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OBJECT BASED DATA ACCESS AT THE D� EXPERIMENT

Stuart Fuess

Fermi National Accelerator Laboratory

Batavia, Illinois 60510, USA

For the D� Collaboration

The D� Experiment at Fermilab is currently participating in the FNAL Computing
Division's "Computing for Analysis Project" (CAP) to investigate object based data
storage and access. Following a short description of the CAP system architecture, the
D� data model is explored. A brief discussion of the method of operation of the CAP

system leads into a concluding section.

1 Introduction

1.1 The CAP Project

The Computing for Analysis (CAP) project at Fermilab was initiated for the pur-

pose of exploring new hardware and software techniques for data-mining operations.

In High Energy Physics analyses there are frequent needs to scan through large data

sets in order to classify and select certain types of events.

There are two principle aspects to the CAP project: the hardware architecture

and the software tools. The system is centered on a 24-node IBM SP2 processor

with a high-speed, low-latency switch interconnect. Approximately 200 Gbytes of

disk are mounted, supported by a IBM 3494 robotic tape library providing the bulk

of the mass storage repository.

The persistent object manager on the system is ptool, a product developed by

Robert Grossman of the University of Illinois at Chicago 123, and then adapted as

the persistent manager by the PASS project 4. CAP uses a slight modi�cation of

ptool to adapt to the speci�c needs of the SP2 architecture. The CAP software

system also includes a hierarchical storage manager, supplied by the NSL-Unitree

package.

1.2 D� Interest in CAP

In Run 2 of the Fermilab collider program, expected to begin in 1999, D� expects

to accumulate at least 100 Tbytes of raw data per year. The event reconstruction

process will produce an equivalent amount of data. With such huge data sets, ef-

�cient and timely access becomes very problematical. A potential solution to the

data access problem is presented by CAP, with a combination of hardware provid-

ing high data bandwidths and software tools enabling e�cient access to structures

within an event record.

D� is currently in the process of rede�ning its computing paradigm for Run

2 e�orts. The areas of data persistency and object oriented data access are being
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explored. The ptool product may be able to satisfy some of the D� software re-

quirements, or may lead to the development of an even more powerful methodology.

Of equal interest to D� is the examination of the optimal architectural con-

�guration for a central analysis and data serving engine. As disk capacity is not

expected to be su�cient for the enormous data sets, a robotic tape store with

controlling hierarchical storage is required. Access to these storage devices is also

crucial, and the CAP system demonstrates the features of a set of processors with

a high bandwidth network interconnection.

As a test data set, D� imported approximately 260 Gbytes of data from the

1994/95 data taking period. This set contained high pT triggers in ZEBRA format,

after reconstruction, with summary and working banks (but not raw data banks)

included.

2 The D� / CAP Data Model

For the purposes of CAP, D� chose a data model which would closely parallel the

existing ZEBRA data structure. This allowed an easy mapping between ZEBRA

banks and objects managed by ptool. This mapping was used when importing data

into the ptool store and also when exporting selected events back into ZEBRA. The

latter step was important for the validity check of the complete cyclical process.

The �rst step in de�ning the data model was to classify the objects created

from one (or more) ZEBRA banks as either cardinal or auxilliary. Cardinal objects,

expected to be disk resident, contain information deemed necessary for event clas-

si�cation. Auxilliary objects, generally tape resident, contain the more basic banks

used as input to reconstruction algorithms. Since auxilliary objects were intended

to be accessed only on �nal rebuilding of the ZEBRA event, they were collected in

a single store for e�cient access.

Example cardinal objects are event headers, trigger records, and summary ob-

jects. The auxilliary class might include detector hits and tracks.

A more detailed view of the data objects and their linkages is given in Fig.

1. This �gure illustrates the important position of the event handler object, which

contains links to the headers of the event component objects. Each event com-

ponent structure is allowed to be a variable length linked list of variable length

objects. Event and component headers of successive events are also linked, allowing

a complete scan to be made accessing only the object of interest. Finally, the event

header contains a link to the auxilliary data object. Like objects are collected in a

store referenced by the object name.

To implement the data model, a set of FORTRAN and C++ routines was

automatically generated. The starting points of the automatic process are bank

de�nition �les, the contents of which comprise a data de�nition language. A �le ex-

ists for each object in the model, and gives its ZEBRA bank equivalent(s), reference

links to other objects, and object member data. A suite of programs then takes the

bank de�nition �les and generates code for ZEBRA and object translation, access,

and manipulation. The bank de�nition �les are an evolutionary step beyond the

current text documentation �les produced for each D� bank.

Links in the model are implemented using the ptool persistent pointer, a 64-bit
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entity encoding information on the store, folio, segment, and o�set of the persistent

object member data. Each object is associated with a store, which may be composed

of many folios (�les). Each folio is split into �xed size segments, chosen to optimize

I/O operations. Within a segment is the particular data of interest.

3 Query Operation

A mechanism, outside the scope of this paper, exists for taking a script-like query of

the data set and generating C++ code, compiling, and linking an executable to be

run on the CAP system. The execution of the query involves successive dereferenc-

ing of the persistent pointer, which then fetches the object data from the persistent

store. In the Fermilab ptool implementation, the data store is distributed over

multiple I/O nodes and disks. A segment request on the execution node requires

the appropriate I/O node to deliver the data. The high performance of the CAP

system arises from ptool's e�cient memory access, the low latency high bandwidth

SP2 switch, and e�ective distributed disk striping and cacheing.

A query may produce several possible outputs. Most basically, a list of persisent

pointers to the headers of selected events can be produced. Using this list, the

ZEBRA structures for the selected events can be rebuilt. The user can selectively

include speci�c ZEBRA banks in the output event; most e�ciently only the cardinal

banks are included, but at the cost of making tape accesses the entire event can

be built. Another option allows the user to omit the rebuilding of any ZEBRA

structure but instead �ll an ntuple with selected information. The implementation

of the ntuple scheme allows a dynamic selection of event attributes to be included.

4 Comments and Future Activities

Beyond the creation of the data model and the demonstration that the query process

works, the D� operational experience on CAP is limited. Our future plans include

study of the system operation with various data access patterns. A modi�cation of

the data model is under way which will allow a greater number of cardinal objects,

relegating some to storage on tape with the option of making them programmatically

available for use in queries. The auxilliary store is replaced by a store containing

the complete event, since auxilliary objects generally represent the bulk of an event.

One important factor in a data model is its ability to evolve. A limitation

of the persistent pointer is that any link to a store becomes obsolete if the store is

restructured. A critical issue in data management is the manipulation of hot events,

those which have the most analysis interest. For these events we wish to retain disk

storage for all objects within, whereas for less interesting events most objects could

be migrated to tape. There will likely be active restructuring of object stores; we'd

like to avoid changing the complete data store to update persistent pointer links

in such operations. One possible solution under investigation is a combined use of

persistent pointers and identi�ers resolved by database lookup. The latter could be

used to 
exibly represent links between objects.

The D� experiment sees the hardware and software advances represented in

CAP as keys to future analysis computing. We will continue to take active interest
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and contribute e�ort to the advances in this area.
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Figure 1: D0 / CAP Data Model
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