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ABSTRACT

Using recently available data from the Fermilab \hanging �le" calorimeter, we

have reviewed and extended our previously published study on using weights to

improve the resolution of a calorimeter. Since the hanging �le calorimeter is

substantially more �nely segmented than the one used for our earlier study, it

is now possible to obtain a much better match to the geometry of the current

CMS calorimeter design. In addition, we are able to study some details of the

low energy tail of the energy deposition spectrum not previously accessible with

the earlier low statistics data sample.
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Introduction

We have previously studied how to optimize the CMS hadron calorimetry

resolution by assigning weights to certain calorimeter layers
1
using the Fermilab

Lab E data set. Due to the coarse sampling thickness and limited number of

events, we were not able to parameterize the low energy \tail" induced by leakage

nor to match the precise con�guration of the CMS hadronic calorimeter. By

comparison, the hanging �le data set
2
has very �ne sampling thickness compared

to the baseline CMS hadron calorimeter, and consists of a large number of events

which are available for 25 GeV, 100 GeV and 227 GeV � beams. In this paper,

we will focus on the leakage tail parameterization, and re-examine how much

bene�t will be obtained by having a tail catcher (TC), massless gap (MG) and a

weighting strategy.

The Hanging File Data Set

The hanging �le data was taken from a recon�gurable-stack calorimeter. The

calorimeter stack was formed by a series of 1 m � 1 m plates. It can be arranged

in any combination of layers of scintillator, Pb, Fe, or Al. The technical details

can be seen in reference 2. The data set we are using here is Run 1243 with a

227 GeV � beam, Run 1251 with a 100 GeV � beam and Run 1253 with a 25

GeV � beam. For these runs, the con�guration is alternating plates of 1 inch

Fe and scintillator with a total of 72 layers. With that, we can model the CMS

calorimeter as shown in the following table.
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Table 1. Hanging File and CMS Con�guration

All depths given in units of �

EM HAC1 HAC2 dead TC

Hanging �le depth 1.51 3.17 6.96 8.47 9.54

CMS design depth 1.5 3.1 7.0 8.5 9.6

In the table, EM refers to the PbWO4 crystal electromagnetic calorimeter, HAC1

and HAC2 refer to the two hadron calorimeter compartments, \dead" refers to

the inert material of the CMS magnet coil, and TC refers to the so-called tail

catcher behind the magnet coil. The CMS con�guration is taken from the latest

design of the geometry and the materials
3
as given in the baseline design report.

Following that baseline design, we study the following cases.

� Case A: j�j < 0:7, with tail catcher and massless gap.

� Case B: j�j > 0:7, with massless gap but no tail catcher.

Weighting Strategy

The optimum weights were de�ned to be those which minimize the RMS of

energy variation with respect to the energy measured in a calorimeter of depth

10.9�, and without inert material, and were obtained with a MINUIT program.

We found that these weights have only a very weak energy dependence. Thus,

we have used the same weights for all beam energies as shown in Table 2. There

was no attempt made to use the event by event energy measured in EM, HAC1,

HAC2 or TC; the weights are simple constants.
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Table 2. Weighting Combination Applied to Various Cases

Case Last 2 layers of HAC2 Massless Gap Tail Catcher

A 1.5 2.5 2.0

B 1.5 5.0 0.0

Note that the weight combinations are not the same for the two cases, since

these cases correspond to di�erent calorimeter con�gurations. Zero means, by

de�nition, there is no tail catcher for case B.

Table 3 shows a summary of results on the Gaussian part of the energy

resolution for 25, 100 and 227 GeV beam energy from the CMS hanging �le

calorimeter. Figures 1, 2 and 3 show the energy distributions for 25, 100 and 227

GeV, with and without weighting and the best (10.9�) and worst (6.96�) total

depths considered for cases A and B. One can see that the energy resolution is

signi�cantly improved by the weighting strategy, and that the massless gap and

tail catcher play important roles, especially if we apply an additional weighting.

