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ABSTRACT 

In proton machines, potential-well distortion leads to small 
amount of bunch lengthening with minimal head-tail asym- 
metry. Longitudinal modemixing instability occurs at 
higher azimuthal modes. When the driving resonance is of 
broad-band, the threshold corresponds to Keil-Schnell cri- 
terion for microwave instability. [l] When the driving reso- 
nance is narrower than the bunch spectrum, the threshold 
corresponds to a similar criterion derived before. [2] 

I. INTRODUCTION 

Proton bunches are very much different from electron 
bunches. First, electron bunches have a length roughly 
equal to the radius of the beam pipe, whereas proton 
bunches are usually very much longer. Second, the mo- 
mentum spread of the electron bunches is determined by 
the heavy synchrotron radiation. Protons do not radi- 
ate and behave quite differently in the longitudinal phase 
space, with the bunch area conserved instead. These dif- 
ferences lead to different results in potential-well distortion 
and mode mixing, which we will discuss briefly below. The 
details are given in a separate paper. [3] 

II. POTENTIAL-WELL DISTORTION 

As an example, the bunches in the Fermilab Main Ring 
have a typical full length of - 60 cm or 7~ M 2 ns. The 
spectrum has a half width of - 0.5 GHz. Therefore, 
the static bunch profile is hardly affected by the resistive 
part of the broad-band impedance which is centered at 
1.5 N 2 GHz. As a result, the inductive part of the broad- 
band will only lead to a symmetric broadening (shortening) 
of the bunch above (below) transition. Numerically solv- 
ing the Ha&sin&i equation [4] confirms this conjecture. 
Strictly speaking, the Haissinski equation does not apply 
to proton bunches where the bunch area is conserved and 
the momentum spread is not a fixed Gaussian. 

Since the driving impedance is inductive, the wake po- 
tential is the derivative of the &function. For a parabolic 
bunch, the wake force will be linear and can be superim- 
posed onto the linearized rf force easily. We use for the 
distribution in longitudinal Z-S phase space, [5] 
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where 7 is the phase-slip parameter, c the velocity of light, 
w,c/2?r the unperturbed synchrotron frequency, and N the 
number of particles in the bunch. The original half length 
of the bunch is has been lengthened to ic/&, whereas the 
momentum spread 6 is shortened by fi, so that the bunch 
area remains the same. The Hamiltonian is modified to 

H = !f.$ + k$t(l- ~~392 , (24 
SO 

where 
D = 3e2Nqc3 Z 

4~w,2~Eio” ii ind * (2.3) 

The incoherent synchrotron angular frequency is therefore 
ws = w,c(l-D~~/~)~/~. Si nce the distribution #I(z, 6) must 
be a function of the Hamiltonian, we obtain the constraint 
ICY = 1 - Dtc312. Take a Fermilab Main Ring bunch with 
N=2.5x101’ at E=150 GeV, bunch area 0.15 eV-set, and 
synchrotron tune v,c = 0.0030. The accelerator ring has a 
revolution frequency fe = 47.7 kHz, a phase-slip parame- 
ter q = 0.0028, and the inductive impedance is believed to 
be Z/nli,d M 10 Ohms. Then D = 0.204, indicating that 
the bunch has been lengthened by K-I/~ = 1.05 and the 
momentum spread flattened by 5%. This implies that we 
cannot infer the momentum spread by naively measuring 
the bunch length and the synchrotron frequency through 
the relation 6 = w,cr~/n, because the answer will be 10% 
too large, giving a wrong idea about the amount of Lan- 
dau damping. Instead, the momentum spread should be 
measured from Schottky signals or inferred through dis- 
persion from the measurement of the transverse profile of 
the bunch using a flying wire. 

