
ar
X

iv
:h

ep
-e

x/
94

06
00

7v
1 

 2
9 

Ju
n 

19
94

Nevis R#1502

Determination of the Strange Quark Content of the Nucleon from
a Next-to-Leading-Order QCD Analysis of Neutrino Charm Production

A.O. Bazarko, C.G. Arroyo, K.T. Bachmann,a T. Bolton, C. Foudas,b B.J. King,c

W.C. Lefmann, W.C. Leung, S.R. Mishra,d E. Oltman,e P.Z. Quintas,f

S.A. Rabinowitz, F.J. Sciulli, W.G. Seligman, M.H. Shaevitz
Columbia University, New York, NY 10027

F.S. Merritt, M.J. Oreglia, B.A. Schumm,e

University of Chicago, Chicago, IL 60637
R.H. Bernstein, F. Borcherding, H.E. Fisk, M.J. Lamm,

W. Marsh, K.W.B. Merritt, H.M. Schellman,g D.D. Yovanovitch
Fermilab, Batavia, IL 60510

A. Bodek, H.S. Budd, P. de Barbaro, W.K. Sakumoto
University of Rochester, Rochester, NY 14627

T. Kinnel, P.H. Sandler,h W.H. Smith
University of Wisconsin, Madison, WI 53706.

(CCFR Collaboration)

December 9, 2013.
Submitted to Physics Letters B.

aPresent address: National Center for Atmospheric Research, Boulder, CO 80307.
bPresent address: University of Wisconsin, Madison, WI 53706.
cPresent address: CERN, CH-1211 Geneva 23, Switzerland.
dPresent address: Harvard University, Cambridge, MA 02138.
ePresent address: Lawrence Berkeley Laboratory, Berkeley, CA 94720.
fPresent address: Fermilab, Batavia, IL 60510.
gPresent address: Northwestern University, Evanston, IL 60208.
hPresent address: Lawrence Livermore National Laboratory, Livermore, CA 94550.

1

FERMILAB-PUB-94-452-A

http://arxiv.org/abs/hep-ex/9406007v1


We present the first next-to-leading-order QCD analysis of neutrino charm production,
using a sample of 6090 νµ- and νµ-induced opposite-sign dimuon events observed in the
CCFR detector at the Fermilab Tevatron. We find that the nucleon strange quark content
is suppressed with respect to the non-strange sea quarks by a factor κ = 0.477 + 0.063

− 0.053,
where the error includes statistical, systematic and QCD scale uncertainties. In contrast
to previous leading order analyses, we find that the strange sea x-dependence is similar
to that of the non-strange sea, and that the measured charm quark mass, mc = 1.70 ±
0.19 GeV/c2, is larger and consistent with that determined in other processes. Further
analysis finds that the difference in x-distributions between xs(x) and xs(x) is small. A
measurement of the Cabibbo-Kobayashi-Maskawa matrix element |Vcd| = 0.232 + 0.018

− 0.020 is
also presented.
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1. Introduction

Nucleon structure at high momentum transfers is characterized by parton distribution
functions, which describe the proton and neutron in terms of quarks and gluons using the
factorization theorems of Quantum Chromodynamics (QCD) [1]. These nucleon parton
distributions are essential inputs when using perturbative calculations to predict high en-
ergy processes involving nucleons, such as those at the Tevatron collider and the planned
LHC. The ability to consistently predict such processes using one set of universal par-
ton distributions is an important test of QCD as the theory of the strong interactions.
Neutrino-nucleon deep-inelastic scattering is particularly suited for measuring the parton
densities due to the neutrino’s ability to resolve the flavor of the nucleon constituents.
Furthermore, neutrino scattering is an effective way to study the dynamics of heavy quark
production, due to the light to heavy quark transition at the charged current vertex. In
particular, neutrino charm production can be used to isolate the nucleon strange quark
distributions, xs(x) and xs(x).

We present the first next-to-leading-order (NLO) QCD analysis of neutrino and an-
tineutrino production of charmed quarks including the first direct determination of the
strange quark distribution defined at NLO. The order of the strange quark distribution
from this analysis matches that of recent global nucleon structure analyses, like those
of CTEQ [2] and MRS [3]. Since the data presented here provide the most sensitive
constraints on the strange quark distribution, these results should become important in-
gredients in future global parton distribution fits.

In addition, we present measurements of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element |Vcd| and the mass of the charm quark mc. The charm quark mass from
this analysis is directly comparable with mc measurements derived from NLO analyses
of other processes. Such comparisons are a test of the perturbative QCD phenomenology
for heavy quarks. Neutrino production of charm off nucleon d quarks provides a direct
determination of the product |Vcd|2Bc, where Bc is the weighted average of the semi-
leptonic branching ratios of the charmed hadrons produced. |Vcd| is isolated by including
an estimate of Bc using data from other experiments, including a re-analysis of Fermilab
neutrino-emulsion data.

