined 7s s 2H;‘dm. 

At matter-radiation equality, R(T~) E rt, = 4.18 x lo-‘h-‘, and T-/TO = [a - 1]Rz2. 

Today R., = 1, T,,/T~ = +/m- 6. At last scattering, RLSS = l/(1 + buss), 

TLSSI~O = Jzz& - 6. 

The gravity-wave perturbation satisfies the massless Klein-Gordon equation 

where k2 = k k and the overdots denote derivatives with respect to 7. 

.4 gravity-wave mode with wavenumber k crosses inside the horizon at kT - 1. Before 

it crosses inside the horizon, k7 < 1. Eq.(2.11) gives us ii(r) = 0 for kr < 1, i.e., the 

gravity-wave mode is frozen before horizon-crossing. We can take /L’k(O) = 0 as the - 
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initial condition for Eq.(2.11). For modes that cross inside the horizon during radiation 

dominated era (7 << r-, R(r) = 2,/%&o), th e exact solution is h,(r) = hk(O)jo(kr); 

for modes that cross inside the horizon during matter dominated era (r >> TV, R(T) = 

(r/~s)~) the exact solution is h;(T) = $(0)3jl(kT)/(kT). Here j&z) = sinz/z and 

j,(r) = sin Z/Z* - cos Z/Z are spherical Bessel functions of order zero and one respectively. 

3. First method: time-dependent transfer func- 
tion 

Since the contributions to the tensor multipole moments are dominated by gravity waves 

which have entered the horizon recently [6], let us write [4] 

hi(~) = hi(O)T,(k/kJ 3j2,k’) , 
[ 1 

where T,(k/k-) is the amplitude transfer function which accounts for the effect of short- 

wavelength modes entering the horizon during radiation-dominated era, and kq s r&l. 

Eq.(2.8) becomes 

F,(k) = -k3J2 Jam dr TTr(k) ~~ji~~~~~--~~~). (3.2) 

Note that there is no dT,(k)/& term in the above expression, because ahi(r and 

hi(r) are related to 3jl(kr)/(kT) and a[3jl(kT)/(kr)]/& by the same amplitude transfer 

function T,(k). 

The transfer function at time r can be found by integrating Eq.(2.11) numerically 

from r = 0 to 7. Today’s transfer function is [4] 

T,(y) E To(y) = [l.O+ 1.34y+2.5y2]r”, (3.3) 

where y = kfk,. 

Since the Universe became matter-dominated gmdually, the transfer function in 

Eq.(3.1) should obviously depend on time. Once a mode is well inside the horizon -. 
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(k~ > l), hi(~) 0: cos(k~)/R ( see Eq.(2.11)). Since 3jr(kr)/(kr) is the exact mode 

function for R(r) = (T/Q)*, the transfer function for modes with k > keq at an early 

time T is given by [4] 

e(k/k,) = $$f To(klk,) = A(T)G(klkq), k >> ky. (3.4) 

The above formula is in very good agreement with numerical results for k 2 k, and 

TLSS 5 ?- I To. 

On the other hand, modes with k < k, entered the horizon during matter-dominated 

era; the transfer function for these modes should have negligible time dependence. Let 

us write 

T4klW = ToW,) Tl(7, k/k& (3.5) 

where To(k/k,) is given by Eq.(3.3), and Tl(r, k/k& can be written as 

TI(T, kllc,) = 4WeqM~) + P - 4klkJl. (3.6) 

where A(T) E (7/70)*/R(7). w(k/k-) -+ 0 for k << kq, and w(k/kq) -+ 1 for k > kq. 

The simplest choice is 

4klk-J = I- exp [-7 (k/k,)*] , (3.7) 

where y and A are constants. 

Since we use the graviton mode function from matter-dominated era, it is consistent 

to use Russ N TO& (which is the matter-dominated limit of the correct expression) 

as the lower limit of integration in Eq.(2.8). With y = 0.9 and A = 0.45 in Eq.(3.7), the 

multipole moments computed using our transfer function agrees with the “Boltzmann” 

results to better than 1.5% for 1 5 50, and to better than 17% for 1 < 80. We can use a 

slightly complicated weight function 

dk/k.d = (1 - exp [-y (klli,)*]) (1 - exp [-dklk, - Y,)‘]) , (3.8) _ 

6 



where nc and y, are constants. With y = 0.9, A = 0.45, n, = 20, y, = 0.7, the multipole 

moments computed using our transfer function agrees with the “Boltzmann” results to 

better than 2% for 1 5 80, and to better than 8% for 1 5 100. In Figure 1, we plot the 

CBR anisotropy tensor multipole spectrum computed using the TWL transfer function 

(dotted line), the transfer functions with weight functions given by Eq.(3.7) (dashed line), 

and Eq.(3.8) (dot-dashed line). The solid line is the “Boltzmann” result. 

