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Abstract 

The traditional formula for calculating luminosity assumes 
an uncoupled lattice and makes use of one-degree-of- 
freedom lattice functions, PH and ,&, for relating trans- 
verse beam widths to emittances. Strong coupling requires 
changing this approach. It is simplest to employ directly 
the linear normal form coordinates of the one turn map. 
An equilibrium distribution in phase space is expressed as 
a function of the Jacobian’s eigenvectors and beam size 
parameters or emittances. Using the equilibrium distri- 
butions an expression for the luminosity was derived and 
applied to the Tevatron lattice, which was coupled due to 
a quadrupole roll. 

I. Introduction 

The Tevatron lattice for collider operations at Fermilab 
is designed to give the same lattice functions and luminos- 
ity at the two interaction regions CDF and DO. During the 
first part of Collider Run IB however, the ratio of measured 
luminosities at CDF and DO was about CCDF/,!ZCDO = 0.75. 
In addition to a lower luminosity, the longitudinal distri- 
bution of luminosity at CDF was not symmetric as ex- 
pected. These discrepancies were reduced when a low beta 
quadrupole near the CDF interaction region was found to 
be rolled by 8 mrad and subsequently re-aligned. After 
the re-alignment of the low beta quad, the ratio of mea- 
sured luminosity changed to about CCDF/&O = 1.1 and 
luminosity distribution at CDF also became symmetric as 
expected. 

Since the effect of a rolled quadrupole on luminosity can- 
not be explained by using the standard ,0 function treat- 
ment of uncoupled machines we develop the formulation 
for calculating luminosity in a coupled machine. Others 
have developed a set of general lattice functions which can 
be used to describe the lattice of coupled machines [2] but 
we choose instead to use linear normal form analysis. We 
present the development of an expression for the luminos- 
ity in a coupled machine based on linear normal forms and 
give results of luminosity calculations based on models of 
the Tevatron with and without the rolled quad. 

II. Theory 

In this section we will lay out the expressions used to 
calculate luminosity in the presence of strong coupling. 
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Figure. 1. Commutative diagram showing the action of a 
one-turn matrix in the normal form representation. 

A. Linear normal form coordinates 

As usual, we write the state of a particle as an array, 
gT = (z,y,cAt;c’,y’,,Q by f re erring a coordinate chart to 
a local “design” fiducial curve in phase space, normally a 
segment of the closed orbit. u contains the coordinates 
of a particle as it crosses a plane transverse to this local 
fiducial curve. The coordinates, z,y, x’, and y’ are the 
transverse position and momentum* of a particle, relative 
to the curve, at the instant the particle crosses the plane 
while 6 = Ap/p is its momentum offset. The coordinate 
At is the time, relative to the reference time, at which the 
plane is crossed, so that particles with At > 0 arrive late. 

Let &f(g;s) be the one-turn map at the point marked 
with arclength coordinate s. That is, in one revolu- 
tion starting from s, I I+ A4(1; s). We are interested in 
the linear part of M obtained by taking the Jacobian: 

g(s) = (kw%&=0, and 14 ++ g(s) .a, in linear approx- 
imation. Let g(s) be the matrix whose columns are eigen- 
vectors of M(s), so that, = 

A&) . g(s) = g(s) .A > (1) 
where & = diag(efi2*“k ). The conversion to linear normal 
form (Weyl) coordinates, a, is given by 

These are complex coordinates, and from the commutative 
diagram (Fig. 1) based on Eq.(l), we see that in one turn, 
ak I-+ Ak@k = exp(-+i2$rvk) ok. Thus, each ]uk] is an invari- 
ant, and with proper normalization, such as either auxiliary 

*Actually, x’ = pz/p and y’ = pulp, where $i is the reference 
momentum. 
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condition, 

-igT(8)Hg(8)g = g ) 01 detg = 1 , 

these magnitudes are easily related both to Hamiltonian 
action coordinates, II, and to physical “emittances” of the 
particle, ck = 2rIk = 2zlak12. 

We want to calculate the state covariance matrix, 

of a stationary, equilibrium distribution. With this condi- 
tion, the angle variables must be uniformly distributed, so 
that (a&,) = 6k,,& and 

. 
Gj(S)= (Uiuj) = & c &k(s)B;k(6)(ck) - (2) Figure. 2. Astigmatism in the vicinity of BO resulting from 

k a 9 mrad roll of a low beta quad. 

Coefficients of the (ck) in this expression are what should be 
meant by “lattice functions” in a coupled machine. They 
are the numbers which relate invariant emittances to ob- 
servable properties: the transverse widths of bunch distri- 
butions. 

B. Luminosity int egds 

We now use c(s) to evaluate luminosity in the presence 
of coupling. The general expression for the luminosity of 
two bunches colliding head on with velocity u = DC is given 
by the overlap integral [l], 

where frev is the revolution frequency, and fi(z, y, z; t) and 
n(z, y, z; t) are the volume density distributions of the two 
colliding bunches. 

To simplify Eq.(3) we assume a Gaussian for the equi- 
librium distribution in u phase space, 

p&i ‘) = Ji;s(d: $(s))i e 

- ~g~.g-‘(‘).~ 
(4) 

where N is the number of particles in a bunch, and c(s) is 
the covariance matrix defined in Eq.(2). 