The signature for the production of charmed quarks in neutrino- and antineutrino-
nucleon scattering is the presence of two oppositely-signed muons. In the case of neutrino
scattering, the underlying process is a neutrino interacting with an s or d quark, producing
a charm quark that fragments into a charmed hadron. The charmed hadron’s semileptonic
decay produces a second muon of opposite sign from the first.

νµ + N −→ µ− + c + X

→֒ µ+ + νµ

The analogous process with an incident antineutrino proceeds through an interaction with
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an s or d antiquark, again leading to oppositely-signed muons in the final state.

νµ + N −→ µ+ + c + X

→֒ µ− + νµ

2. The CCFR detector and event selection

The dimuon data were accumulated during two runs, E744 and E770, with the Chicago-
Columbia-Fermilab-Rochester (CCFR) detector at the Fermilab Tevatron Quad-Triplet
neutrino beam. This wide-band beam was composed of νµ and νµ with energies up to 600
GeV and a flatter energy spectrum than characteristic of horn-focused neutrino beams.
In the CCFR detector [4, 5], neutrino interactions occur in the 690 ton unmagnetized
steel-scintillator target-calorimeter, which is instrumented with drift chambers for muon
tracking. The calorimeter’s hadronic energy resolution is σ/E = 0.85/

√
E. The target

is followed by a solid-iron toroidal magnetic spectrometer, which identifies muons and
measures their momenta with a resolution ∆p = 0.11p.

The detector measures pµ1
and pµ2

, the momenta of the two muons, θµ1
and θµ2

,
the angles of the muons with respect to the neutrino beam axis, and Evis

had, the en-
ergy of the hadronic system. Muon 1 is labeled as the leading muon, defined as the
one emerging from the leptonic vertex, using a procedure described below. The visi-
ble energy in a dimuon event, Evis = Eµ1

+ Eµ2
+ Evis

had, misses the energy of the decay
neutrino. Therefore, we make the distinction between the visible quantities—quantities
derived directly from measurement—and the physical quantities, which are inferred on
average by correcting distributions of the visible quantities using the Monte Carlo sim-
ulation described below. Variables commonly used to describe deep inelastic scattering
are: Q2

vis = 4EvisEµ1
sin2(θµ1

/2), the negative square of the four-momentum transfer,
xvis = Q2

vis/[2M(Evis
had + Eµ2

)], the Bjorken scaling variable, where M is the nucleon mass,
yvis = (Ehad + Eµ2

)/Evis, the inelasticity, and W 2
vis = M2 + Q2

vis(1/xvis − 1), the invariant
mass squared of the hadronic system.

In the experiment, charged-current single muon events are required to have Evis > 30
GeV, Evis

had > 10 GeV, Q2
vis > 1 GeV2/c2 and pµ1

> 9 GeV/c. Dimuon events are selected
by making the further requirement that the second muon has pµ2

> 5 GeV/c and that both
muons have θµ < 0.250 rad. The second muon’s momentum is measured in the magnetic
spectrometer whenever possible, otherwise it is determined from the muon’s range in the
target. In order to reduce non-prompt sources of second muons, events in which muon
2 does not reach the toroid must also satisfy Evis

had < 130 GeV. The final dimuon sample
contains 6090 events and is characterized by 〈Evis〉 = 192 GeV, 〈W 2

vis〉 = 168 GeV2/c2,
〈Q2

vis〉 = 25.5 GeV2/c2, and 〈xvis〉 = 0.15. Results from a leading-order analysis of this
data sample were reported previously [6].
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3. Differential cross section

The differential cross section for dimuon production is expressed generally as

d3σ(νµN → µ−µ+X)

dξ dy dz
=

d2σ(νµN → cX)

dξ dy
D(z) Bc(c → µ+X), (1)

where the function D(z) describes the hadronization of charmed quarks and Bc is the
weighted average of the semi-leptonic branching ratios of the charmed hadrons produced
in neutrino interactions.

The heavy charm quark introduces an energy threshold in the charm production rate.
This is a kinematic effect for which ξ, the momentum fraction of the struck quark, is
related to the Bjorken scaling variable x, through the expression [7]

ξ =

(

1

2x
+

√

1

4x2
+

M2

Q2

)−1
Q2 − m2

s + m2
c + ∆

2Q2
, (2)

where mc is the charm quark mass and ms refers to the initial state quark mass, either
the strange quark or the down quark, and ∆ = ∆(−Q2, m2

s, m
2
c) is the triangle function,

defined by ∆(a, b, c) ≡
√

a2 + b2 + c2 − 2(ab + bc + ca). The full expression for ξ can be
simplified by neglecting the small effect of the initial state quark mass to yield

ξ = x

(

1 +
m2

c

Q2

)(

1 − x2M2

Q2

)

. (3)

Relating ξ and x through the charm quark mass is referred to as slow-rescaling [8].

