
Fermi National Accelerator Laboratory 

FERMILAB-Conf-95/171 

Exact Map Through Ideal Bends (Again?) 

Leo Michelotti 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

June 1995 

Presented at the IEEE Particle Accelerator Conference, Dallas, Texas, May l-5, 1995 

3 Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 



Exact map through ideal bends (again?) 

Leo Michelotti 
Fermi National Accelerator Laboratory+ 
P. 0. Box 500, Batavia, IL 60510, USA 

Abstract III. Geometry 

There are three logically independent facets to calculating 
the transfer map through a bend magnet: physics, geom- 
etry, and representation. We will derive the exact map for 
transit through ideal bends while separating these three, 
esp., isolating the geometry problem from the other two. 

I. Introduction 
Writing the exact transfer map through ideal bend mag- 

nets requires considerations of physics, geometry, and the 
particular representation in which a particle’s state is ex- 
pressed. Although logically independent, these are fre- 
quently mixed together. We will attempt to separate 
them. It is likely that many people have already gone 
through this exercise for themselves, but it may be worth 
repeating.* 

II. Physics 
We all learned the relevant physics as undergcaduates. 

A charged particle in a constant magnetic field, B, travels 
at constant speed on a helix aligned along the field. Since 
the particle experiences no acceleration in the direction of 
5, 

q(tj) = q(h) + qAt , (1) 

where the subscript “II” stands in for the appropriate co- 
ordinate projection, and At = tj - ti is the time spent in 
the magnetic environment. The (radial) frequency of trav- 
elling around the helix is, 

w = IeB/ymI , 

in rationalized mks units, where, e is the charge of the 
particle, m is its mass, and y = l/dm = E/mc2 is 
the usual relativistic factor. Projected onto a plane or- 
thogonal to 2, the helical orbit becomes a circle of radius 
PY 

p= IpdeBI , 

where pl is the projection of the particle’s momentum 
onto the plane orthogonal to B’. 

This is all we need. In the sections to follow we will 
complete the derivation by (a) solving a few elementary 
geometry problems and (b) writing the answers in the ac- 

celerator physicists’ representation. 

t Operated by the Universities Research AssociationJnc, under 
contract with the U.S. Department of Energy 

*The point of doing something this simple is to be reminded that 
it is simple. 

The natural Cartesian chart for expressing the geome- 
try, which we will call the “Z-chart,” has its origin on the 
helical axis with one coordinate axis parallel to it. Follow- 
ing a standard conventio_n, for bending magnets we choose 
the zz-axis parallel to B, while for solenoids, we would 
align 2s along the g, so that in both cases the largest 
component of momentum is along the 2s axis. (Please re- 
fure to Figures 1 through 3 repeatedly for visualization of 
the charts in this paper.) Because it is easiest to work 
with the transverse equations in terms of spinors, we de- 
fine complex coordinates z E zs + irl, for bend magnets, 
or z G ~1 + izg, for solenoids, and write the transversely 
projected dynamics in either case as fol1ows.t 

% = pie , 0 E [-TIT, r> , (2) 
,$ = -iwz . (3) 

The time taken to cross the magnetic environment is 
clearly At = -AQ/ w, and we will address below the purely 
geometric problem of calculating A0. 

A difficulty arises because the orbit is not viewed from 
the Z-chart but from two local charts, say Vi and Uj, 
which we will call the “initial” and “final” charts, or, al- 
ternatively, the “in” and “out” charts. Although these 
are, in principle, arbitrary, for practical applications, each 
typically has an axis aligned along g: u2 for bends, and us 
for so1enoids.t In the treatment that follows we will han- 
dle only the bend-magnet configuration explicitly, leaving 
the easier problem of solenoids to the reader. 