It can be argued that using the matter-dominated limit for Russ distorts the ionization 

history of the Universe, since the correct expression rnss = r. [t/W- &J is 

smaller than the matter-dominated limit rnss N TO& by a factor of 2/3. However, 

using the correct expression for rrss increases the multipole moments for an amount which 

increases from 10% at 1 = 20 to 300% at I = 100. The reason for this dramatic effect is 

that the graviton mode function we use is an extremely bad approximation to the true 

mode function at the era of last scattering. The contribution to the multipole moment 

for a given 1 is dominated by the wavenumber at which F,(k) (see Eq.(2.8)) peaks; since 

F,(k) peaks at kT0 - I, i.e, k/kq N 2.678h-’ 1 x low3 141, larger I multipole moments are 

dominated by the contribution from larger-wavenumber graviton modes, which entered 

the horizon at earlier times, when the true graviton mode function deviates greatly from 

the matter-dominated graviton mode function that we use. Our transfer function can 

not correct for this effect even with time dependence included, because at early times 

(around the last scattering) the graviton mode function has only a smaller number of 

oscillations in k, while our transfer function only accounts for the difference in avemge 

amplitude between the true and the matter-dominated mode functions. 

By using the matter-dominated limit for Russ, we are effectively truncating the inte- 

gral over conformal time r in the expression for the multipole moment; it is not surprising 

that this enables us to get multipole moments (for 1 5 120) which are not far off from 

the “Boltzmann” results, since we are cutting off the T integral at small T where the _ 

, 
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matter-dominated mode function is most inaccurate. The multipole moments we obtain 

by using the matter-dominated limit for ~ss are therefore physically consistent. 

The transfer function method is limited to 1,$120. For larger 1, the phase difference 

between the matter-dominated graviton mode function and the true mode function be- 

comes important, which results in significant deviation between the multipole spectrum 

computed using any transfer function and the multipole spectrum from the “Boltzmann” 

method. 

4. Second method: approximate gravity-wave mode 
function 

If we want to use the~correct expression for rt,ss, we must use a new mode function 

which better approximates the true graviton mode function at small r than the matter 

dominated mode function 3jl(k~)/(kr). 

Obviously, one can construct an approximate solution which interpolates smoothly 

between jO(kr) for 7 < rq and 3jl(kT)/(kT) for r > r-. Let us write 

[l -w(r)]Z-f(k/k& [3’;p)] +w(T) aj;r), 

[l - w(r)]c(k/k& 3jf(r) [ 1 + 445 (W , (4.1) 

where ~(7) + 0 for r >> rq, and W(T) + 1 for r < r9. q(k/k,J is given by Eq.(3.4), 

which correctly accounts for the difference in average amplitude between the matter- 

dominated mode function and the true mode function. 

To compute the multipole moments, we make the following substitution in EqJ3.2): 

T,(k) jz(W kr d [l - w(~)]e(k) ‘9 + W(T) $b (4.2) 

A good choice for w(r) is 

W(T) = ,-Wd, 
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where a and p are constants. Fitting the resultant tensor multipole spectrum to that 

found by the “Boltzmann” method, we find a = 0.2, B = 0.55. The multipole moments 

computed using our approximate mode function agree with the “Boltzmann” results to 

better than 2% for 1 5 50, to better than 10% for I 2 80, and to better than 50% for 

1 2 220. Compared with the results of Ref.131, w IC uses the Sachs-Wolfe formula with h’ h 

the exact graviton mode function (expressed in terms of spheroidal wavefunctions), our 

results differ by less than 10% for 1 5 150, and less than 23% for 15 200. 

The multipole spectrum computed using the “Boltzmann” method has a peak at 

1 N 210 (see Figure 2). The multipole spectrum computed using our approximate mode 

function has a peak at 1 N 220, while the multipole spectrum computed using the matter- 

dominated mode function (with or without transfer function) has a peak at I N 180 (see 

Figure 2). Our approximate mode function gives much more accurate phase information 

than the matter-dominated mode function. 

