hqr Fermi National Accelerator Laboratory

FERMILAB-Conf-95/355

Run 2 Analysis Computing for CDF and DO

S. Fuess

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

November 1995

Proceedings of the Computing in High Energy Physics 1995 (CHEP ' 95),
Rio de Janeiro, Brazil, September 18-22, 1995

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

RUN 2 ANALYSIS COMPUTING FOR CDF AND DO

Stuart Fuess

Fermi National Accelerator Laboratory
Batavia, Illinois 60510, USA

Two large experiments at the Fermilab Tevatron collider will use upgraded detectors in
the next era of running. The associated analysis software is also expected to change, both
to account for higher data rates and to embrace new computing paradigms. A discussion
is given of the problems facing current and future High Energy Physics (HEP) analysis
computing, and several issues explored in detail.

1 Introduction

Run 2 of the Fermilab collider, the first in the Main Injector era, is scheduled to
begin in 1999. Both existing large collider experiments, CDF and D@, plan major
detector upgrades, with the central calorimeter in CDF and the calorimeter and
muon planes in D@ being the major remaining detector components. Associated
analysis software will also need to be newly created. Each experiment now has
approximately a million lines of code, so the magnitude of the effort is large.

Both the CDF and D@ collaborations are exploring possible analysis comput-
ing models for the future. Internal committees are expected to report to the full
collaborations in late 1995. Since final decisions have not yet been made, this paper
cannot report on the chosen implementations. However, it is useful to comment on
the exploration of problems within analysis computing, and to study which factors
are of critical importance.

The analysis computing problems faced in the past and expected in the future
for these two experiments are similar, and likely mirror the situation throughout
HEP. Each experiment now has approximately a million lines of code, and nearly a
hundred Terabytes of combined raw, reconstructed, streamed, and summary data.
The experiments expect to each write over 100 Terabytes of raw data per year,
or more than an order of magnitude beyond existing data sets. While other ex-
periments at RHIC and the b-factories may soon face similar data sets, and LHC
experiments most certainly will have even larger sets, CDF and D® can provide
a perspective now of operations with multi-Terabyte accumulations. Both experi-
ments operate with over 500—person collaborations, hence have ample experience in
the sociological aspects of large collaborations.

In exploring the problems CDF and D@ have faced in the past, perhaps a better
understanding can be had of the process of searching for the future methodology of
choice. In this paper two issues in particular will be addressed: the need to plan
for change and the importance of the link identifier in allowing flexibility.

1

2 Problems in Analysis Computing

2.1 Perceived problems

Let us begin the exploration of analysis computing by examining problems as re-
ported by the typical user. The most noticed attribute is the complexity of the
current analysis environment. Contributing to the complexity are the difficulties
arising from the distributed development environment present in a large collabora-
tion. As a result of imperfect controls of the development environment, users are
often found unaware of changes made by others; as a result of complex interrelation-
ships within the code, these changes can produce unexpected consequences. The
combination of a difficult development environment with highly intertwined code
results in a painfully slow development cycle.

A consequence of large unwieldy data sets is the introduction of new forms for
reduced sets, either by selection of information about each event (a summary) or
by selection of particular events (a stream). To meet the requirements of diverse
users, there are typically multiple streams and summaries produced. These com-
plex streams divide and often replicate the data sets, such that individual events
may appear multiple times. Because these new data sets compete for scarce disk
resources, some of them must be relegated to storage on serial media. Finally, a
complicated cataloging system is necessary to maintain order. All factors contribute
to a user view of the data which may not be simple, and user access to the data
which may involve slow and possibly unreliable serial media.

2.2 Root problems

After a cursory examination of the preceding problems, one might be tempted to
blame any failures on unsophisticated, or even unskilled, programmers. However,
one further observation shows that skill levels may be adequate, but other factors
drive a physicist’s programming styles. Most important, a physicist’s activity is
often driven by an urgent need to meet a particular goal. To succeed most rapidly,
an ‘end run’ solution is often attempted; that is, in order to quickly converge, it
is often most expedient to develop software with a particular limited goal in mind.
When all such efforts are collected then convergence becomes difficult. Clearly, the
development process was not adequately aimed at the correct initial goals.

Analysis of data organization difficulties seems simpler. Most steps in physics
analyses only need small portions of the data. But attempts to legislate reduced
or selected data sets do not satisfy all users. In particular, if certain data sets
get relegated to serial media then access becomes practically impossible. The root
problem might then be determined as the inability of current data management
schemes to flexibly and dynamically make available those portions of the data under
active study.

3 Problems in HEP Computing

The preceding exposition of general problems encountered in HEP analysis com-
puting only hinted at some of the underlying explanations of why these problems

2

surface. It is perhaps more instructive to examine the particular features of HEP
computing which set it apart from more typical computing tasks.

HEP is unusual in that the customers of any software development tend to also
be the developers. This arrangement leads to potential problems. In particular,
since a developer tends to be aimed at a direct goal, usually his own physics analysis,
the motivation for producing sharable code is reduced. This is a contributing factor
to the prevalence of ‘end run’ solutions, which we’ve seen as contributing to the
complexity of the entire system. Additionally, the often short ‘lifetime’ of a student
or physicist on a particular project also implies that there is a high turnover in the
developer base.

