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Search for Anomalous WW and WZ production
at D�1

The D� Collaboration
(July 25, 1995)

We present a preliminary result from a search for anomalous WW and WZ production
in p�p collisions at

p
s = 1:8 TeV using p�p! e�jj events observed during the 1992{1993 run

of the Fermilab Tevatron collider. A �t to the pT spectrum of W (e�) yields direct limits
on the CP{conserving anomalous WW and WWZ coupling parameters of �0:89 < �� <

1:07 (� = 0) and �0:66 < � < 0:67 (�� = 0) at the 95 % con�dence level, assuming that
the WWZ coupling parameters are equal to the WW coupling parameters, and a form
factor scale � = 1:5 TeV.
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The self-interaction of electroweak gauge bosons is a direct consequence of the non-Abelian

gauge theory of the Standard Model (SM) and can be tested through study of gauge boson pair

(W, Z, WW and WZ) production in p�p collisions at
p
s = 1:8 TeV [1]. The self-interaction

coupling parameters are given precisely in the SM. Any deviation of the parameters from the

SM values signals physics beyond the SM. Figure 1 shows leading order Feynman diagrams

of q�q ! WW and q�q0 ! WZ processes. The WW production process depends strongly on

the WW and WWZ coupling parameters due to destructive interference between contributing

amplitudes. This interference prevents the SM WW cross section from violating unitarity at

high energies. The SM predicts the production cross sections for p�p!W+W� and p�p!W�Z

at
p
s = 1:8 TeV to be 8.4 pb and 2.5 pb, respectively [2]. Based on a formalism developed

by Hagiwara et. al [3] the WW and WWZ interactions beyond the SM can be parametrized

by four independent dimensionless coupling parameters2, �� and � for the WW vertex and

��Z and �Z for the WWZ vertex. For the SM, �� = � = ��Z = �Z = 0: Non-zero coupling

parameters result in a dramatic increase of the production cross section and an enhancement

in the transverse momentum (pWT ) spectrum of the W boson in the high pT region as shown in

Fig. 2. Thus, a study of the pWT spectrum of WW production leads to a sensitive test of the

WW and WWZ couplings. Similarly, the pWT spectrum of WZ production provides a direct

test of the WWZ coupling.

The D� collaboration has previously reported limits on anomalous trilinear gauge boson cou-

plings from three processes using the data from the 1992{93 Tevatron collider run: the WW

coupling based on a measurement of W production [4], WWZ and WW couplings from a

search for W boson pair production in dilepton decay modes [5], and ZZ and Z couplings

from a measurement of Z production [6]. In this report we present a new, independent de-

termination of limits on the anomalous WW and WWZ couplings obtained from a search for

p�p!WW +X followed by W ! e� and W ! jj, where j represents a jet, and p�p!WZ +X

2In this paper we only consider CP{conserving couplings.
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followed by W ! e� and Z ! jj; using the data from the 1992{1993 run, corresponding to an

integrated luminosity of 13:7� 0:7 pb�1: In this decay mode, WZ events are indistinguishable

from WW events.3 The CDF collaboration has reported a similar measurement [7].

The WW;WZ ! e�jj candidates were selected by searching for events containing a W ! e�

decay and two jets consistent withW ! jj or Z ! jj: The data sample was obtained with a single

electron trigger: an isolated electromagnetic (EM) cluster with transverse energy Ee
T > 20 GeV.

This EM cluster was required to be within the �ducial region of the calorimeter j�j � 1:1 in

the central calorimeter, or 1:5 � j�j � 2:5 in the end calorimeters. Here � is the pseudorapidity

de�ned as � = � ln(tan(�=2)); � being the polar angle with respect to the beam axis. The electron

cluster had to have (i) a ratio of EM energy to the total shower energy greater than 0.9; (ii) lateral

and longitudinal shower shape consistent with an electron shower; (iii) the isolation variable of the

cluster less than 0.1, where isolation is de�ned as I = (E(0:4)�EM (0:2))=EM (0:2); and E(0:4)

is the total calorimeter energy inside a cone of radius R �
p
(��)2 + (��)2 = 0:4, and EM (0:2)

is the EM energy inside a cone of 0.2; and (iv) a matching track in the drift chambers. The