III. MODE-MIXING 

The shifts of the synchrotron side-bands can be derived 
using Vlasov equation. Here, we follow the Sacherer’s ap- 
proach. [6] Th e coherent side-band synchrotron angular 
frequencies w can be obtained from the determinant 

l(w - mw,)6,,, - M,,lI = 0 . (3.1) 

The longitudinal impedance Z(n) in the matrix elements 
M ,,,,I = EW.,A,,,,,, I is responsible for the coupling of the 
azimuthal modes, with 

where h mm,(n) =, ik(n) are the overlap of the 
spectral function A,,,(n) of the bunch obtained by solv- 
ing the matrix &&,,I. In the above, T = E(w,o/w,)‘, 



6 = ~@-L/7%)/(3~03~v COSI$,), Ib the average bunch cur- 
rent, 2 the resonant impedance centered at f,. = n,fe and 
normalized to the shunt impedance R,, V unperturbed 
rf voltage, +J the synchronized phase, h the rf harmonic, 
Bs = life the bunching factor, and 7~ the full bunch 
length in sec. 

Potential-well distortion has been neglected in the for- 
mulation, because the effect is small for proton machines. 
We will use a prescribed set of im(p) instead of the eigen- 
vectors. Although self-consistency will be lost, we do think 
that the essence of the results will not be affected. We use 
Sacherer’s sinusoidal bunch profiles. The spectral func- 
tions are 

i&) = (-j)” m + 1 cos TX/2 
2s x2 - (m + 1)2 ’ (3.3) 

when m is even and with cosine replaced by sine when m is 
odd. A dimensionless frequency parameter x = 2nfc7r, has 
been introduced, so that, with the exception of m = 0, the 
spectrum for the mth mode peaks at x M m+l. Continuing 
with the example of the Fermilab Main Ring which has 
a broad band impedance centered at 2,. = 7.5 or f,. - 
1.88 GHz and & M 1, we find the colliding of modes 6 and 
7 in Fig. 1, and the bunch becomes unstable at E = 0.94. 
This is expected, because the symmetries of Eqs. (3.2) and 
(3.3) show that Rez is responsible for the coupling between 
two adjacent modes. Note that the ordinate of Fig. 1 is 
normalized with respect to the unperturbed synchrotron 
frequency w,e, and an adjustment for the incoherent tune 
shift has been made. 

0.5 1.0 1.5 
E = Ib(R,/n.)/(3B03hVcos~~) 

Fig. 1. Coupling of modes m = 6 and 7 in the presence of a 
resonance at zp = 7.5 and Q = 1. 

We vary & and compute the threshold 6th in each case. 
The result is plotted in Fig. 2 versus z = Af,.TL = x,./4&, 
where Af,. = f,./2Q is the HWHM of the resonance. Also 
plotted are threshold curves at different resonant frequen- 
cies 2,. Note that all the curves approach a minimum 
threshold of eth % 0.92 at z % 0.6. The latter has the 
physical meaning of the resonance peak just wide enough 
to cover only two coupling modes. A smaller z implies 
that the resonance peak is too narrow and interacts with 
only parts of the two mode spectra, thus giving a higher 
instability threshold. A larger z means that the resonance 
will cover more than two mode spectra. For 2,. = 7.5 say, 

modes 6 and 7 will then be pulled and pushed also by the 
other modes, so the threshold for their collision is expected 
to be higher also. However, Eq. (2.2) reveals that the cou- 
pling comes in not through ‘J&Z(n) but through 72eZ(n)/n, 
whose peak value becomes larger and the peak frequency 
smaller when Q is small, as illustrated in Fig. 3. As a re- 
sult, the lower modes start to collide first (Fig. 4). Thus 
the threshold for large z remains small, which is very much 
different from what Sacherer stated in his paper. 
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Fig. 2. Instability thresholds eth and & for various widths of 
the resonance impedance located at 2, = 3.5 to 11.5. 
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Fig. 3. Enhancement of (%Z/VX),,~ (normalized to R,) and 
its frequency position 3: as the quality factor Q of the 

resonance centered at x,. = 7.5 decreases. 