HEP computing also appears to be different in that there are distinct problems
being addressed at different phases in the process of analysis. It is desirable to
share code among the applications developed for each phase, so they need to be
considered collectively. The four phases of HEP computing are the software DAQ
trigger, reconstruction, data reduction, and physics analysis. In the earlier phases
performance is critical, with the necessity for a well controlled and documented
code release mechanism. In these steps the operations typically involve information
from the entire event. The latter steps operate on combined large data sets, hence
data access is of critical importance. During these phases only selected pieces of
the event data may be necessary. There is also an overall progression from tightly
managed code development to flexible user-oriented activities.

All of the preceding can be encompassed by the realization that a fundamental
property of HEP computing is that it must constantly adapt to change. There
will be changes in the customer and developer base and their goals. There will be
changes in the specific tasks to be accomplished. There will be changing needs over
the life cycle of an experiment. There are several consequences of the efforts to deal
with changing requirements. Analysis code is certainly more complex to account for
the evolutionary aspects of the problem. Multiple versions of analyzed data appear
as code changes. This complexity can only be minimized by a conscious plan which
anticipates change.

The final aspect which sets HEP computing apart from many other software
projects is that it deals primarily with distinct events. Traditionally, the data struc-
ture has paralleled the event structure, possibly a tree with linked sub-structures,
but storing the event as a single entity. But other methods of organization may be
more efficient, for example column-wise ntuples allow better single—attribute access.
We have seen that in the different phases of HEP computing we may wish a different
granularity of access to the event information. Hence it is desirable to have a data
model adaptable to changing requirements. The next section will further explore
the relationship between event structure and the desire to plan for change.

4 Object Identification

In this section we will explore an example illustrating how planning for change
affects a design decision. In this case, we will consider an object data model for
HEP events. Our goal is to produce a structure allowing objects within an event to
be flexibly linked yet capable of being stored and accessed from independent files.

3

More importantly, we’ll want a structure adaptable to change.

In this model of linked objects, the most important item to understand is how
the links should be represented. There are two methods by which a link can be
created: by location or by identifier. The former simply tells the application to fetch
some portion of information directly from a particular address. The address may
be a real memory address, an offset in a record, or a complex structure combining
a file name, record, and offset. An identifier simply adds a level of indirection
by requiring the resolution of the identifier into a location. The resolution may
occur via a database lookup, a simple table lookup, or perhaps a more complicated
combination of actions.

Each method has its advantages. An identifier is more flexible, as the object to
which it refers may be relocated without invalidating the link. Using a location as
a link is much more efficient, and may be necessary if performance is critical.

The example is illustrated in Figure 1, which denotes a hypothetical data model
composed of linked objects (hits, tracks, and electrons) which comprise an event,
then further collections of events, runs, and lists of selected events. In Figure 1
each column is meant to represent an individual (collection of) file(s), for example
all hits from all events would be stored together.

Also represented in the figure are the various links, with those implemented
by identifier shown as bold lines and those implemented by location shown as thin
lines. The goal is to have links between files be flexible, and hence to have such im-
plemented by identifier. In this example each object type has a header (or metafile)
containing a ‘database’ which resolves identifiers. The structure of the data requires
some link between all of the object headers; in this example the link is represented as
a location pointer, but it could equally well be simply the name of the file containing
the metadata. Within a file the links can be direct location pointers.

To illustrate the flexibility of this toy model, consider the case where one wishes
to concatenate the track and hit files to include only events with electrons. In this
instance one would rebuild the track and hit files with the selected information. The
event header would need to be updated to correct the pointers to the track and hit
headers, but otherwise all of the identifier links would remain valid. In particular,
the electron file could remain unchanged. This particular exercise then illustrates
how object data might be migrated to a backup media but allow components of
selected events to remain on local storage without the need for copying the complete
event.

In this example we’ve looked at how planning for change could affect our data
model, and specifically how it could affect the choices of implementation for links
between objects. The data model can be flexible by adding or removing object
types, and it can be flexible by restructuring the data so as to allow distinct storage
options for objects within selected events.

5 Conclusions

In this paper we’ve examined the general problems facing HEP software develop-
ment. A theme throughout is that software must be developed with expectations
of change built in, including changes in goals, changes in methods, and changes in

4

File system
Run# Run Event —IElectron |— Track Lmt

Event # header header head head head
Database Pointer [Database [Database [Database
of event# |to Hit [~ lofIDto |[™ fofIDto |[JofID to
to pointer] |header [~ [pointer [[pointer [~ [pointer
Pointer Pointer [Pointer [Pointer [Pointer

| to next toTrack [to first to first to first
Run header electron track hit
Pointer
m to Electron
header
[Electron Track [Hit
[Pointer [Pointer
- to algo. to algo.
data data Pointer
1D of — rJto next
— Linkbyldentifier ~[¢lectron hit
IDof || [ID(s)of |]
. . track hit(s)
— Link by Pointer
Pointer [Pointer [Pointer E
to next to next to next
event electron track
Event [Electron

Track |

Figure 1: Identifiers as links

structure of both the code and the data. An example has shown how a data model
could be designed to incorporate features more adaptable to changing data storage
requirements.

CDF and D@ will be settling on future computing schemes within the next
few months. The experiments will be working together closely in hope of finding
common components. As these problems exist throughout HEP, it is hoped that
our experience aids in future efforts to produce solutions with even wider HEP
acceptance.