We can understand the deviation of our multipolespectrum from the “Boltzmann” re- 

sult by comparing the conformal-time derivative of our mode function (given by Eqs.(4.1) 

and (4.3)) with that of the true mode function. Our mode function gives rather accurate 

phase for k ,$ kq, very accurate amplitude for k 5 0.1 kc,. The conformal-time integral 

in the multipole moments peaks mostly near r = rnss. For r not much larger than sLss, 

our mode function gives larger amplitude (compared with the true mode function) for 

larger k; it gives about 20% larger amplitude for k N k,. Since the multipole moment 

with 1 = 200 is dominated by contribution from modes with k N kW, we expect our result 

to differ from the “Boltzmann” result by about 40% for 1 = 200. 

We can improve our mode function by observing that at large k, jo(kr) accurately 

gives both the amplitude and the phase of the true mode function, therefore we should 

“turn off’ T,(k/k,) (which accounts for the amplitude difference between 3jl(k.r)/(kr) 
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and the true mode function) at large k. We can replace Eq.(3.3) with 

To(y) = e-“Y’ [l.O + 1.34~ + 2.5~~1”~ + (1 - e-‘=yL), y s k/k,. 

Taking a = b = 4, we obtain a better fit to the “Boltzmann” results: better than 5% for 

1 5 120, better than 10% for 1 < 160, and better than 25% for 160 5 1 < 250. In Figure 

2, we plot the CBR anisotropy tensor multipole spectrum computed using the matter- 

dominated graviton mode function with the TWL transfer function (dotted line); our 

approximate graviton mode function given by Eqs.(4.1), (3.3) (dashed line) and Eq.(4.4) 

(dot-dashed line). The solid line is the “Boltzmann” result. 

The successful application of our approximate mode function in computing the tensor 

multipole spectrum stems from the fact that it is rather close to the true graviton mode 

function. In Figures 3 and 4, we plot the conformal time derivatives of the true mode 

function (solid line), our approximate mode function given by Eqs.(4.1) and (4.4) (dashed 

line), and the matter dominated mode function (dotted line). 

Figure 3 shows that at T = rr,ss, our approximate mode function is much closer to the 

true mode function than the matter-dominated mode function, for all wavenumbers k. 

Figure 4(a) and (b) show that for k = k;g sr r,;1t and for rt,ss 5 r 5 re, our approximate 

mode function is much closer to the true mode function than the matter-dominated mode 

function; however, our approximate mode function overestimates the amplitude of the 

true mode function by about lo-20% near r = rnss, the r range which contributes most 

to the large 1 multipole moments. 

5. Generalization 

The CBR anisotropy tensor multipole spectrums in Figures 1 and 2 are for the standard 

values of h = 0.5, Rs = 0.05, 00 = 1; and for a scale-invariant primordial spectrum of 

gravity waves. It is straightforward to use our methods to compute the tensor multi- _ 
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pole spectrum for a non-scale-invariant primordial spectrum of gravity waves, just use 

the corresponding A(k) (see Eq.(2.6), which is constant in the scale-invariant case) in 

Eq.(2.7). 

Next, we consider the cases when some or all of the parameters h, Ra, and R. are 

different from the standard values (h = 0.5, 32s = 0.05, Rs = 1). zrss is given by [5] 

1 + rrss N 1100 (n,/n,)se’s. (5.1) 

As long as Re = 1, the cosmic scale factor is given by Eq.(2.10); our previous formalism 

applies with znss given above. In Figure 5, we plot the CBR anisotropy tensor multipole 

spectrum computed using our approximate graviton mode function (given by Eqs(4.1) 

and (4.4)) for Re = l,.Rs = 0.05, h = 0.8 (solid line) and h = 0.5 (dashed line). 

If 0 = Re + R,, = 1, but Re < 1, we have 

T 1 R(s) 

J dR 

-=2 0 TO +eq + R + (Q,lflo)(l + Re.J R4’ 

To E 2n, 1’2~,-‘,/x, 

& = 4.18 x 10-5(Roh2)-L, 
--1 

kq s 7;’ = 
(45 Tl)&’ 

F=JZXG& (5.2) 

Note that the conformal time today r., # 70. For h = 0.8, Ro = 0.2, Rh = 0.8, 

T.~~/To N 0.85; our mode function approximates the true mode function reasonably well 

for k 5 kq, but it overestimates the amplitude of the true mode function by about 50% 

for k near k,, and it deviates significantly from the true mode function at k > kes. This 

is because that a sizable cosmological constant term significantly alters the late time 

evolution of the cosmic scale factor, hence 3jl(kT)/(k r IS no longer the mode function ) 

at late times, which leads to the breaking down of our mode function (given by Eqs.(4.1) 
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and (4.4)) as a good approximation of the true mode function. We expect the multipole 

spectrum computed using our mode function to deviate less than about 20% from the 

correct answer for 1 s 100. In Figure 6, we plot the CBR anisotropy tensor multipole 

spectrum computed using our approximate graviton mode function (given by Eqs(4.I) 

and (4.4)) for Rs = 0.2, fly = 0.8, 0s = 0.05, h = 0.8 (solid line) and Re = 1, 0s = 0.05, 

h = 0.5 (dashed line). 

