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Microwave Stability at Transition 

J. A. Holt and P. L. Colestock 
Fermi National Accelerator Labomtoryt 
P. 0. Box 500, Batavia, IL 60510, USA 

Abstract the impedance and the coherent frequency of the collective 
mode. 

The question of microwave stability at transition iz revis- 
ited using a Vlasov approach retaining higher order terms 
in the particle dynamics near the transition energy. A 
dispersion relation is derived which can be solved numeri- 
cally for the complex frequency in terms of the longitudi- 
nal impedance and other beam parameters. Stability near 
transition is examined and compared with simulation re- 
suits. 

I. Introduction 
The question of microwave stability at transition has long 

been an issue for machines which must pass through tran- 
sition energy. Due to the fact that the relative motion 
of particles at transition goes to zero, Landau damping is 
presumed to vanish. However, growth rates may also be 
sufficiently long to prevent significant mode growth. Be- 
cent theoretical studies have suggested that transition is 
absolutely stable against microwave modes owing to a par- 
ticular cancellation of resonant contributions [l], although 
this analysis was based on a truncated model of the particle 
dynamics. 

where N is the number of particles, n is the harmonic num- 
ber, Z,, is the impedance associated with the nth harmonic, 
(I, is a normalized distribution function which is a solution 
to the Vlasov equation, c is the energy deviation from the 
synchronous particle which is referred to by the subscript 
0, and R, is the coherent frequency. The integral contour is 
chosen so that R, is continuous while crossing the real axis. 
The frequency w(c) in terms of the dispersion coefficents is 
given by 

where 

w(c) = wo - wlJr#loc5 - woy2 (2) 
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In this work we would like to reconsider microwave sta- 
bility at transition including a necessarily higher-order ex- 
pansion of the particle motion around the transition point. 
This is done in order to resolve the pole-cancellation is 
sue referred to above. In particular, we find that while a 
portion of the distribution may indeed be stable near tran- 
sition, those particles which exist slightly off transition in a 
distribution of finite momentum spread will always lead to 
instability. By retaining higher-order terms in the particle 
motion, we find an extension of the usual linear stability 
model for longitudinal modes which shows the appearance 
of a new unstable branch. The resulting dispersion rela- 
tion is solved numerically for the stability boundary in the 
impedance plane. 

and 

(5) 

The quantities (~0 and (~1 are the momentum compaction 
factors. 

We have solved Eqn. 1 for Zn/n assuming a Gaussian 
distribution 

The integral can be reduced to evaluating the plasma 
dispersion integral which can be expressed in terms of the 
complex error function. The details are outlined in the 
appendix. The results are 

As a confirmation of the analytical results, we have per- 
formed particle simulations in a coasting beam, consistent 
with the notion of short- wavelength modes associated with 
microwave instability. Using this approach, we find that r* 
gions of instability always occur above transition that can 
lead to longitudinal emittance blowup. 

Z, -= 
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The quantities A, B, cl and ~2 are defined in Eqns. 15-17. 

III. Calculations 

II. Theory A. Stability Diagmm 

The following dispersion relation can be derived from the 
Vlasov equation [l] which expresses the relation between 

t Operated by the hbcrsitks Fteaearch hSOCiAttiOXl,k,C, under con- 
tract with the U.S. Depwtment of Faegy 

A program was written to plot the real part of Z,,/n 
vs. the imaginary part for Eqn. 7 for different values of the 
coherent frequency Q, and different places near transition. 
Figure 1 is a plot of the stability diagram below transition. 
The dots are for a real coherent frequency and the pluses 
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Figure. 1. Stability diagram below transition. There are 
no regions of instability. Figure. 3. Particle simulation below transition. The dis 

tribution is stable. 
--Wb 

It is readily shown that Eqs. (8) and (9), in the case of 
small perturbations, lead to the linear dispersion relation 
for longitudinal modes. We note that 9 is a function of 
E and may go to zero, which is the formal definition of 
transition. We keep both first and second-order corrections 
to q in our simulation to correspond to the analytical model 
described previously. 

* 

Figure. 2. Stability diagram above transition. 

The time domain representation of the wake field is most 
convenient for computational purposes and this is given in 
the form [3] 

v(e) = W’R J 2*+e 

wo& e &l'qe')e- a? x 
are for a complex coherent frequency. The beam is stable. 
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where 

Figure 2 is a plot of the stability diagram above transi- 1 3 
tion. The dots are for a real coherent frequency and the 

wr = wr 
( > 
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pluses are for a complex coherent frequency. There are 
regions of unstability. 

I(e) is the current distribution and w. is the revolution 
frequency. The integration over angle is carried out at a 

B. Particle Simtdation 
fixed time each turd and may be extended into previous 
turns for long-range wakes (sufficiently high Q). 

Simulations of coherent phenomena in coasting beams For the simulations in this work, we typically use lo4 - 
were first reported in 1975 [2]. The essential physics is lo5 particles and invoke periodic boundary conditions as- 
contained in the character of the incremental kicks given sociated with the lowest revolution harmonic of interest. 
to the particle’s position and energy per turn, relative to Figure 3 is a simulation of a beam before transition. The 
the central momentum particle. These may be expressed beam is stable confirming the results of Figure 1. Above 
in the form transition, the simulation (Figure 4) shows that there is 

68 = --I)(eb (8) instability confirming the results of Figure 2. 

66 = & n eine -1 Zjp(w)e-iWtdW c J (9) IV. Conclusions 

We have revisited the question of microwave stability at 
where 211 is the longitudinal impedance and is the Fourier transition and have shown by including higher-order terms 
transform of the wake function given by of the expansion of particle motion around the transition 

zllm = Ja 
point that particles which are slightly off transition in a 

eev&-8)cls (10) 
distribution of finite momentum spread will always lead to 

-00 instability above transition. 



Figure. 4. Particle simulation above transition. An insta- 
bility has developed. 

V. Appendix 
The integral in Eqn. 1 can be written with some factor- 

ization as 

J~e-~~~[rz+~r-~(l-~)]-’ (13) 
c 

The integral can be broken up into pieces by the method 
of partial fractions and reduces to 

where 
A=?+=-%. 

Cl - c2 C-J - El ’ (15) 
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The function 

is the plasma dispersion function which can be evaluated 
numerically in terms of the complex error function. 
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