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Abstract 

The integrability properties of self-dual Yang-Mills theory are used to derive 
the structure of rnultiparton amplitudes in quantum chromodynamics. 

Introduction. 

A detailed understanding of multiparton amplitudes is crucial to the application of 
perturbative quantum chromodynamics to a wide variety of processes at high energy 
colliders. Considerable progress has been achieved in developing this understanding 
using a wide variety of methods. In this talk, I will review some applications of these 
methods and show how self-dual Yang-Mills theory may be used to develop an alternative 
understanding of these results and may provide an avenue for future analysis. 

Structure of Multiparton Amplitudes. 

Parke and Taylor [I] developed methods to analyze the structure of multiparton 
amplitudes based on the decomposition of QCD amplitudes using color-ordering and 
reiations based on supersymmetry. Remarkably simple results were obtained for certain 
tree level amplitudes with fixed helicity structures. In this method multiparton amplitudes 
are decomposed as a sum over cyclic permutations of color-ordered trace of fixed helicity 
amplitudes 

M&E,,--> p,&,)= ~tr(a’ ...a”).M(PIE,,...,PnEn) 
Pe- 

where m(p,~,,..-, p,,~,) are the gauge invariant colored-ordered amplitudes. The color- 

ordered amplitudes are independent within the context of a formal l/Nc expansion. 
Supersymmetric Ward identities were used to relate multigluon amplitudes to scalar and 
spinor amplitudes with a simpler structure. The invariant helicity amplitudes have a 
simplified S-matrix structure including specific factorization properties and the isolation of 
soft and collinear divergences. 
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For certain helicities, the Parke-Taylor amplitudes provide remarkably simple, general 
relations for muitigluon tree amplitudes. Expressions for these amplitudes can be written 
in closed form for arbitrary numbers of gluons, 

m,(p,+,p,+,...,p,-,...,P,-,..., PI8 +I 

UJj4 
= i’g’-2 ’ (12)(23).+z- l)n)(nl) 

(12)= ~-(PI)W+(P2)=J/~~/.exP(i~~) 

Specific results were also obtained for four, five and six parton amplitudes. The method 
was also applied to the study of quark-gluon and quark-quark amplitudes in QCD. These 
methods were further developed by Mangano, Parke, Xu and others [2] and used in the 
study of high energy jets observed in collider experiments. 

4.n alternative approach was developed by Berends, Giele, Kuijf and others [3] using 
recursion relations for multiparton amplitudes. The amplitudes with one off-shell quark 
or gluon could be obtained using iterative solutions of the full Yang-Mills gauge theory. 
Amplitudes with higher numbers of on-shell quarks or gluons could be obtained from 
smaller amplitudes using recursion relations based on classical solutions of the Yang-Mills 
field equations. The color-ordered, single off-shell multigluon amplitude may be written 
as 

(A,(Pn)) PlEl”‘Pn-IEn- 
= Ctr(a’ 4y*J,(p,q .*.Pn-,&n-l) 

I-- 

m(le~~n)={iE~(p,)}~p~ .Jp(l.**(n-l)), P,’ +O 

Jll(PIE, . . . P,,,,E,-, ) defines the single off-shell current with n- 1 gluons, 

J,(bn) = --I 2 { ~“~~J”(~,.i).J,((i+l)..~) 
(p, +.*p,) i=l 

J,(l..i). J,((i+l)aj). J,((j+l)**n)} 
i=l j=i+l 

where V,:, V4,, “V are the three and four point Yang-Mills vertices and J,,(l) = Ed (p,). 

These recursion formulas have a particularly simple solution in the case where all of the on- 
shell gluons have the same helicity. In this case the fixed heliciy current has the structure, 
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J,(1+,2+;..,n+) = g,“-’ 
(k-lYpP~Ld(k +> 

ylZ(k1)(12) * * *((n - l)n)(nk) 

where k is a gauge defining reference momentum for the off-shell gluon. The 

corresponding on-shell S-matrix element, m( 1+,2+;. ., (n - l)+,n AZ), vanishes as the above 

current has no pole in the off-shell momentum, pi. This result is consistent with the 
Parke-Taylor analysis. Similar expansions can be derived for single off-shell quark and 
anti-quark amplitudes by iterating the appropriate field equations. 

The recursion relations have been used to analyze a wide variety of tree amplitudes in 
quantum chromodynamics. Amplitudes with maximal helicity violation are computed to 
all orders in the number of partons; these are just the Parke-Taylor amplitudes. The 
complete helicity structure has been explicitly determined for amplitudes with up to seven 
partons [4]. Recursion formulas can be numerically iterated to construct specific 
amplitudes in higher order. 