At leading order (LO) charm is produced by scattering directly off of strange and down
quarks in the nucleon. The LO differential cross section for an isoscalar target, neglecting
target mass effects, is given by:

{

d2σ(νµN → cX)

dξ dy

}

LO

=
G2MEν

π(1 + Q2/M2
W )2

{ [ξu(ξ, µ2) + ξd(ξ, µ2)] |Vcd|2

+ 2ξs(ξ, µ2) |Vcs|2 }
(

1 − m2
c

2MEνξ

)

, (4)

where ξu(ξ, µ2), ξd(ξ, µ2) and ξs(ξ, µ2) represent the momentum distributions of the
u, d and s quarks within the proton (the corresponding νµ process has the quarks re-
placed by their antiquark partners) and |Vcd| and |Vcs| are the CKM matrix elements.
The dependence of the parton distributions on the scale µ2 is specified by QCD [9]. In
the leading order analysis of Reference [6], Callan-Gross violation is included by replac-
ing the term [1 − m2

c/(2MEνξ)] in Equation (4) with {[1 + RL(ξ, µ2)] [1 + (2Mξ/Q)2]−1

[1 − y −Mxy/(2E)] +xy/ξ}, and using external measurements of the structure function
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RL(ξ, µ2) [10]. In the NLO formalism, violation of the Callan-Gross relation emerges as
a consequence of QCD.

The LO expression illustrates the sensitivity of the process to the strange quark sea.
Charm (anticharm) production from scattering off d (d) quarks is Cabibbo suppressed. In
the case of charm produced by neutrinos, approximately 50% is due to scattering from s
quarks, even though the d quark content of the proton is approximately ten times larger.
In the case of antineutrino scattering, where d quarks from the sea contribute, roughly
90% is due to scattering off s quarks.

Because neutrino charm production has a large sea quark component at leading-order,
the next-to-leading-order gluon-initiated contributions are significant [11]. The size of the
gluon distribution, which is an order of magnitude larger than the sea quark distribution,
compensates for the extra power of αS involved in the gluon-initiated diagram. The NLO
quark-initiated diagrams, shown in Figure 1b, in which a gluon is radiated, also enter the
perturbative expansion at O(αS), but the contributions of these diagrams to the cross
section are not enhanced by large underlying parton distributions. Calculations including
the next-to-leading-order formalism have recently become available [12, 13, 14] and lead
to the analysis in this Letter.

Figure 1: Mechanisms that contribute to
neutrino production of charm up to O(αS).
a) The dominant diagrams: the leading-
order quark-initiated diagram, and the t
channel and u channel gluon-initiated dia-
grams, respectively. b) The radiative-gluon
and self-energy diagrams.
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4. Monte Carlo simulation

Information about the strange sea, the charm quark mass, and the branching ratio is
extracted by comparing the xvis and Evis distributions of the data to theoretical expec-
tations contained in a Monte Carlo simulation. The Monte Carlo program models the
dependence of these physics parameters as well as the effects of detector acceptance, reso-
lution smearing, and missing energy associated with the charmed particle decay. Dimuon
Monte Carlo event generation proceeds by using a simulated sample of charged-current
single muon events and demanding that the hadronic system contains a second muon from
charm decay. The single muon Monte Carlo sample is normalized to the charged-current
data sample, ensuring that the Monte Carlo energy spectrum exactly models that of the
data.

The species of charmed particles produced in neutrino interactions as a function of
neutrino energy was measured by Fermilab E531 [15]. With an Eν > 30 GeV cut, the
production is dominated by charged and neutral D mesons. Fragmentation to D’s in
the Monte Carlo simulation is parameterized by the fragmentation function of Collins
and Spiller [16], D(z) = N [(1 − z)/z + ǫ(2 − z)/(1 − z)] (1 + z)2[1− (1/z)− ǫ/(1− z)]−2,
where z = pD/pmax

D is the fraction of its maximum momentum that the D meson carries
and ǫ is a free parameter. The parameter ǫ in the fragmentation model is fit by using the
distribution of zvis = Eµ2

/(Eµ2
+ Ehad).

The dimuon events are divided into those from incident νµ or ν̄µ by a separation
procedure that assumes that the leading muon has larger transverse momentum with
respect to the direction of the hadron shower than the muon from the charmed hadron
decay. This procedure separates the sample into 5030 νµ-induced events and 1060 νµ-
induced events. The largest uncertainty in this procedure is due to the knowledge of
the charm meson p⊥ distribution. For this study we parameterize the p⊥ distribution by
dn/dp2

⊥
∝ e−βp2

⊥ and use the Fermilab E531 emulsion data [15] with W 2 > 30 GeV2/c2

to determine β = 1.21 ± 0.34. Using this method, the separation procedure is found to
misidentify 5.8 ± 0.4% of the ν events and 7.3 ± 0.4% of the ν events.

The charm-initiated dimuon signal is contaminated by non-prompt pion and kaon
decay. The high-density calorimeter minimizes this contamination due to the short inter-
action length of the detector. A combination of hadronic test beam muoproduction data
and Monte Carlo simulations predicts a small π/K decay background of 797± 118 νµ and
118 ± 25 νµ events [17].