W ! e� decay was identi�ed by an isolated electron with Ee
T > 25 GeV and missing transverse

energy /ET > 25 GeV forming a transverse mass M e�
T > 40 GeV=c2:

Jets were reconstructed by applying a cone algorithm with a radius R = 0:3 to the calorimeter

hits. This small cone size minimized the probability for two jets from the W (Z) boson to merge

into one cluster in the calorimeter, in particular, in the high pT region. The jets were required

to be within j�j < 2:5 and energy corrections including that for out-of-cone gluon radiation were

applied [8]. We required that a candidate event contain at least two jets with E
j
T > 20 GeV and

that dijet invariant mass (the largest invariant mass if more than two jets with E
j
T > 20 GeV in

the event) satisfy 50 < mjj < 110 GeV=c2; consistent withW and Z masses. The above selection

criteria yielded 84 candidate events.

The background estimate, summarized in Table 1, includes contributions from: QCD pro-

duction of W+ � 2j; QCD multijet events, where a jet was misidenti�ed as an electron;

t�t ! W+W�b�b ! e�jjX; WW with W ! �� followed by � ! e���; and ZX ! eeX, where

one electron was lost. The multijet background was estimated from the data by measuring the

/ET distribution of a background-dominated sample, obtained by selecting events containing an

EM cluster which failed at least one of the electron quality requirements (isolation, shower shape

and track-match). We extrapolated this /ET distribution into the signal region ( /ET > 25 GeV)

by normalizing the number of events in the background sample to that in the candidate sam-

ple (without the /ET requirement imposed) in the region of small /ET (0 < /ET < 15 GeV).

We measured the total number of multijet background events to be 12:2 � 2:6: The W+ � 2j

background was estimated using the VECBOS [9] Monte Carlo followed by parton fragmentation

using the ISAJET [10] program and a full detector simulation based on the GEANT program [11].

Using the dijet invariant mass distributions of the VECBOS sample and the observed Wjj sam-

ple after subtracting the contribution from the multijet events, we normalized the number of

VECBOS W+ � 2j events to the number of observed Wjj events outside of the signal region

50 < mjj < 110 GeV=c2: This yielded the total number of W+ � 2j background events (in the

signal region) as 62:2� 13:0, where the uncertainty was due to the normalization (16%) and the

limited statistics of the Monte Carlo events (13%). As a cross check of the normalization, we

also calculated this background using the VECBOS prediction for the W+ � 2j inclusive cross

section and obtained a consistent result.

The backgrounds due to t�t ! W+W�b�b, WW ! ��jj and ZX ! eeX were estimated

using the ISAJET program followed by the GEANT detector simulation and found to be small.

3The SM predicts � �B(p�p! W+W� ! e��jj) = 1:23 pb and � �B(p�p! W�Z ! e��jj) = 0:19 pb:
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TABLE 1. Summary of e�jj data and backgrounds.

e�jj events

Background source:
W+ � 2j 62:2� 13:0
multijets 12:2� 2:6
t�t(mt = 180 GeV=c2) 0:87� 0:01
WW ! ��jj 0:19� 0:01
ZX ! eeX 0:00+0:34�0:00

Total Background 75:5� 13:3

Data 84

SM WW +WZ prediction 2:9� 0:5

The total number of background events was estimated to be 75:5 � 13:3: Thus we observed no

statistically signi�cant signal above the background.

