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Abstract

With the CDF detector at the Tevatron pp collider the B0 mixing parameter xd

has been measured via time evolution. From a sample of � 20 pb�1 dimuon data a

value of xd = 0:64� 0:18� 0:21 has been obtained.

1 Introduction

Oscillations in the B0B
0
meson system were observed by the ARGUS [1] and CLEO col-

laboration [2] as well as the LEP experiments [3] including time dependent measurements.

A determination of the rate of B0, as well as B0
s
mixing is desirable, both to estimate the

magnitude of CP violating e�ects inB meson decay, and to measure the Cabibbo-Kobayashi-

Maskawa (CKM) [4] matrix element jVtdj.

The probability that an initially pure B0 state can be observed as a B
0
at time t is given

by:

Prob(B0 ! B
0
; t) = 1=2 � exp��t � (1� cos�mt): (1)

If the decay time t cannot be measured the time integrated probability, which is usually

refered to as �, can be obtained as

�i =
Prob(B0

i ! B
0

i )

Prob(B0
i ! B

0

i ) + Prob(B0
i ! B0

i )
=

x2i
2(1 + x2i )

where i = s; d: (2)

If both neutral B mesons, B0 and B0
s
, are produced, the time integrated and 
avour averaged

mixing parameter �, which is de�ned as

� = Fd �d + Fs �s; (3)

1Contributed Paper to the 17th International Symposium on Lepton-Photon Interactions, Beijing, China,

Aug 10-15, 1995.
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Figure 1: Box diagram describing B0B
0
mixing.

can be obtained, where Fd and Fs are the fractions of b hadrons that are produced as B
0
s
and

B0 mesons, respectively. Here the frequently used mixing parameter x = �m=� has been

introduced. It describes the oscillation period relative to the B meson lifetime �B = �h=�.

Keeping the time dependence of Prob(B0 ! B
0
; t) the following expression yields:

Prob(B0 ! B
0
; t)

Prob(B0 ! B0; t) + Prob(B0 ! B
0
; t)

=
1

2
(1� cosx

t

�
) (4)

In the Standard Model, B mixing occurs via second order box diagrams (Fig. 1). The

mass di�erence �mB can be calculated and the dominant contribution is due to top quark

exchange:
�mB

�
= �B

G2
F

6�2
m2

W mB (f
2
BBB) �QCD F (mt) jVtbj

2jVtdj
2: (5)

Here, GF is the Fermi coupling constant, mB the B meson mass, mW the W boson mass,

and fB the weak B decay constant. BB is the bag parameter of the B meson and �QCD are

QCD corrections, which are in the order of 1. jVtbj and jVtdj are the two Cabibbo-Kobayashi-

Maskawa matrix elements involved, and F (mt) is a correction depending on the top quark

and the W mass.

In general a time dependent mixing measurement requires the knowledge of:

1. the 
avour of the B meson at its origin

2. the 
avour of the B meson at its decay

3. the proper decay time t of the B meson.
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The latter can be obtained from a measurement of the B decay distance L which can be

infered from the vector pointing from the primary interaction vertex, where the B meson

is generated, to the secondary vertex, where it decayed. The decay time t is related to the

decay distance L by

t =
L

�

= L �

mB

pB
: (6)

This relation is also valid if the decay length is only measured in the transverse plane (Lxy):

t = Lxy �
mt

pt
: (7)

If the B meson is not fully reconstructed a so called �
 correction to scale from the only

partially measured B decay momentum pclt and mass mcl
t to the unknown B momentum pB

must be applied. This leads to the de�nition of c� :

c� = Lxy �
mcl

t

pclt
� F�
(p

cl
t ;m

cl
t ): (8)

From Eq. (8) the uncertainty on the decay time can easily be calculated to be (in units

of the B lifetime � ):

�t

�
=

vuut �Lxy

L0
xy

!2

+

 
t

�

�pt

pt

!2

where L0
xy =

pt

m
� c� (9)

From this it is obvious that the proper time resolution �t=� depends on the resolution to

infer the decay length from the primary to the B decay vertex (vertexing resolution) as well

as on the B momentum resolution (�
 correction).