To calculate the probability of producing charm, we employ the NLO QCD charm
production differential cross section calculation of Aivazis, Collins, Olness and Tung
[12], including the Born and gluon-fusion diagrams, shown in Figure 1a. These are
the leading contributions to charm production. The calculation is performed in the MS
scheme. The factorization scale in the calculation is chosen to be µ = 2pmax

⊥
, where
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pmax
⊥

= ∆(W 2, m2
c , M

2)/
√

4W 2 is the maximum available transverse momentum of the
initial state quark coming from the gluon splitting, or equivalently of the final state charm
quark, for the given kinematic variables x and Q2. The renormalization scale is chosen to
equal the factorization scale. We discuss the uncertainty due to the choice of these scales
below. Electromegnetic radiative corrections to the cross section are calculated using the
method of Bardin et al. [18].

The finite momentum cut on the second muon limits the acceptance of events at-
tributable to gluon-initiated production,

W+g → cs.

Gluon-initiated production of charm proceeds through both the t and u channels as shown
in Figure 1a. While these diagrams are quantum mechanically equivalent, they dominate
different regions of phase space. In the t channel, the gluon splits into an ss pair and
the c quark emerges from the W-boson vertex. In the u channel, the legs of the c and
s quarks are crossed—the gluon splits into a cc pair and the s quark emerges from the
W-boson vertex.

In the W-boson–gluon center of mass frame, the c quark is produced at an angle θ∗c
relative to the W-boson direction. The production angle is related to the momentum of
the c quark in the lab, and hence with pµ2

. When θ∗c is small—t channel dominance—
the c quark carries most of the W-boson momentum. As θ∗c approaches π—u channel
dominance—the c quark emerges with little momentum in the lab. Consequently, events
with large θ∗c are less likely to produce a second muon with pµ2

> 5 GeV/c.

An acceptance correction due to this effect is determined by folding the calculated
squared production amplitude for producing charm at angle θ∗c with the experimental
acceptance. To determine the experimental acceptance, the ability of events with finite θ∗c
to pass the 5 GeV/c pµ2

cut is compared to that when the events are generated with θ∗c = 0.
We find that this relative acceptance drops to near zero at θ∗c = π, and is about 74% at
θ∗c = π/2. Integrating over the calculated squared production amplitude, which peaks
in the forward and backward directions, the overall t–u channel acceptance correction
for gluon-initiated production is 60 ± 10%. The effect of this acceptance correction is
small but not insignificant; for example, it shifts the value of mc determined from the fit
described below by +0.07 GeV/c2.

Measurements of the F2 and xF3 structure functions by CCFR [19, 20] are used to
determine the singlet and the non-singlet quark distributions, xqSI(x, µ2) = xq(x, µ2) +
xq(x, µ2) and xqNS(x, µ2) = xq(x, µ2)−xq(x, µ2), respectively, and the gluon distribution,
xg(x, µ2) [21]. These distributions are obtained from next-to-leading-order QCD fits to
the structure function data [22] using the QCD evolution programs of Duke and Owens
[23].
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To resolve the strange component of the quark sea, the singlet and non-singlet quark
distributions are separated by flavor. Insofar as isospin is a good symmetry, our experi-
ment is insensitive to the exact form of the up and down valence and sea quark distribu-
tions, because the neutrino target is nearly isoscalar. An isoscalar correction accounts for
the 5.67% neutron excess in the target.

The proton valence quark content, xqV (x, µ2) = xqNS(x, µ2), is parameterized by

xqV (x, µ2) = xuV (x, µ2) + xdV (x, µ2),

xdV (x, µ2) = Ad(1 − x)xuV (x, µ2), (5)

where the shape difference for xdV (x) better fits charged-lepton scattering measurements
of F n

2 /F p
2 [24]. Ad is fixed by demanding that the ratio of the number of d to u valence

quarks in the proton is 1/2.

The non-strange quark and antiquark components of the sea are assumed to be sym-
metric, so that xu(x, µ2) = xuS(x, µ2), xd(x, µ2) = xdS(x, µ2). The isoscalar correction
is applied assuming xu(x, µ2) = xd(x, µ2). The strange component of the quark sea is
allowed to have a different magnitude and shape from the non-strange component. The
strange quark content is set by the parameter

κ =

∫ 1
0 [xs(x, µ2) + xs(x, µ2)] dx
∫ 1
0 [xu(x, µ2) + xd(x, µ2)] dx

, (6)

where κ = 1 would indicate a flavor SU(3) symmetric sea. The shape of the strange
quark distribution relates to that of the non-strange sea by a shape parameter α, where
α = 0 would indicate that the strange sea has the same x dependence as the non-strange
component of the quark sea. Shape parameters are defined for each of the two fits below.
In the first fit the strange quark and antiquark distributions are assumed to be the same;
in the second fit xs(x, µ2) and xs(x, µ2) are fit separately.

