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Abstract 

We present the anomalous cross section for baryon number violation in the standard 

model from the perturbation of large-order behavior of forward scattering amplitudes 

to the order (c/n) 8’31n (r/n). An imp roved high energy behavior of the anomalous cross 

section is observed. We also argue that the asymptotic form of F(cg) z -g In o.,. is 

given in the form: F(cg) + d + c’ cg for q + 00 with c. d constants satisfying c, d 2 0, 

and F(cg) > 0 for ail energies. The constants are not determined. 
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1 Introduction 

VVe have recently shown that the large-order behavior of Green’s functions has generally non- 

trivial energy dependence arising from the Espinosa-Ringwald type anomalous cross section, 

and in turn the anomalous cross section itself can be deduced from the large-order behav- 

ior of forward scattering amplitudes [I]. It was an extension of the observation that in the 

double-well potential problem in quantum mechanics, the vacuum transition rate determines 

the large-order behavior of the vacuum to vacuum transition function (here vacuum means 

one of the perturbative vacua), and in turn the minimum element of the perturbative series 

of the latter reproduces the exponential part of the former which is the imaginary part of the 

vacuum transition function. Recall that all the bubble diagrams for the vacuum transition 

function are real and its imaginary part arises nonperturbatively from the instanton inter- 

actions. We also proposed calculating the anomalous cross section by doing perturbation of 

the Bore1 transform of the forward scattering amplitudes about its instanton- anti-instanton 

singularity. We elaborate this proposition further in this paper, and clarify the relation 

between our proposed method and the energy expansion method in powers of (E/&)2’3 [2]. 

In section 2 we review briefly the relation between large-order behavior and the anomalous 

cross section, and in section 3 we give a new formulation of our proposition in terms of e/n 

expansion, where n is the order of perturbation. We calculate in section 4 the anomalous 

cross sections from the s/n expansion, and compare them to those from the energy expansion. 

Using the formalism in section 3, we argue in section 5 that asymptotically F(cg) E -g In cr.,, 



either grows linearly in cg or approaches to a nonnegative constant. We also show that 

F(cg) > 0 for all energies, and make a speculation on the value of d that appears in the 

asymptotic form. 

2 Large-order behavior and anomalous cross section 

In the weak coupling limit of the standard model of weak interactions the anomalous cross 

section for baryon number violation in two-body scattering is given by [2] 

1 ” 
Q.“, - - 0 ,-:wrs) 

9 

where 

U(z) is given in the form [3], 

Fo(cg) = 1 - U(cg). (2) 

U(Z) = k(3z)j - :(3t)‘- &(3s)!ln(3s)+0 ((3~):)~ (3) 

with 

4 x=4-3-& (4) 
w 

where mh, m, are the Higgs and gauge boson mass respectively. The c,g are defined as 

E 
c=--, and 

a, 
m, 

g=;r;;7 

with E,aw the c.m. energy and the weak coupling respectively. m, is assumed to be 

independent of the weak coupling, and u is a Green function dependent constant of order 
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one. The weak coupling limit is to be understood as: 

g-0 while cg fixed, (6) 

and we always assume this limit in this paper. 

Crutchfield [4] has shown that the large-order behavior - with renormalon effects not 

included - of a Green’s function can be calculated by doing perturbation of its Bore1 trans- 

form around the instanton-anti-instanton singularity. The energy dependence of the Bore1 

transform of a forward scattering amplitudes arises from instanton- induced amplitudes such 

as those in which the initial state particles are attached to the anti-instanton and the final 

states particles to the instanton, or vice versa, in an instanton-anti-instanton background [S]. 

This kind of amplitudes gives precisely the Espinosa-Ringwald type anomalous cross section 

[6]. Thus we are interested in the Bore1 transform of the anomalous cross section 

e(b) = & 1::: c&g) e(i) d (b) 

-1 ( exp -r(l-b)+zU 5 
( >> 

z’dr 
.z 

with z E l/g. 5(b) has a branch-point type singularity at b = 1 [7], 

S(b) --f (1 - b)-(“+I) for b + 1. 

With the perturbative coefficients of forward scattering amplitudes A defined by 

AC.6 g) = c and’,.- 

the coefficients induced by the anomalous cross section are given by 

(7) 

(8) 

(9) 

a, = (n - l)!+, 

3 

(10) 



where c, is defined by 

C(b) = cc,, b”. 
n 

From Eq. (7), (lo), and (ll), we have 

with N s n - 1 + V. 

a, - / 
e-‘(‘-“($))rN& 

For large N, (12) may be evaluated in the saddle point approximation to give 

(11) 

(12) 

=,, v.s F (=(N), N)-f e-~W’).N) (13) 

with 

~(2, N) = z - A’(Z) - Nln I (14) 

and the saddle point z(N) satisfying 

N -- 
z(N) 

1 + &z) = 0, 
r=r(N) 

where 

(15) 

The minimum element of the perturbative series is then given by 

0 al iv _~,-q.(q.rir)+~lno 
(17) 

with &’ satisfying 

& (-F(z(N), N) + N lng) 
N& 

= In (.z( R)g) = 0, (18) 

; 

4 



.- 

and using (15). From (18) 

z(N) =; 

Substituting (19) into (IT), 

-gin (ardy = 1 - U(cg) = Fc(cg). 