In this note we report on the �rst preliminarymeasurement of theB0B
0
mixing parameter

xd via time evolution in a hadron collider environment. The 
avour of the B meson at its

decay is infered by the charge of the lepton in semi-muonic B decays, while the 
avour of

the B meson at its creation is obtained using the semi-muonic decay of the other B meson

in the event. In section 2 we describe the used dataset as well as the CDF detector while

our selection is presented in section 3. The results are given in section 4. We conclude in

section 5.

2 Detector and Dataset

The CDF detector has been described in detail elsewhere [5]. The detector systems used for

this analysis are the silicon vertex detector (SVX), the central tracking chamber (CTC), and
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the muon system. The SVX and CTC are located in a 1.4 T solenoidal magnetic �eld. The

SVX consists of 4 layers of silicon-strip detectors with r-� readout, including pulse height

information [6]. The pitch between readout strips is 60 �m and a spatial resolution of 13 �m

has been obtained. The �rst measurement plane is located 3.0 cm from the interaction point,

leading to an impact parameter resolution of � 15 �m for tracks with pt > 5 GeV=c. The

CTC is a cylindrical drift chamber containing 84 layers, which are grouped into alternating

axial and stereo superlayers containing 12 and 6 layers, respectively. The combined CTC and

SVX system has a resolution of �pt=pt = [(0:0009pt)
2 + (0:0066)2]1=2 for beam constrained

tracks, where pt is the momentum transverse to the beam direction (measured in GeV=c).

The central muon system consists of three detector elements. The Central Muon Chambers

(CMU), located behind � 5 absorption lengths of material, provide muon identi�cation

over 85% of � for the pseudorapidity range j�j � 0:6, where � = � ln[tan(�=2)]. This �

region is further instrumented by the Central Muon Upgrade (CMP), located after � 8

absorption lengths. The central muon extension (CMX), which covers the pseudorapidity

range 0:6 < j�j < 1:0, provides muon identi�cation over 67% of the azimuth and is located

behind � 6 absorption lengths.

The dataset used for this analysis originates from the 1992/93 Tevatron collider run and

corresponds to an integrated luminosity of about 20 pb�1. It was collected using di-muon

triggers in the CDF three level trigger system. At Level 1, two-muon candidates are selected

with a trigger that requires the presence of two charged tracks in the central muon system.

The e�ciency for �nding a muon at Level 1 rises from 50% at pt = 1:8 GeV=c to 90% for

pt = 3:8 GeV=c. At Level 2, the dimuon trigger requires that at least one of the muon

tracks match a charged track in the CTC. This CTC track is found by a Central Fast Track

processor (CFT) [7]. The e�ciency to �nd a track in the CFT rises from 50% at 2.7 GeV=c

to 90% for pt = 3:4 GeV=c. At Level 3 the trigger uses online track reconstruction software

and selects dimuon candidates by requiring the presence of two oppositely charged muons

with invariant mass greater than 4.0 GeV=c2.

3 Selection

A sample of about half a million of low pt dimuon triggers is used for this measurement of xd

via time evolution. A substantial amount of background is removed by applying � quality

cuts and requiring the invariant mass of the dimuon system to be larger than 5 GeV=c2 to

reject double semi-leptonic decays of the B meson. After these cuts the sample reduces to
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Figure 2: Comparison of the prelt distributions from sequential b! c! � and direct b! �

as obtained from MC (left). The right hand �gure shows the normalized integral of these

distributions with the cut value at 1.3 GeV=c.

� 100,000 events. We then apply a secondary vertex b-tagging algorithm to select decays

of heavy 
avours and require the tag to be close to one of the muons. This is a necessary

step in this analysis since we need a secondary vertex to measure the c� of at least one of

the B's. We assign all tracks in the tag, excluding the associated muon, to an inclusive "D"

decay and �t all these tracks to a common vertex. We then de�ne a transverse decay length,

Lxy, as the intersection of the "D" trajectory with that of the associated � projected onto

the transverse direction of the �"D" system. The proper decay length cannot be calculated

exactly, since in general we are missing some of the B decay particles. As already mentioned

in section 1, we de�ne

c� = Lxy

MB

p
�"D"
t

� F;

where F is an average kinematical correction factor to be determined via Monte Carlo.