Currents with two off-shell quarks or gluons are used to study the propagators of 
quarks and gluons in a background gauge field and are the basis for constructing on-shell 
amplitudes at the one-loop level. Recursion relations for these double off-shell currents 
can be derived from the QCD field equations [5]. The double off-shell fermion currents 
axe given by the color-ordered sum, 

‘i’,(Q;h) =g: c [T’ ..?]ji d’(Q;lwz) 
DCl7lU 

’ and the recursion relation, 

Y(Q;lvz)= &Q;J..j)y. J((j+1)...n). r’te+kl +--+“) 

j=O [Q+ k, +..+k,lz 

with (Q, j) the antiquark and (P=Q+kl+ .e+ + kn, i) the quark indices. Explicit solutions 
of these recursion relations have been obtained for certain fixed heiicity configurations, 
(++a.++) and (-++s++). These solutions have been used to construct specific multi- 
photon and multigluon fermion loop amplitudes [6]. Care must be used in regularizing the 
singular loop diagrams as the conventional dimensional regularization procedure does not 
preserve the chiral structure of the recursion relations. 

Mahlon has constructed a number of multiparton one-loop amplitudes using these 
methods. He has explicit results for the following fermion loop amplitudes [6]. 

ny, fn(l+,2+;..,n+) = 0, n # 4 

e4 (12)*(34)* 
m(l+,2+,3+,4+) = i-s 

2z2 (12)(34) 

ny, m(l-,2+,...,n+) = 0, n # 4 



e4 (12)(34)* (24)* 
m(l-,2+,3+,4 +) = i---s 

219 (12)* (34)(24) 

e+e- + ny (++-a-+) 

e+e- +ng (++---+), (-+-..+) 

ng, (+ + . . a+), (- + . . .+), (quark loop only) 

An extensive program to use sting methods to construct multiparton amplitudes has 
be carried out by Bern, Kosower, Dixon and others [7]. Using these methods, the 
heterotic string theory has been applied to the computation of QCD amplitudes. A 
particular focus of these studies has been the construction of multiparton loop amplitudes. 
Particular attention is paid to the regularization of the loop integrals, the unitary structure of 
the loop amplitudes and the soft and collinear singularities. 
amplitudes have been constructed using these methods. 

Both quark and gluon loop 
Complete results have been 

achieved for multiparton amplitudes with maximal helicity violation, n-gluons and n- 
photons. A full calculation of one-loop amplitudes for the 2 -> 3 processes with arbitrary 
helicity configurations has also been achieved (81. 

Using a variety of methods from recursion relations to supersymmetry and string 
theory remarkable progress has been made in understanding the structure of multipatton 
amplitudes in Yang-Mills field theory. -‘?/lany of these results are presently being applied 
in the analysis of multiparton processes at high energy. Another remarkable aspect of 
these studies is the extreme simplicity of the final expressions obtained for some of the 
amplitudes, particularly those processes where the partons have a fixed helicity. We will 
explore the possible origins of this simple structure in the following sections. 

Self-dual Yang-Mills structure. 

As noted in the above discussion, there is a substantial simplification for amplitudes 
with fixed helicity structure, (H+++H ). 
are flipped (- 

Amplitudes become more complex as helicities 
+++++), (-+++-+++I. At tree level, amplitudes with a given, fixed 

helicity can be generated directly from solutions of self-dual Yang-Mills theory. More 
complex amplitudes are generated by considering correlation functions of the self-dual 
theory. It is known that the self-dual theory has certain integrability properties and this 
structure may be exploited to provide a deeper understanding of multiparton amplitudes. 

Berends and Giele (31 developed recursion formulas for gluon and spinor currents by 
iterating the full Yang-Mills field equations. Currents with futed helicity are generated 
directly from the self-dual Yang-Mills theory. The amplitudes for one off-shell parton are 
given by the sum over color ordered currents, 

(4f(P.)) 
PI+, P2 +,-*. Pn-I + 

= C + -A”)- J,(p,+,---,P,-I+) 
pt?rt?U 

where A,,@,) is a solution of the self-dual field equations. The self-dual field equations 
are 
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[o~,Z~~]G~~ =0 

where 

Gpv = dpAV - &A, + i[Ap,A,] 

ap =(l,Z), cFp =(1,-Z) 

It is convenient to consider the component equations, 

G o+z.o-z = G*+ry,r-~y* Go-z.n-iy = O * GO+z.r+ry = O 

Light cone gauge can be used to write these field equations in terms of a single matrix 
valued scalar potential. The light cone gauge conditions are 

A, - A, 3 A,-, = 0 

which imply 

A Go,, = -do-$,,, 

B Gx+iy,x-iy = d*+ry’4x-iy - dr-ryAx+iy + i * [ Ax+ry 9 A*-iy] 

C Go-z.x-iy = '0-z Ax-iy = 0 

D Go+z,x+;y = ao+zAx+iy - ax+iyAo+z + i ’ [ A0+z f Ax+iy] 

Assuming an appropriate boundary condition, the self-duality constraints can be written as 

c a Axmry = 0 

with solution 

Ax+iy = do-z@, Ao+z = dx-iy@ 

The equation of motion for the scalar potential, a, is given by 

D * O = Go+z,x+iy = d2@ + i ’ [ d,-i~~, do-,@] 

with 

3~ A = $%id,Q,, v = (OJ), ii = (1,O) 

asA= -ViidQpQ, 
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Following the analvsis of Berends and Giele, an iterative solution can be obtained in 
terms of the color-ordered amplitude expansion for the scalar potential where all of the 
external states are on-shell giuons with fixed helicity, 

Q, = i$(k, )e-iklxTal 

+C ~i.[$(k,)e-iktxT”l --~~(k,)C?-‘k”xTan] 

n perms 

-(Q, -QJ’(Q, -QJ’ --CQw, -Qn)-' -Qn)-' 

and 

Q = ko+z 1 kx-ly = kx+iy J ko-z 

With this solution the vector potential for the gluon field is given by 

A, = A, = -+(V.r - i - V,,)@ 

Ax 
=i-A, =+<a, +V,)Q 

This solution of the self-dual field equations reproduces the solutions for the single off- 
shell gluon current found by Bet-ends and Giele using the full field equations. 