For bending magnets, then, the (~1, ug) plane 
(i.e., us = 0) is considered the “transverse plane” or “face” 
of the chart, called so because it is usually considered to 
be transverse to the local fiducial reference curve, not to 
the magnetic field. Normally one thinks of the in-face and 
out-face as located at the edges of the magnet, but this 
need not be the case; they could be within the body. All 
that is necessary is that in traversing the region between 
the faces, the particle is exposed to the environment of a 

tThis definition does have the disadvantage of making 1 negative 
in Eq.(3) and, later, A8 = Bf - 8, negative rather than positive. I’ve 
chosen this rather than the less awkward z E z1 + izg for three rea- 
sons, not one of which is particularly compelling: (a) it preserves 
the cyclic ordering of the (.z~,zz, ~3) triplet, (b) at least in the U.S., 
accelerator physicists align the “3” axis along the (fiducial) beam 
current and the “1” axis outward, (c) being at Fermilab, I am ac- 
customed to thinking of beam current as circulating clockwise, and 
(d) physicists think of time dependence as e-lwt. 

tThis restriction could be removed, but the resulting equations 
would then have to be solved numerically. In any case, it would not 
conform to any practical application. 



Combining this with Eq.(5) yields 

i = ,$emi4 = -iwu _ iwbe-‘” , 

from which we obtain be-‘+. 

be-“4 = iti/w - u (6) 
B. Point of intersection between a line and a circle 

(a) (b) We must solve for the point of intersection between the 
Figure. 1. Helical orbit in a constant magnetic field, as ur axis of a U-chart and the orbit projection, which is the 
viewed from a local chart in (a) a bend magnet and (b) a circle written in Eq.(2). An arbitrary line L(z,,, q) passing 
solenoid. through a point z, with direction q is the subset, 

L(zo,q) = {z, + weis 1 w E R} 

Z-chart 

b 

We easily solve for its intersection with a circle as follows. 

z, + weiq = pe”’ 

W = e -iy pe”fJ - & ) 

Of course, w must be real, so that, by setting Imw = 0, 
we can find 8. 

Figure. 2. Complex parameters b and 4. 

constant magnetic field. We need to establish chart coor- 
dinates for two events, viz., the orbit’s intersecting the in- 
and out-faces, the transverse planes of Vi and Uf. The 
function which converts coordinates of the first event, on 
Vi, to those of the second, on Uf, is the transfer map for 
the region. 

The time At appearing in Eq.(l) is nothing but the 
time interval between these events, Since motion along B’ 
is taken care of, we can confine our attention to the projec- 
tion of the orbit on a plane orthogonal to B’ in order to cal- 
culate At and everything else that we need. The geometric 
problem we must solve requires nothing more complicated 
than representing circles and lines in a plane. The trans- 
formation which takes us from a U-chart to the Z-chart is 
written easily in the spinor notation, using u E us + iul. 
Referring to Figure 2, we have 

.z = b+uei4 , (4) 

.i! = tiei , (5) 
where b is the Z-chart spinor coordinate of the U-chart’s 
origin, and 4 is the angle of the us axis relative to the 
~3. Our task now is to represent the very simple motion 
embodied in Eq.(3) on the U charts and thereby obtain the 
transfer map Vi + Uj. This proceeds in two steps, each 
of which is a simple geometrical problem: (A) obtaining 
be-‘4 given u and ti, and (B) finding the intersection of a 
line with a circle. 

sin(8 - q) = $Im( z,esirl ) (7) 

Applying this to a U-chart, we use the line L(b, 4 + a/2); 
that is, L lies along the imaginary axis of the spinor u. In 
such cases Eq.(7) becomes, 

0 = 4 + 7r/2 - arcsin( $Re( bevi4 ) ), (8) 

when i is attached to L(b, 4 + 7r/2). We can write this 
yet another way by applying Eq.(6) to 21 and ir evaluated 
along L(b, 4 + 7r/2). Thus, u will be pure imaginary, so 
that 

0 = 4 + ?r/2 + arcsin( Im(zi)/l&l ). 

IV. Of magnets and maps 
We are now ready to complete the construction of a 

transfer map. Of course, on the Z-chart the “initial” and 
“final” spinor coordinates are trivially related by a phase 
rotation. 

zf = .zieiAe, ihe ff=kje . (9) 

Eq.(4) and Eq.(5) can now be used to obtain uj and tir. 

lif = ,ieW-A4) (10) 
Uf = uiei(Ae-A4) + (be-“#‘)i ,W--A4) 

-( besi4)f (11) 

The complete transfer map, (ui, ;li) k (UJ , iLf) is now con- 
structed according to the following procedure. 

A. What is be-‘+? Bend algorithm 

First, using Eq.(4) and Eq.(3), we have Step 1. Use Eq.(6) to evaluate (be-“‘)i. 