4.1 xs(x, µ2) = xs(x, µ2) fit

This fit assumes that xs(x, µ2) and xs(x, µ2) are the same. The sea quark distributions
are parameterized by:

xq(x, µ2) = 2

[

xu(x, µ2) + xd(x, µ2)

2

]

+ xs(x, µ2),

xs(x, µ2) = As(1 − x)α

[

xu(x, µ2) + xd(x, µ2)

2

]

, (7)

where As is defined in terms of κ and α.

A χ2 minimization is performed to find the strange sea parameters κ and α, the values
of Bc and mc, and the fragmentation parameter ǫ, by fitting to the xvis, Evis and zvis
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distributions of the dimuon data, projections of which are shown in Figure 2. Taking
|Vcd| = 0.221 ± 0.003 and |Vcs| = 0.9743 ± 0.0008 [25] as input values and using the
Collins-Spiller fragmentation function, the extracted NLO parameters with their statis-
tical and systematic errors are presented in the first line of Table 1. In this primary fit,
the uncertainties due to fragmentation are included in the statistical errors of all of the
parameters. The value of χ2 = 52.2 for 65 degrees of freedom suggests excellent agreement
between the data and the NLO theoretical model.

Our previous LO results [6], which were found by fitting to the xvis and Evis dis-
tributions of the same data sample and using the Peterson fragmentation function [26],
D(z) = N{ z[1 − (1/z) − ǫP /(1 − z)]2 }−1 with ǫP = 0.20, are listed in the third line
of Table 1. For comparison with these results, Table 1 includes the NLO parameters
determined using the same fit procedure. The two fits using the Peterson fragmentation
function include the uncertainty due to fragmentation in the systematic errors of all of
the parameters.

Fragmentation χ2/dof κ α Bc mc (GeV/c2)

NLO fit Collins-Spiller 52.2/65 0.477 −0.02 0.1091 1.70

ǫ = 0.81 ± 0.14 +0.046
−0.044

+0.023
−0.024

+0.60
−0.54

+0.28
−0.26

+0.0082
−0.0074

+0.0063
−0.0051 ±0.17 +0.09

−0.08

NLO fit Peterson 41.2/46 0.468 −0.05 0.1047 1.69

ǫP = 0.20 ± 0.04 +0.061
−0.046

+0.024
−0.025

+0.46
−0.47

+0.28
−0.26 ±0.0076 +0.0065

−0.0052 ±0.16 +0.12
−0.10

LO fit Peterson 42.5/46 0.373 2.50 0.1050 1.31

Ref. [6] ǫP = 0.20 ± 0.04 +0.048
−0.041 ± 0.018 +0.60

−0.55
+0.36
−0.25 ±0.007 ± 0.005 +0.20

−0.22
+0.12
−0.11

Table 1: Next-to-leading-order and leading-order fit results, assuming xs(x) = xs(x). Er-
rors are statistical and systematic, except that the errors on the fragmentation parameters
are statistical only.

Estimates of the systematic uncertainties are obtained by varying model parameters
within errors and are itemized in Table 2.

Parton distributions are defined to a given order and scheme in QCD. Therefore,
the magnitude of a given parton distribution differs between leading-order and next-to-
leading-order. At NLO, the nucleon strange quark content is found to be κ = 0.477 +0.051

−0.050,
indicating that the sea is not SU(3) symmetric—qualitatively the same result as from the
LO analysis. The strange quark content may alternatively be given by

η =

∫ 1
0 [xs(x, µ2) + xs(x, µ2)] dx
∫ 1
0 [xu(x, µ2) + xd(x, µ2)] dx

, (8)

so that by comparing to the total non-strange quark content, η is less sensitive to changes
in the determination of the sea quark content alone. At µ2 = 22.2 GeV2/c2 the ratio of
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Figure 2: xvis, Evis and zvis distributions for ν- and ν-induced dimuon events. Data
are given by the points and the solid histogram is the result of fitting the dimuon event
simulation. The dotted histogram is the background contribution to the former from pion
and kaon decay.
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source of uncertainty κ α Bc mc

π/K background + 0.0010
− 0.0022

+ 0.150
− 0.160

− 0.0031
+ 0.0027

+ 0.006
− 0.003

energy scale − 0.0051
+ 0.0078

− 0.048
+ 0.059

+ 0.0028
− 0.0002

+ 0.031
− 0.057

relative calibration − 0.0059
+ 0.0020

+ 0.115
− 0.077

+ 0.0013
− 0.0002

+ 0.031
− 0.007

detection efficiency ±1% − 0.0070
+ 0.0021

+ 0.044
− 0.003

+ 0.0022
− 0.0012

− 0.007
+ 0.013

ν − ν mis-id + 0.0014
− 0.0032

− 0.042
+ 0.006

+ 0.0009
− 0.0014

+ 0.036
− 0.030

F2 and xF3
+ 0.0143
− 0.0068

+ 0.084
− 0.114

+ 0.0024
− 0.0019

+ 0.053
− 0.017

xqSI(x), xqNS(x) and xg(x) + 0.0110
− 0.0110

+ 0.180
− 0.180

+ 0.0009
− 0.0009

+ 0.038
− 0.038

|Vcs| and |Vcd| + 0.0095
− 0.0099

− 0.024
+ 0.031

− 0.0028
+ 0.0032

− 0.011
+ 0.014

t–u channel accep. corr. − 0.0135
+ 0.0052

− 0.009
+ 0.062

− 0.0002
+ 0.0010

− 0.020
+ 0.008

Table 2: Sources of systematic uncertainty in the determination of the fit parameters.