For Case A, we almost reach the performance of the 10.9 � deep calorimeter after

applying weighting.
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Table 3. Gaussian Energy Resolution (in Percent) With and Without Weighting

Condition 25 GeV 100 GeV 227 GeV

Case A Unweighted 12.84 7.96 6.60

Case A Weighted 11.97 6.93 5.27

Case B Unweighted 13.00 8.22 6.96

Case B Weighted 12.13 6.99 5.44

10.89 � cal. 11.84 6.79 5.22

6.96 � cal. 13.03 8.28 7.04

Parameterization of the Tail

Due to the limited calorimeter depth, and especially since there is the inert

material of the CMS magnet coil in between, we observe a low-side tail, which

corresponds to leakage and which degrades the energy resolution. We consider

the total energy deposit as consisting of two parts: a Gaussian part in the peak

and a non-Gaussian part in the low energy tail. The resolution obtained from

the Gaussian part depends on the sampling thickness etc., which we can not do

much about. The non-Gaussian part is troublesome for the energy resolution,

particularly the missing energy resolution. The weighting strategy is intended

to compensate for that problem so that, as a result, the energy resolution, as

obtained from the Gaussian part of the data, is improved. Figure 4 shows how

the best and the worst energy resolution depends on the energy. The stochastic

term, a, de�ned by dE=E = a=
p
E� b, where � denotes addition in quadrature,

varies between 0.571 and 0.589 which is not a signi�cant change, since it depends

on mainly the sampling thickness. However the constant term, b, degrades from

0.036 to 0.059, an increase of 63%, due mostly to leakage, which will become

more important as the energy increases. All other cases will be located in the
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area between of these two lines.

From Figures 1, 2 and 3, we already see clearly the Gaussian part and the tail.

In order to make any quantitative statements, it is necessary to �rst parameterize

the shape of the full distribution.

To accomplish that, we proceed as follows. Clearly, the entire energy deposit

distribution is dominated by the main Gaussian so that must remain in whatever

parameterization we adopt. The form of that Gaussian is given by

g(x;A;�1; �1) =
Aq
2��2

1

e
�

(x��1)
2

2��2
1 :

To model the low-energy leakage tail, we add another function made up of two

pieces. The �rst piece is de�ned as

d(x;B;�2; �2) = maxf0; d

dx
g(x;B;�2; �2)g

and is intended to account for the excess data just below the main Gaussian

peak without distorting the shape of the spectrum above the main peak. The

second piece is intended to account for the long, at part of the low-energy tail

and consists of a simple constant pedestal, K, for x < �2 and zero otherwise. In

general then, there are 7 parameters in this model. However, it was convenient to

impose a constraint among these such that �2 = �1 � 2�1. Otherwise, MINUIT

tended to use the functions intended to model the low-energy tail to account for

uctuations in the main peak. This constraint reduced the number of free pa-

rameters to six. We also note that the amplitude of each of the three components

of our �t is controlled by A, B and K respectively and does not depend on �

or �. Consequently, the relative strengths of those components can be directly

compared.

Figures 5, 6 and 7 show the �tted plots of the full energy spectrum, with and

without weighting for Cases A and B at 25, 100 and 227 GeV beam energy. The
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tail parameters are summarized in Tables 4, 5 and 6 for the 25, 100 and 227 GeV

data respectively. For all of these, the amplitudes A, B and K have been scaled

to A = 1000:0 to allow direct comparison.

Table 4. Tail Parameterization for the 25 GeV Data

25 GeV

A = 1000.0

�1 �1 B �2 K

Case A Unweighted 23.9858 3.0411 4.5194 3.2899 0.1088

Case A Weighted 24.5600 2.9364 0.6605 0.0004 0.0206

Case B Unweighted 23.9238 3.0681 5.5342 4.2276 0.1655

Case B Weighted 24.3828 2.9546 7.6104 0.0012 0.0444

Table 5. Tail Parameterization for the 100 GeV Data

100 GeV

A = 1000.0

�1 �1 B �2 K

Case A Unweighted 96.1893 7.5029 3.9300 8.5988 0.0302

Case A Weighted 99.2063 6.8672 0.0002 444.5352 0.0182

Case B Unweighted 95.8540 7.6870 5.3197 9.6973 0.0436

Case B Weighted 98.3420 6.8749 0.2316 0.0314 0.0210
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Table 6. Tail Parameterization for the 227 GeV Data

227 GeV

A = 1000.0

�1 �1 B �2 K

Case A Unweighted 222.3673 14.4091 1.8521 16.5039 0.0153

Case A Weighted 229.5469 11.9603 0.0531 27.7715 0.0129

Case B Unweighted 221.4285 15.0064 2.7796 17.4449 0.0173

Case B Weighted 227.4876 12.2645 0.0000 7.2846 0.0142

One can see that for the same beam energy, the B parameter is much smaller

with weight than without weight. That is already apparent from Figures 5, 6 and

7. If we compare the low energy tail between the 10.9� calorimeter (Figure 8) and

the calorimeter after applying the weight (Figures 5, 6 and 7), we �nd that these

tails are essentially the same. This suggests that these events are just ordinary

events for which the shower happened to develop very deep in the calorimeter

stack. A detailed \scan" of these tail events con�rms that supposition. These

events represent less than � 1% of the total.