The trigger and electron selection e�ciencies [12] were estimated using Z ! ee events. The jet

�nding e�ciency is a function of pWT , due to the E
j
T requirement in the low pWT region and due

to the probability for two jets to merge into one in the high pWT region. Using the ISAJET and

PYTHIA [13] event generators followed by a full detector simulation, we estimated the e�ciency

for W ! jj selection, including the jet �nding e�ciency and the e�ciency for the dijet mass

requirement, as a function of pWT ; shown in Fig. 3. In estimating the sensitivity to the anomalous

WW and WWZ coupling parameters, we used the W ! jj e�ciency obtained from ISAJET,

which is smaller than that fromPYTHIA and therefore gives a conservative estimate. We included

the di�erence between the ISAJET and PYTHIA numbers in the systematic uncertainty. We

calculated the overall event selection e�ciency as a function of the coupling parameters using

the e�ciencies described above and the WW , WZ Monte Carlo program of Zeppenfeld [2,14],

in which the processes were generated to leading order, and higher order QCD e�ects were

approximated by a K-factor of 1 + 8

9
��s = 1:34. A dipole form factor with a scale � = 1:5 TeV

was used in the Monte Carlo event generation (e.g. ��(ŝ) = ��=(1 + ŝ=�2)2, where ŝ is the

square of the invariant mass of the WW or WZ system). We simulated the pT distribution of the

WW and WZ systems using the observed pZT spectrum in our inclusive Z ! ee data sample. We

calculated the total e�ciency with the SM couplings to be 0:15�0:02 forWW and 0:16�0:02 for
WZ. Thus the total number of expected SM events was 2:9�0:5: 2:5�0:5 forWW and 0:4�0:1
WZ. Using these e�ciencies and the background-subtracted signal, we set the upper limit on the

cross section times branching fraction of �B(W+W� ! e��jj) + �B(W�Z ! e��jj) for the

SM couplings to be 17 pb at the 95% con�dence level (CL). Figure 4 shows the pT distribution

of the e� system.

The absence of an excess of events with high pWT excludes large deviations from the SM cou-

plings. To set limits on the anomalous coupling parameters, a binned likelihood �t was performed

on the pT spectrum of the e� system, by calculating the probability for the sum of the back-

ground and the Monte Carlo signal prediction as a function of anomalous coupling parameters,

to uctuate to the observed number of events. The uncertainties in the background estimate,

e�ciencies, acceptance and integrated luminosity were convoluted in the likelihood function with

Gaussian distributions. Figure 5 shows the limit contour at the 95% CL for the CP{conserving

anomalous coupling parameters, assuming that CP{violating anomalous coupling parameters

are zero and that the WWZ coupling parameters are equal to the WW coupling parameters:
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�� � �� = ��Z and � � � = �Z . We obtained limits at the 95% CL of

�0:89 < �� < 1:07 (� = 0); �0:66 < � < 0:67 (�� = 0);

for ŝ = 0 (i.e. the static limit). The limits obtained are within the constraints imposed by the S{

matrix unitarity for � = 1:5 TeV. Figure 6 compares the limits obtained in this paper with limits

obtained by D� from a measurement of W production [4] and a search for WW ! ``0���0 [5].

The preliminary result obtained from this analysis gives the most stringent limit on ��:
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FIG. 1. Leading order Feynman diagrams for q�q ! WW (a,b) and q �q0 ! WZ (c,d)
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FIG. 2. pT distributions of Monte Carlo WW ! e�jj events with various coupling parameters. The
dotted line represents the Standard Model (SM) couplings. The cross section increases and the pT
spectrum becomes harder with anomalous coupling parameters. The samples are normalized to 13:7 pb�1:
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FIG. 3. Total e�ciency for W ! jj selection as a function of pWT ; estimated using the ISAJET(solid)
and the PYTHIA(dashed) generators followed by a full detector simulation.
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FIG. 4. pT distributions of the e� systems. The solid circle indicates the observed spectrum. The
dashed and dotted lines are background estimates from the QCD multi-jet events and W+ � 2j events,
and W+ � 2j events only respectively (top plot). The Monte Carlo predictions of pT spectrum of the
e� system for the SM and non-SM productions are shown in the bottom plot.
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FIG. 5. Limit contour (solid line) on CP{conserving anomalous coupling parameters at the 95% CL,
assuming �� � �� = ��Z and � � � = �Z . The constraint imposed by the S-matrix unitarity for
� = 1:5 TeV is also shown (dotted line).
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FIG. 6. Comparison of the limit obtained in this paper with limits obtained from a measurement of
W production [4] and a search for WW ! ``0���0 [5].