We also require that the prelt of the muon relative to the "D" direction be larger than

1.3 GeV=c. As can be seen from Fig. 2 this cut reduces signi�cantly the contribution from

sequential b! c! ` decays, which cause a signi�cant dilution of the e�ect of mixing. The

prelt cut additionally reduces dimuon background from direct c�c production.
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Figure 3: Like-sign fraction versus c� . The solid line is our �t to the data; the dashed line

is our �t after forcing xd=0 and the dotted line is a prediction assuming just the sequential

decay contribution and both xd and xs = 0.

4 Results

After all cuts we are left with 3873 events (1516 like-sign and 2357 opposite-sign). In Fig. 3

we show the dependence on c� of the like-sign fraction, de�ned as:

NLS(c� )

NLS(c� ) +NOS(c� )
:

A clear oscillation signal is observed. The solid line is the �t to the data, while the dashed

line is the �t after forcing xd=0. The dotted line is a prediction assuming just the sequential

decay contribution and both xd and xs = 0.

To �t the observed oscillation we need an estimate of the background, the c� resolution

function and the behaviour of the sequential decay fraction. We �nd that the combined

request of two high quality muons and a b-tag selects an extremely pure b�b sample. A three

component �t to the muon prelt distribution on the vertex side, which takes into account direct

and sequential B decays as well as direct charm production, yields a charm background in

the order of 1%. A two component �t to the � impact parameter in the away side, taking

into account a b�b and a fake muon component, estimates a fake fraction of (10�3.5)%.
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(a) (b)

Figure 4: (a) Lxy resolution function and (b) 1/�
 resolution function as obtained from MC.

Overlaid is a parametrization obtained as a sum of gaussians.

We then use the Monte Carlo to simulate b�b events from where the kinematical correction

factor F�
 is calculated. The Lxy resolution function is show in Fig. 4a), and the 1/�


resolution function in Fig. 4b) as obtained from Monte Carlo (see eq. (9)). Overlaid is

in both cases a parametrization obtained as a sum of weighted gaussians, which are not

neccessarily centered at zero. The fraction of b! c! ` decays relative to the total number

of b semi-leptonic decays fseq is also obtained from MC. For this speci�c analysis we found

that the b-tagging biases fseq, therefore we calculate an average fraction of fseq = (19:4�0:6)%

for the away side and fseq = (15:1 � 0:6)% for the vertex side. Furthermore, on the vertex

side fseq is parametrized as a function of the measured c� value.

Additional inputs to the �t are �s, which we assume to be saturated at 0.5, and Fd and

Fs, which are the fractions of B0 and B0
s
contained in our sample. For these we take the

values 0.37�0.03 and 0.15�0.04, respectively. We �nd that the event selection does not bias

these fractions signi�cantly.

The result of the �t to the like-sign fraction plot is:

xd = 0:64 � 0:18 � 0:21

�md = 0:44 � 0:12 � 0:14 ps�1:
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Description Systematic error ({) Systematic error (+)

Resolution scale -0.07 +0.00

Sequential decay fraction -0.17 +0.21

Backgrounds -0.07 +0.01

Fraction of B species -0.06 +0.00

Total -0.21 +0.21

Table 1: Summary of systematic error on xd.

A compilation of the systematic error on xd can be found in Table 1. The systematic error

is largely dominated by the uncertainty on the overall fraction of sequential decays.

5 Conclusion

In summary we have measured the B0 mixing parameter xd with the CDF detector at the

Fermilab Tevatron in pp collisions at
p
s = 1:8 TeV. From a time evolution analysis a value

of xd = 0:64 � 0:18 � 0:21 has been obtained using a sample of about 20 pb�1 highmass

dimuon data. The result is consistent with measurements at LEP or CLEO and can serve

as a 'proof of principle' that B physics involving both B mesons in the event is feasible in a

hadron collider environment.
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