Perhaps, a more interesting comparison is that between our Cases A and B,

recalling that the primary di�erence between them is that Case A includes a tail

catcher and Case B does not. We have noted that the parameters used to �t the

measured energy deposition distributions vary reasonable smoothly with energy.

For some other purposes, we want to apply this tail parameterization at energies

other than those where data was taken so we proceed as follows. For any energy

other than 25, 100 or 227 GeV, we do a simple linear interpolation between the

values shown in Tables 4, 5 and 6 for each of the six parameters needed to �x the

distribution. Our �rst application of this was used to construct Figure 9 which

shows the fractional energy resolution as a function of energy for Cases A and B
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and includes energies between those where real data was taken. Since the design

and use of a tail catcher will generate some new technical problems and increase

the overall cost and size of the detector, it is appropriate to try to measure what

is gained by including it. The left side of Figure 9 includes the tail catcher while

the right side does not. As expected, the tail catcher does improve the fractional

resolution but, we note, not by as much as the weighting strategy does. Further

test beam data will be taken with copper absorber and an aluminum inert coil

mockup in order to con�rm this result.

Conclusion

The weighting strategy improves the Gaussian part of the energy resolution

at the level of a few percent for 25 GeV, 15 percent for 100 GeV, and as much

as 25 percent for 227 GeV, primarily because the tails are much smaller after

applying weighting. With the massless gap alone, together with an optimized

weighting, we can improve the resolution by an amount which almost but not

quite equals that obtained by including a tail catcher.
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Figure 1.  Calorimeter Response at 25 GeV.
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Figure 1. Calorimeter response for a 25 GeV � beam.
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Figure 2.  Calorimeter Response at 100 GeV.
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Figure 2. Calorimeter response for a 100 GeV � beam.
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Figure 3.  Calorimeter Response at 227 GeV.
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Figure 3. Calorimeter response for a 227 GeV � beam.
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Figure 4.  Range of Possible Resolution
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Figure 4. Calorimeter resolution as a function of beam energy. The solid curve

corresponds to a 10.89� depth and the dashed curve corresponds to a 6.96� depth.
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Figure 5a.  Fit to Low Energy Tail for 25 GeV Data  Case A
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Figure 5a. Raw and weighted energy deposit distribution for a 25 GeV beam for

Case A. The dashed curve shows the full �t while the dotted curve shows the �t

to the low energy tail.

14



Figure 5b.  Fit to Low Energy Tail for 25 GeV Data  Case B
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Figure 5b. Raw and weighted energy deposit distribution for a 25 GeV beam for

Case B. The dashed curve shows the full �t while the dotted curve shows the �t

to the low energy tail.
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Figure 6a.  Fit to Low Energy Tail for 100 GeV Data  Case A
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Figure 6a. Raw and weighted energy deposit distribution for a 100 GeV beam

for Case A. The dashed curve shows the full �t while the dotted curve shows the

�t to the low energy tail.
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Figure 6b.  Fit to Low Energy Tail for 100 GeV Data  Case B
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Figure 6b. Raw and weighted energy deposit distribution for a 100 GeV beam

for Case B. The dashed curve shows the full �t while the dotted curve shows the

�t to the low energy tail.
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Figure 7a.  Fit to Low Energy Tail for 227 GeV Data  Case A
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Figure 7a. Raw and weighted energy deposit distribution for a 227 GeV beam

for Case A. The dashed curve shows the full �t while the dotted curve shows the

�t to the low energy tail.
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Figure 7b.  Fit to Low Energy Tail for 227 GeV Data  Case B
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Figure 7b. Raw and weighted energy deposit distribution for a 227 GeV beam

for Case B. The dashed curve shows the full �t while the dotted curve shows the

�t to the low energy tail.
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Figure 8.  Low Energy Tail for the 10.89 lambda Calorimeter
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Figure 8. Unweighted low energy tail distribution for a 10.9� calorimeter in

response to 25 GeV, 100 GeV and 227 GeV � beams.
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Figure 9.  Fractional Energy Resolution as a Function of Energy
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Figure 9. Comparison of the fractional energy resolution with and without a tail

catcher.
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