To find the volume density distribution fl(z, y, r; t) we 
first need to convert Eq.(4) from the s-representation to 
the time or t-representation. What we are interested in is 
the position of a particle at a given instant of time. How- 
ever the s-representation describes the state of a particle as 
it crosses the transverse plane at position 8. Therefore we 
need to “propagate” the particle away from the local trans- 
verse plane. In a drift space this “propagation” ie simple 
since particles travel in straight lines. Without giving the 
details, the resulting volume density distribution is 

In this expression $ = p(z, y, @t - z) and & is the 3 x 3 
matrix composed o the elements of the position sector of 

htblag&bwnBO[mI 
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G.The matrix E, (obtained by projecting out the momen- 
tum and energy components) describes the beam footprint 
in the local fiducial chart, that is, in local transverse coor- 
dinates. 

The integrals over 2, y, and t in Eq.(3) can be done ana- 
lytically and the luminosity reduced to an integral over z. 
First define 

Then the expression for the luminosity becomes 

, , 
where e, E,, and C 
ck, are determined 3 

are all functions of z. The emittances, 
y measuring the beam profile at three 

different locations in the accelerator Sk, k = 1,2,3. From 
our lattice model we have g(Sk) and from the measure- 
ments we have a component of c(Sk). Thus we have three 
equations of the form given in Eq.(2) and can calculate the 
CL. 

III. Calculations and Measurements 
A. Astigmatic focus 

A first application of Eq.(2) to the vicinity of BO is shown 
in Figure 2(a). For simplicity, only the transverse dimen- 
sions have been taken into account, and we assume the 
values (ci) = ((2) = 30x mm-mr /& for the transverse ex- 
pected emittances appearing in Eq.(2). (These numbers 
are actually the nominal 95% emittance values.) Drawn 
at three locations in Part (a) are ellipses corresponding to 
the projection of the covariance matrix, E, into the trans- 
ver8e position sector. They represent the footprint of the 
bunch as it passes through a plane at each location. The 
circular loci were obtained by assuming that the accelera- 
tor hardware was perfectly aligned, and the more eccentric 
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ones, by introducing a 9 mrad roll in the upstream BOQ2 
quadrupole, (the low beta quad near CDF) that was dik 
covered to have thii roll. Two effects occur: (a) the focus 
itself has expanded, and (b) the orientation of the footprint 
rotates as one travels downstream - the bunch “twists.” 
Optically, these characterize a condition of astigmatism; 
the quad roll produced an astigmatic focus. 

Of course, the emittances that appear in Eq.(2) do 
not really refer to the “horizontal” and “vertical” planes. 
They refer to invariant planes in six dimensions, with 
“longitudinal” entering into the mix. For the above 
example we simply assumed that the emittances were 
(cl) = (cz) = 30~ mm-mr l/37. A more correct way of do- 
ing this calculation would be to infer the true emittances 
from three flying wire measurements, as described in the 
preceding section, but the results would not change signif- 
icantly. 

B. Luminosity Profiles 

A more direct way of estimating the effect on lu- 
minosity is shown in Figure 2(b). The expression 
exp(-s2/2a,2)/(dets(s))* is plotted within a two meter 
interval of BO. This profiles the integrand of the luminosity 
integral at the instant when the centroids of the proton and 
antiproton bunches meet. The two solid curves correspond 
to (1) the ideal case of no quad roll and (2) the “actual” 
case, corresponding to a 9 mrad quad roll with skew quad 
settings as they actually existed during the run up to July 
20, 1995. The dashed curves illustrate three hypothetical 
scenarios: (3) a “best-case” scenario, in which the effect of 
the quad roll is compensated by the SQBO skew-quad cor- 
rection circuit only, (4) a “worst-c=” scenario, in which 
the SQAO circuit was not used to compensate, and (5) an 
attempt to mimic the quad roll with skew quad circuits, 
without rolling the quad. Notice that (5) comes nowhere 
near the other dashed curves, or curve (2). 

C. Online 6-D Calculaiion 

Eq.(6) has been implemented in conjunction with an on- 
line, interactive, six-dimensional model of the Tevatron 
using the C++ class libraries MXYZPTLK and BEAM- 
LINE [3]. Using the design lattice, a comparison was 
made using the beam conditions of the present collider run. 
Two Tevatron collider stores were chosen; one before the 
quadrupole roll was discovered and one after. In the model 
the quadrupole was rolled 8 mrad. The invariants (11) have 
been calculated using the sigmas from three Tevatron flying 
wire measurements. The ratio of measured luminosities at 
CDF and DO before the rolled quadrupole discovered was 
0.76; the model predicts 0.70. For a store after the roll 
was corrected the measured ratio was 1.13; the model pre- 
diets 1.03. In the rolled quadrupole case, the luminosity 
distribution at CDF is skewed towards the upstream end 
of the interaction region. This is in agreement with both 
the model and with Figure 2. 

Several effects have been neglected in the calculation. 
The electrostatic separators were assumed to be zero and 
no account was taken of RF bucket cogging. Some of the 

Tevatron low-p quadrupoles run at values slightly different 
from the design in order to change the longitudinal position 
of the minimum p. Inclusion of these effects should bring 
the model calculation in closer agreement with experimen- 
tal data. 

IV. Conclusions 
Linear normal form analysis has been used to develop an 

expression for the luminosity in a coupled machine. Com- 
parison of the calculation result with experimental data 
shows that the model can reproduce the qualitative fea- 
tures of the data. Work is in progress to implement a more 
accurate lattice model of the Tevatron and to include elec- 
trostatic separators. 
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