6. Discussion 

We have presented two simple and straightforward analytical methods for computing the 

CBR anisotropy tensor multipole spectrum; one method uses a time-dependent transfer 

function, the other method uses an approximate gravity-wave mode function which is a 

simple combination of the lowest order spherical Bessel functions. Both methods give 

much better accuracy than using the matter-dominated mode function with the time 

independent transfer function of Turner, White, and Lidsey [4]. Our approximate mode 

function method is especially promising, since it gives a multipole spectrum which is 

extremely accurate for 15 160, and qualitatively correct (with only about 20% error) for 

larger 1 (I 5 250). 

Many attempts have been made in the past in finding a good approximate graviton 

mode function, for instance, via the sudden approximation (assuming the transition 

from radiation-domination to matter-domination to be instantaneous) [7]. In addition, 

Ng and Speliotopoulos explored the possibility of finding a good approximate graviton 

mode function via the WKB approximation [S]; h owever, they did not use the mode 

function they found in computing the multipole moments, they used the mode function 

found by numerical integration instead. Furthermore, Koranda and Allen found the 

exact graviton mode function in terms of spheroidal wavefunctions [3]. The advantage 

of our approximate graviton mode function is that it takes into account the gmdval - 
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transition from radiation-domination to matter-domination in the Universe; it can be 

used to compute the CBR anisotropy tensor multipole spectrum rather accurately; and 

it involves only the first and second order spherical Bessel functions. 

In a different direction of the CBR anisotropy tensor multipole spectrum calculation, 

the “Boltzmann method” evolves the photon distribution function numerically, using 

first-order perturbation theory of the general relativistic Boltzmann equation for radiative 

transfer (21. We have used the CBR anisotropy tensor multipole spectrum from the 

“Boltzmann method” as the standard for comparison, but we do not think that it is 

practical to use the numerically rather involved “Boltzmann method” in all cases. When 

we study the tensor perturbations from a large number of inflationary models, it is much 

more convenient to use the Sachs-Wolfe formula with a simple yet reasonably accurate 

graviton mode function, such as the one presented in this paper. 
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Figure Captions 

Figure 1. The CBR anisotropy tensor multipole spectrum computed using the TWL 

transfer function (dotted line), and the transfer functions with weight functions given 

by Eq.(3.7) (dashed line), Eq.(3.8) (dot-dashed line). The solid line is the “Boltzmann” 

result. 

Figure 2. The CBR anisotropy tensor multipolespectrum computed using the matter- 

dominated graviton mode function with the TWL transfer function (dotted line); our 

approximate graviton mode function given by Eqs.(4.1), (3.3) (dashed line) and Eq.(4.4) 

(dot-dashed line). The solid line is the “Boltzmann” result. 

Figure 3. The cohformal-time derivatives at 7 = buss, of the true graviton mode 

function (solid line), our approximate mode function given by Eqs.(4.1) and (4.4) (dashed 

line), and the matter-dominated mode function (dotted line). 

Figure 4(a)(b). The conformal-time derivatives with k = kq s TG~, of the true 

graviton mode function (solid line), our approximate mode function given by Eqs.(4.1) 

and (4.4) (dashed line), and the matter-dominated mode function (dotted line). 

Figure 5. The CBR anisotropy tensor multipole spectrum computed using our ap- 

proximate graviton mode function (given by Eqs.(4.1) and (4.4)) for R. = 1, Rs = 0.05, 

h = 0.8 (solid line) and h = 0.5 (dashed line). 

Figure 6. The CBR anisotropy tensor multipole spectrum computed using our ap- 

proximate graviton mode function (given by Eqs.(4.1) and (4.4)) for R0 = 0.2, R,, = 0.8, 

fls = 0.05, h = 0.8 (solid line) and 0,~ = 1, Rs = 0.05, h = 0.5 (dashed line). 
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