The above result has a remarkably simple structure which corresponds precisely with 
the Bethe-ansatx solutions of two dimensional integrable systems, ie. it is written as a sum 
over permutations of ordered plane waves multiplied by the product of the two-body S- 
matrices. This simple structure is related to the integrability properties of the self-dual 
Yang-Mills theory. 

Solutions can also be obtained directly for the chiral spinor currents in self-dual gauge 
backgrounds. Left-handed spinors in light-cone gauge satisfy 

with the explicit solution for the spinor current, lj/( x), 

v/(x) = w, (kw)esiL’I B-k,yo =0 

+c C [@(k,)e-“l’T”l ..-g(k,)e-i’“xT’.]~o(ky)e-‘tyx 
n PC- 

+-Q,)-‘(Q, - QJ’ --CQ,-, -t&)-?-Q,)- 

Similar solutions are obtained for right-handed spinor currents in light-cone gauge, 
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a-(d+iA)X(x)=O 

d, - id, 
XWLdo &; 1 5(x> 

c(x) = ljoe-ikXx 

f c c [ q)(k, )ewiklxTu~ . . . @(k, )e-iknxp ]{oe-ikxx 
n pe- 

C-Q, >-’ (Q, - Q, I-’ -(Q,, -Qx)-'C-e,)-' 

Both of the above spinor amplitudes reflect the Bethe-ansatz structure which follows from 
integrability of the combined gauge-spinor system. 

Self-dual Yang-Mills theory has been extensively studied as a proto-typical integrable 
system Much progress has been made in understanding the structure and implications of 
integrable systems [9]. It is known that self-dual Yang-Mills theory generates many of the 
known integrable lower dimensional systems through appropriate reductions. These 
results should be adapted to the analysis of multiparton amplitudes directly in four 
dimensions. Such methods could be used to understand conservation laws and construct 
correlation functions of the self-dual theory, 

Our solutions to the self-dual Yang-Mills theory apply directly to amplitudes 
involving par-tons with a single fixed helicity. More complex amplitudes may be 
generated from correlation functions computed in the self-dual background. The matrix 
element. 

(A, (POP, +,“‘.Pn +* 

generates the gluon currents. Amputation of these currents give the on-shell amplitudes 
m(++++++) and m(-++..++) which vanish at tree level. The correlation function, 

(A, (P)A”(P’ )),,+ . . . 1 
p 3 
’ n + 

generates the double off-shell currents and the on-shell amplitudes with two flipped 
helicities, m(-++..++-++.++). These amplitudes are known to have the simple 
structure of the Parke-Taylor amplitudes [l] for arbitrary numbers of positive helicity 
gluons. This simple structure is presumably related to the integrabiiity properties of the 
self-dual theory. Can the methods developed to study integrable systems be applied to the 
construction of these correlation functions? It may be possible to develop a natural 
understanding of the more complex amplitudes from the integrable structure of the more 
complex correlation functions needed to construct these amplitudes. Integrability is 
presumably broken by loop amplitudes, but integrability may still play an important impact 
in determining their structure. 

Anomalies may play a special role in determining the structure of some amplitudes. 
The on-shell amplitudes, m(+++-+-++) and m(+-+-+-t+), vanish as a result of the 
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conservation laws of the self-dual Yang-Mills theory. However, these amplitudes do not 
vanish at one-loop but have an extremely simple structure [6]. 

e4 (12)* (34)* 
m(l+,2+,3+,4+) = i--e 

27~’ (12)(34) 

e4 (12)(34)* (24)* 
m(l-,2+,3+,4+) = i-s 

2x2 (12)* (34)(24) 

These loop amplitudes are finite and have no discontinuities. This behavior is analogous 
to that found for the usual chiral anomalies generated by the chiral fermion loops. This 
structure may result from the anomalous conservation of the currents associated with the 
integrability of the self-dual Yang-Mills theory. 

Conclusions. 

The integrability properties of self-dual Yang-Mills theory may provide a deeper 
understanding of the simple structure discovered for multiparton amplitudes in QCD and 
QED. The fundamental structure of the gluon and quark currents are exactly reproduced 
UC%? the self-dual Yang-Mills formulation. The methodology of integrable systems may 
have important applications to the study of multiparton amplitudes. both at tree level and at 
higher loop order. The approach described here may provide a complementary view to the 
results obtained from the application of string theory and supersymmetry to par-ton 
amplitudes. 
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