(19) 

(20) 

The minimum element of the perturbative series correctly produces the exponential part of 

the anomalous cross section. It is very important to note that in the weak coupling limit , the 

corrections to the saddle point approximation and the pm-exponential Gaussian determinant 

in (13) generate negligible terms, and thus Eq.(20) is exact. The details can be found in the 

appendix. 

3 ; expansion 

Let us now see how we can formulate the problem of the anomalous cross section starting 

from the following two conditions: that the anomalous cross section F can be deduced by 

taking the minimum element of the perturbative series of forward scattering amplitudes, and 

that F is a function of cg only. The latter condition was shown to be true for the final state 

corrections, but not completely for the corrections related to the initial state (81. 

Noting from (12) that (n - l)!c,,-r depends only on N, we define a function 6(N, c) by 

(n - I)!c,+~ s N!c( N, c). (21) 

5 



From the Bore1 singularity in (8) we find 
.* 

qoo, f) = 1 

Now 

angn = (n - l)!&,g” E ,-:wd 

(22) 

(23) 

where 

F(N,g,c) =gN -gNlngN-glne(N,c) (24) 

in the weak coupling limit and using the Stirling’s formula. The maximum of F(N,g,c) 

occurs at N = fl satisfying 

gn = e-wJ.r) 
(25) 

where 

At N = I%‘, 

a - 
H(N,c) s mlnC(N,c). (26) 

F(E,g,c) = gfV-gfilngm-glN H(N,c)dN 
CI) 

= gfi - gElngfi - /,‘” H( N, c)d(gN) (27) 

For F(fi,g,c) to be a function of cg only, we see from (25) and (27) that H(N,c) must be 

a function of c/N only, that is, 

H(N,c) = H (;): (28) 

Defining new variables y,,, y 

ycl=+ y=$ WV 
2 
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we can write (25), (27) as 

cg = y. e-H(m) 

and 

(30) 

F(cg) = ewHcvo) (1 + H(w)) + cg J,” ydy. (31) 

Eq. (30), (31) are our main equations. In our formalism, all the information on the anomalous 

cross section is contained in H(y), and a natural perturbation scheme emerges, namely, the 

expansion of H(y) at y = 0 in powers of y. Since the integral term in (31) is heavily weighted 

toward y = 0, we expect it to be a good approximation scheme. For the consistency of Eq. 

(31), we note that 

iii- = H(Y) o 
Y 

(32) 

should be satisfied. We emphasize that this c/n expansion is different from the energy 

expansion; In our scheme the latter is an intermediate step to find the function H. 

4 F (cg)from z expansion 

In this section, we calculate H(y) perturbatively using the anomalous cross section from the 

energy expansion in one-instanton sector, and then compute F using Eq. (30), (31). Since 

we find it is instructive to calculate H and F order by order, we present the calculations to 

each order up to (c/R)*/~ In(c/n). 

There are two ways to calculate H(y). The first one is to expand the Bore1 transform s(b) 

in (7) around the instanton-anti-instanton singularity. Expanding exp(K(r)) in the integrand 
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in (7) in powers of l/r, and then performing the z-integration exactly, C(b) for a given U(z) 

can be calculated in power series of (1 - b). 0 nce we have C(b), it is straightforward to find 

c, by expanding s(b) about b = 0. A simpler way to find H(y) is from the saddle point 

approximation in (13)-( 15). S ince as shown in the appendix, the saddle point approximation 

is exact in the weak coupling limit, we have 

ln{(n-I)!&-,} = lnN!+In~(N,c) 

= Nlnz(N)-z(N)+K(r(N))-~ln~(s(N),N) 

z(N) = NLnN-N+ilnN+Nln 7 
( > 

+ K(z(N))- z(N)K’(z(N)) 

= lnN!+NIn 4N) 
( ) 

N + K (z(N)) - 4NW’(z(W) (33) 

using the Stirling’s formula and the fact that 3” = l/N in the weak coupling limit. Then 

Taking the derivative of (34) in N, we find 

H(N,c) = &ln@N,c) = -ln(l -[{‘(r(N))) = In y 
( ) 

Solving z(N) in (15) perturbatively in l/N with C/(z) given in (3), we find 

and 

H(Y) = -; (3Y)f + 1(3L# + $j (3~)! ln(3y) + 0 ((3~)~). 