antiquarks to quarks in the nucleon at NLO is found to be
∫

dxxq(x, µ2)/
∫

dxxq(x, µ2) =
Q/Q = 0.245 ± 0.005 and thereby the strange quark content with respect to the non-
strange quarks is

η = 0.099 ± 0.008 ± 0.004 − 0.003
+ 0.006. (9)

Since a nonzero value of α would indicate a shape difference between xq(x) and xs(x),
the value α = −0.02 + 0.66

− 0.60 indicates no shape difference at NLO. At leading order, we find
the strange quarks softer than the overall quark sea by a factor (1−x)α with α = 2.5±0.7.
The difference in α between NLO and LO is attributable to the NLO xq(x) being softer
than its LO counterpart, as shown in Figure 3. Figure 4 shows the NLO and LO xs(x),
again indicating that the NLO distribution is larger in magnitude and softer than its LO
counterpart.

The strange quark distribution from the xs(x, µ2) = xs(x, µ2) fit is tabulated in Table
3 for a few values of x and µ2 and is plotted at µ2 = 4 GeV2/c2 in Figure 4. The
distribution can be parameterized by a function of the form a (1− x)b x−c. The values of
the coefficients a, b and c are tabulated in Table 4.

The charm quark mass parameter from the NLO fit is 1.70 ± 0.19 GeV/c2, which
differs from the leading-order result, indicating the marked dependence of mc on the
order to which the analysis is done. The NLO value of mc can be more consistently
compared with measurements derived from other processes involving similar higher-order
perturbative QCD calculations. A photon-gluon-fusion analysis of photoproduction data
finds mc = 1.74 +0.13

−0.18 [27].

The values of Bc from the NLO and LO fits are consistent, providing a good check
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µ2 (GeV2/c2) x xs(x, µ2)

1.0 0.01 0.126 ± 0.012 ± 0.006 + 0.008
− 0.004

0.05 0.097 ± 0.008 ± 0.004 + 0.006
− 0.003

0.10 0.068 ± 0.005 ± 0.003 + 0.004
− 0.002

0.20 0.032 ± 0.003 ± 0.001 + 0.002
− 0.001

4.0 0.01 0.178 ± 0.016 ± 0.008 + 0.011
− 0.005

0.05 0.111 ± 0.009 ± 0.005 + 0.007
− 0.003

0.10 0.072 ± 0.005 ± 0.003 + 0.004
− 0.002

0.20 0.030 ± 0.003 ± 0.001 + 0.002
− 0.001

20.0 0.01 0.229 ± 0.020 ± 0.010 + 0.014
− 0.007

0.05 0.122 ± 0.010 ± 0.005 + 0.007
− 0.004

0.10 0.073 ± 0.006 ± 0.003 + 0.004
− 0.002

0.20 0.028 ± 0.003 ± 0.001 + 0.002
− 0.001

100.0 0.01 0.271 ± 0.024 ± 0.012 + 0.017
− 0.008

0.05 0.128 ± 0.010 ± 0.005 + 0.008
− 0.004

0.10 0.072 ± 0.006 ± 0.003 + 0.004
− 0.002

0.20 0.026 ± 0.003 ± 0.001 + 0.002
− 0.001

Table 3: Values of xs(x, µ2), defined at NLO using the MS renormalization scheme, from
the xs(x, µ2) = xs(x, µ2) fit. The first error is statistical, the second is experimental
systematic and the third is due to QCD scale uncertainty.

of the fit procedure and the physics model. This value is constrained by neutrino charm
production at x > 0.3 where the valence d quark contribution dominates, and thus is in-
dependent of the strange and other sea quark distributions. The value of Bc = 0.109+0.010

−0.007

agrees with an indirect determination, BI
c = 0.099 ± 0.012, which is described in section

5.

As with all applications of perturbative QCD, a theoretical uncertainty is associated
with the choice of factorization and renormalization scales. Some scale dependence is
unavoidable for any calculation done to finite order in αS. The µ2 scale is interpreted as
setting the boundary between the collinear and noncollinear regions of the p⊥ integration
over the final states. Therefore, a scale proportional to pmax

⊥
is suggested by the authors of
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Figure 3: The quark sea distribution
xq(x, µ2 = 4.0 GeV2/c2) determined at
next-to-leading order and leading order.