2 = -iwr = -iw( b + uei4 ) . (bedi6)i = iii/w - ui. 



Step 2. Given (be-‘4)i, from Step 1, construct (be-“4)f 
using the relative in-face to out-face geometry. We will 
illustrate below how to do this. 

Step 3. Calculate Ati - A$ by applying Eq.(8) to both 
faces. 

AB - A4 = arcsin ( Re( be-‘4 )i/p) 

- arcsin ( Re( be-j4 )r /p) (12) 

Step 4. Finally, use Eqs.(lO) and (11) to complete the 
map. Notice that A0 - A$ appears only in the argument 
of an exponent. Rather than use Eq.(12) directly we can 
employ 

,i(Ae-A4) - Jl - (Re( be-‘+)i/p)z + iRe( be-“+)i/p - 
Jl - (Re( be-‘4 )~/p)z + iRe( be-‘4 )f /p ’ 

A. Rectangular bends 

Detailed information about the magnet’s geometry, em- 
bodied in the relative placements of the in- and out-faces, 
is used in Step 2. The simplest possibility is the rect- 
angular bend. We take the “in” and “out” faces to be 
parallel, so that di = df G 4. From the obvious relation, 
bf = bi + Le’4, where L is the length of the magnet, we 
obtain the result, 

( bemi4)f - ( besi4)i = L , 

which is to be fed directly into Step 3. 
(13) 

B. Sector bends 

Sector bends are only a little more complicated but eas- 
ily handled by representing, on the 2 chart, the point of 
intersection between the imaginary axes of the Vi and Uj 
charts. To position these, we place the face of each or- 
thogonal to a local, fiducial path that would be followed 
by an “ideal” particle. Let p symbolize its radius of cur- 
vature. Further, placing the origins of the U-charts on the 
fiducial path the intersection point has coordinate -ip on 
each chart. Thus, using Eq.(4), we have, 

(be-‘4)f-( be-j4)i = ( 1-ewiA4)( ip-( be-“‘#‘)i) . (14) 

We note in passing the usual relation between A4, p, 
and magnet length, L, recalling that, by our convention, 
A4<0, 

esiA4 = ( Jw+ iL/2p)’ . (15) 

Keeping L fixed and letting p + 00 then reproduces 
Eq.(13). 

C. Arbitrarily angled faces 

The in- and out- faces can be rotated through additional 
angles. If we use the MAD convention for specifying angles 
er and e2, effectively we must replace qii -+ 4i + ei and 
4r + 4~ - e2 in Eq.(14). The result then looks as follows. 

( be-i4 ), = ( be-i4 pe-‘A4 + ip(e-iea _ eie1e-iA4) 

Setting er = -eZ = Ad/2 and using Eq.(15) again repro- 
duces Eq.(13). 

Figure. 3. Relationships between the Vi, UJ, and Z 
charts. 

V. Representation 
The final complication arises when we insert the ac- 

celerator physicists’ coordinate representation into these 
expressions. A particle’s crossing the plane of a “face” 
is typically recorded using momentum and energy coor- 
dinates normalized by the fiducial. The position sector 
is recorded by transverse coordinates 21, 22, and a time 
offset, CAT, while the momentum sector is represented by 
normalized transverse components§ of { E p’lp, and a total 
momentumoffset, and S z Ipl/fi - 1. To apply the bend al- 
gorithm, we need only write ii in terms of these and then 
use the spinor U = us + ivl. 

Starting from, 

p = x7/c = p’c/E = f. PC/E , 

we substitute 

E2 = p”c” + m2c4 = (pc)‘(l + 6)’ + m2c4 , 

to obtain 
,J = f/\/(1 + ~5)~ + (mc/P)2 . 

We can obtain vi and 212 from this directly, but since q3 is 
not recorded, we must get us by using the following. 

E2 = p”c” + m2c4 = &c2 + pic2 + m2c4 

E2 - m2c4 

p2c2 
= KL>2 + (q3)2 

P3 = 43/c 

= 
\i 

(1+ 6j2 - (<d2 
(I+ 6)’ + (me/p)’ 

Of course, there’s even more fascinating material to 
wade through, but we’re already up against the three page 
limit and have no more space (see edge of page below). A 
finished version will follow somewhere, sometime, but not 
here, and not now. 

§That is, the projections into the in- and out-faces. 