IV. MICROWAVE INSTABILITY DRIVEN BY 

BROAD RESONANCES 

Microwave instability can occur when the resonance is 
much wider than the bunch spectrum. When this happens, 
many coherent modes are excited. Therefore the threshold 
at the z >> 1 end, cth M 0.75, is the threshold of microwave 
instability. This threshold condition can be easily rewrit- 
ten in terms of the energy spread (AE)FWHM = $(AE)f,a 
and peak bunch current Ip = rIb/2TLfo of the sinusoidal 
profile as 

(4.1) 

This is the familiar Boussard-modified Keil-Schnell crite- 
rion [l] of microwave instability driven by a broad res- 
onance. The form factor for this type of bunch shape 



should be slightly bigger than unity, which is very close 
to $$cth = 1.3 obtained here. The equivalence of mode- 
coupling and microwave instability had been pointed out 
by Sacherer [6] and Laclare. [7] 
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B = Ia(R,/n~)/(3B03hVcos~~) 

Fig. 4. Mode coupling starts at the lowest modes when the 
driving resonance is much wider than the bunch spectrum. 

Here zr = 7.5, Q = 0.2, TL = 2 ns, or z = 37.5. 

When z M 0.6, 7&Z is just wide enough to cover two 
adjacent azimuthal modes m and m’ = m + 1, and the 
excitation is one with x, = i(m+3) nodes along the bunch. 
The coupling matrix can be truncated to include only these 
two modes. From Eq. (3.1), the eigen modes are 

W 
- = f [(urn + Vml) f &I - v,)2 - 4&&] ) 
WS 

(4.2) 

where l/k = k + c&k, k = m or rd. The threshold of 
instability cth is therefore given by 

1 
IwAmm~I = -IGh(&w - Am) - 11 . 2 (4.3) 

The matrix elements A,,, A,,,, , and A,,, have been 
computed numerically for any two adjacent m, m’, with 
the resonance peak centered at z, = i(m + 3). The result 
is actually very close to 6th = 0.92 and depends on m very 
weakly. It can also be estimated easily. Since A,,,, w 
A mm, we have IcthArnna, I M $. If we further approximate 
the resonance and adjacent spectra by rectangular curves, 
we get IA,,, I m 0.5. 

V. MICROWAVE INSTABILITY DRIVEN BY 
NARROW RESONANCES 

When the resonance is much narrower than the width of 
the bunch spectrum, we have z << 1. Then, the summation 
over frequency in Eq. (3.2) can be approximated by 

c 
x2(n) h 

n 
mm’(n) c3 OX& II=lv . (5.1) 

n 

For this, we need a new dimensionless current parameter 
E’ = 21b(R,/&)/(3B,2hI/cos~,). This new threshold eih 
is now plotted versus z in Fig. 2. For small Z, we ob- 
tain E& M 0.75 which is almost independent of z,.. Again, 

this threshold can be computed numerically using the trun- 
cated 2 x 2 coupling matrix, or estimated by approximating 
the spectral functions by rectangular curves. When it is 
cast into the form 

(5.2) 

it is just the criterion of microwave instability driven by 
an impedance resonance that is narrower than the bunch 
spectrum. [2] The form factor is 0.41, which agrees very 
well with SE& M 0.40. This may be a more appropri- 
ate microwave instability threshold for electron machines, 
since electron bunches are short. 

VI. GOING BELOW TRANSITION 

Figure 1 shows that the coherent frequencies tend to 
cluster together when the current E increases. This is be- 
cause we are above transition, COST, < 0. Looking into 
the diagonal elements of Eq. (3.2), modes with m < x, - 1 
(> z,. - 1) sample the inductive (capacitive) part of the 
impedance and are shifted upward (downward). Below 
transition, the shifts will be in the opposite direction; i.e., 
diverging outward with increasing E. In other words, the 
mode-mixing threshold eth will be increased, or the bunch 
becomes more stable. We tried to reverse the sign of cos +5 
in the example of Fig. 1 and found 6th increases from 0.94 
to 1.88. Therefore, a bunch in a machine with a negative 
momentum-compaction factor [8] will be more stable. This 
idea had been pointed out by Fang et al [9] in shortening 
electron bunches. 
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