Figure 4: The strange quark distribu-
tion xs(x, µ2 = 4.0GeV2/c2) determined at
next-to-leading order (described in section
4.1) and leading order. The band around
the NLO curve indicates the ±1σ uncer-
tainty in the distribution.

µ2 GeV2/c2 a b c

1.0 0.135 6.48 0.000

10.0 0.117 6.67 0.096

20.0 0.107 6.98 0.164

100.0 0.100 7.28 0.210

Table 4: The coefficients a, b and c from the parameterization of xs(x, µ2) using the form
a(1 − x)bx−c, as described in the text.

Ref. [11, 28]. Figure 5 shows the scale dependence of the differential cross section, where
the abscissa is in units of pmax

⊥
. The scale dependence is weak for µ values above one unit

of pmax
⊥

, and there is a stronger scale dependence when µ is below this value. We choose
µ = 2pmax

⊥
and find the scale uncertainty by varying µ between pmax

⊥
and 3pmax

⊥
. Fit results

with various choices of the common factorization and renormalization scale are presented
in Table 5. The χ2 values for these fits—all with 65 degrees of freedom—indicate that
the data favor µ2 scales with smaller magnitudes. It should be noted that the values of
the fit parameters are fairly insensitive to the choice of scale.
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choice of scale, µ2 χ2 κ α Bc mc (GeV/c2)

( pmax
⊥

)2 50.4 0.513 0.18 0.0987 1.71

(2 pmax
⊥

)2 52.2 0.477 −0.02 0.1091 1.70

(3 pmax
⊥

)2 54.4 0.460 −0.10 0.1142 1.68

Q2 51.7 0.423 −0.37 0.1074 1.80

(2Q)2 56.1 0.410 −0.46 0.1159 1.71

(3Q)2 59.4 0.408 −0.54 0.1206 1.73

Q2 + m2
c 52.5 0.421 −0.03 0.1066 1.65

4 (Q2 + m2
c) 57.1 0.409 −0.16 0.1154 1.64

Q2 + (2mc)
2 52.8 0.428 0.00 0.1068 1.62

4 [Q2 + (2mc)
2] 57.3 0.415 −0.15 0.1161 1.63

Table 5: Central values of the fit parameters for various choices of the QCD scale µ2.
Each fit contains 65 degrees of freedom.
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Figure 5: The µ2 scale dependence of the
differential cross section for neutrino and
antineutrino production of charm, where µ2

identifies the factorization and renormaliza-
tion scales. The scale µ on the abscissa is
in units of pmax

⊥
. For E = 200 GeV and

y = 0.5, the x = 0.05, 0.15, 0.25 lines cor-
respond to pmax

⊥
= 6.6, 6.2, 5.8 GeV/c, re-

spectively.

4.2 xs(x) 6= xs(x) fit

Theoretical work has explored the possibility that the nucleon contains a sizable heavy
quark component at moderate x—the possibility of so-called intrinsic heavy quark states
within the nucleon [29]. Postulating intrinsic strange quark states leads to the prediction
that the s quark momentum distribution will be harder than the s quark distribution [30].
We explore this possibility by performing a fit in which the momentum distributions of
the s and s quarks are allowed to be different. For this study the sea quark distributions
are parameterized by:

xq(x, µ2) = 2

(

xu(x, µ2) + xd(x, µ2)

2

)

+
xs(x, µ2) + xs(x, µ2)

2
,
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xs(x, µ2) = As(1 − x)α

[

xu(x, µ2) + xd(x, µ2)

2

]

,

xs(x, µ2) = A′

s(1 − x)α′

[

xu(x, µ2) + xd(x, µ2)

2

]

. (10)

The s and s are constrained to have the same number
∫ 1

0
s(x, µ2) dx =

∫ 1

0
s(x, µ2) dx. (11)

As and A′

s are defined in terms of κ, α and α′.

In order to reduce the number of free parameters, this fit constrains the average
charmed hadron branching ratio to the value obtained from other measurements, BI

c =
0.099 ± 0.012 (see Section 5.). We fit for four parameters: the strange quark parameters
κ, α, and ∆α = α − α′ and the charm quark mass mc. The result is:

κ = 0.536 ± 0.030 ± 0.036 − 0.064
+ 0.098 ± 0.009,

α = −0.78 ± 0.40 ± 0.56 ± 0.98 ± 0.50,

∆α = −0.46 ± 0.42 ± 0.36 ± 0.65 ± 0.17,

mc = 1.66 ± 0.16 ± 0.07 + 0.04
− 0.01 ± 0.01 GeV/c2, (12)

where the first error is statistical, the second is systematic, the third is due to the uncer-
tainty in BI

c, and the fourth is the error due to µ2 scale uncertainty.

The value of ∆α = −0.46 ± 0.85 ± 0.17 indicates that the momentum distributions
of s and s are consistent and the difference in the two distributions is limited to −1.9 <
∆α < 1.0 at the 90% confidence level. This is the first quantitative comparison of the
components of the s and s quark sea.

We also checked the assumption that the same average semileptonic branching ratio
applies to the ν- and ν-induced samples. A two parameter fit finds the branching ratio of
ν-induced events Bc = 0.1147 ± 0.0056, and ∆Bc = Bc − B′

c = 0.011 ± 0.011, where B′

c

is the branching ratio for ν-induced events and the errors are statistical only. The result
indicates that there is no significant difference in the semileptonic decays of charmed
particles and antiparticles at these energies.

5. |Vcd| measurement

If the CKM matrix elements are not assumed, then the four parameter NLO fit in
section 4.1 is performed by fitting α, mc and the following products:

|Vcd|2Bc = (5.34 + 0.38
− 0.39

+ 0.27
− 0.21

+ 0.25
− 0.51) × 10−3,

κ

κ + 2
|Vcs|2Bc = (2.00 ± 0.10 + 0.07

− 0.05
+ 0.06
− 0.14) × 10−2. (13)
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These combinations can be used to extract |Vcd|2 and κ|Vcs|2 when Bc is determined
from other data. Bc is determined by combining the charmed particle semileptonic branch-
ing ratios measured at e+e− colliders [25] with the neutrino-production fractions measured
by the Fermilab E531 neutrino-emulsion experiment [15]. Using an Evis > 30 GeV cut,
E531 determined the following production fractions: 52±6% D0, 42±6% D+, 1±2% D+

s ,
and 5 ± 3% Λ+

c . In the E531 analysis, events that could not be unambiguously identified
as D+ or D+

s were all categorized as D+ events. To remove this small bias, a re-analysis
was performed that included updated values of the charmed hadron lifetimes [31]. This
re-analysis finds the following production fractions with an Evis > 30 GeV cut: 60 ± 6%
D0, 26 ± 6% D+, 7 ± 5% D+

s , and 7 ± 4% Λ+
c . These production fractions are consistent

with those measured by e+e− experiments [32].

We find BI
c = 0.099 ± 0.012 and extract the value of the CKM matrix element

|Vcd| = 0.232 + 0.018
− 0.020, (14)

where the error indicates all sources of uncertainty, including the µ2 scale uncertainty. It
compares very well with the PDG value, |Vcd| = 0.221 ± 0.003, which is determined from
measurements of the other matrix elements and the unitarity constraint on the CKM
matrix assuming three generations. A measurement of |Vcs| will be possible when an
independent measurement of the strange sea content is available.

6. Summary

We have perfomed the first NLO QCD analysis of neutrino charm production and have
measured the nucleon strange quark distribution and the electroweak parameters mc and
|Vcd|. We find:

mc = 1.70 ± 0.19 ± 0.02

κ = 0.477 + 0.051
− 0.050

− 0.017
+ 0.036

α = −0.02 + 0.66
− 0.60

+ 0.08
− 0.20 (15)

where κ is the strange quark content with respect to the non-strange sea and α indicates
a shape difference between the strange and non-strange sea, xs(x) ∝ (1 − x)α [xu(x) +
xd(x)]/2. The first error combines statistical and systematic errors in quadrature and the
second is the uncertainty due to QCD µ2 scale. This value of κ indicates that the quark
sea is not flavor SU(3) symmetric. The relative shape parameter α is consistent with
zero, indicating that there is no shape difference between the strange and non-strange
components of the sea. The value of mc obtained from the NLO analysis is consistent
with that found in other processes.

Using an externally determined production weighted charmed hadron branching ratio,
BI

c = 0.099 ± 0.012, we measure the CKM matrix element

|Vcd| = 0.232 + 0.018
− 0.020. (16)
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We have also studied the possibility of a shape difference between the xs(x) and xs(x)
distributions. We find that

∆α = α − α′ = −0.46 ± 0.85 ± 0.17, (17)

where α and α′ are shape parameters for xs(x) and xs(x), indicating no shape difference
between the components of the strange quark sea. A shape difference is limited to −1.9 <
α − α′ < 1.0 at 90% confidence level.

The strange sea can also be inferred from a comparison of charged lepton and neutrino
structure functions. To leading-order the lepton and neutrino structure functions are
related by the “5/18ths rule,” F lN

2 /F νN
2 = 5/18{ 1 − 3/5[(s + s)/(q + q)] }, where the

strange sea enters as a correction. Comparison of structure function measurements from
CCFR (νFe) [19, 20] with those form SLAC (eD) [33], NMC [34] and BCDMS (µD) [35],
shows good agreement for x > 0.1 but a small discrepancy is seen between the neutrino
and muon results for lower x. The source of this disagreement is under investigation,
but may be due to the extra axial vector component present in neutrino scattering [36].
In contrast, the recent global fits by the CTEQ Collaboration (CTEQ1 distributions) [2]
have attributed the muon versus neutrino difference to an enhanced strange sea at low
x.1 This possibility is ruled out by the measurements presented here.
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