(34) 

(35) 

(36) 

(37) 

: 
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We note that the equivalency of the two methods has been explicitly checked to the order 

(3Y P3 using the leading term of U(z), i.e., 

U(z) = ; (3z)f. 

Note that H(y) in (37) satisfy Eq. (32). This may explain why the leading term of U(z) 

has a power larger than unity. Eq. (32), for example, does not allow a term of order (3~)~/~. 

We now compute F order by order up to (3y)f In (3~). 

4.1 Leading order 

For this case, U(z) is given by (38) and 

H(y) = -$ (3y)i. (39) 

With (39), Eq. (30) is solvable for all energies, and there is a unique solution for a given cg. 

Solving (30) numerically, we plot F in Fig.1. Note that at low energies F and FO matches 

very well, but at high energies there is a sizable difference between them. F gives a better 

high energy behavior. One may wonder why F and F. are different in view of the discussions 

in section 2. The reason is that H(y) in (39) is only part of the series expansion of that 

defined in (35). If we had solved r(N) in (15) and expanded H(y) in (35) to an infinite 

order, the resulting F would have been identical to Fo. In our formalism, there is no point 

of expanding H(y) to an order higher than that of U(z): 
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4.2 Second order 

L’(z) to the second order is given by 

Q) = ; (3t)f - $ (3=)2 ( 

and 

(40) 

H(y) = -; (3y)f + ; (3~)~. (41) 

The function y exp(-H(y)) is plotted in Fig.2, and we see that there is no solution for Eq. 

(30) for cg 2 E,, where E, = 0.53. E, is the upper limit for the applicability of our formalism 

up to the second order. At energies below E, there are two solutions for a given cg. By 

integrating H(y) to obtain In c( N, c), it is easy to check that the solution close to the origin 

is for the true maximum of F(N,g,c) in (24), and the other solution is an artifact of low 

order expansion of H. The F, Fo are given in Fig.3. 

4.3 Third order 

I/(z) and H(y) are given in (3), (37) respectively. The functions H(y), yexp(-H(y)) are 

plotted in Fig.4 for A = -1 and -0.6, and we see that Eq. (30) is solvable for all energies. We 

plot gn and F, FO in Fig.5. Note the large difference between F and FO at high energies for 

x = -0.6. For X = -1, gf? oscillates arobnd unity. It can be checked that for 0 < X 5 0.5, 

gN(cg) is discontinuous, and F not analytic- though continuous-at the discontinuity. For 

example, with X = -0.4 gm is discontinuous at cg % 0.53, and F is not analytic at the 
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energy. For the reasons discussed in next section, this discontinuity is believed to be an 

artifact of the expansion of H(y) to this particular order. 

5 Constraints on U(z), H(y) 

In this section we study various constraints on the functions U(z), H(y). From Eq. (35), we 

see that for a given U(z), H(y) can be written as 

H(y) = lny - lnz(y) 

with z(y) defined implicitly through the relation 

y = 1 - u(z;+ zcqz) 

(42) 

Since c?( N, c) is believed to be a smooth, well-defined function, we also expect H(y) to be 

analytic over the positive real axis. For H(y) to be smooth and well-defined for y > 0, the 

r.h.s. of (43) should be a monotonically increasing function in z, and 

5 

ka 1 - U(z) +0(z) = O”. 

Since (43) should be invertible, we also have a constraint on U(z), 

(44) 

1 - U(z) + zU’(z) > 0 for 2 > 0. (45) 

With the transformation rule given in (42) and (43), H(y’i may be thought as a dual function 

of U(z). It can be shown without difficulty that Eq. (31) with (30) is indeed the inverse 

transform of that defined in (42), (43). 
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Now we note that Eq. (30), (31) are very suggestive of the following asymptotic form 

forF: 

F = const. + c. q (4’3) 

with 

c= 
/ 

co H(Y) 
0 yldy. (47) 

Using unitarity, we show that this is indeed the case if H(y) has a smooth asymptotic limit, 

either finite or infinite. This means that gN also has a smooth asymptotic limit, as can be 

seen from (25). Now unitarity applied to Eq. (31) prohibits H(y) from approaching to -co 

asymptotically, and thus the asymptotic limit of gn should be finite. Now note that z(y) 

defined in (43) is a monotonically increasing function and thus so is 

ln Y - H(Y). (48) 

This, combined with the unitary condition on the asymptotic limit of H(y) mentioned above, 

implies that the integral in (47) is rapidly convergent in the asymptotic region and thus c is 

finite. 

Let us now consider the integral term in (31), 

I(cg) ‘i /,““” ydy 

with ye(cg) defined through (30). Expanding I at cg = co, we have 

(49) 

I(cg) = c+d’. ’ 
G+“’ 

(50) 
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where 

d’ = - lim 
&‘(u’H(y) 

Y-+- 1 - yH’(y) ’ 

Substituting (50) into (31), we find the asymptotic form for F: 

F-td+c.cg 

with 

d = lim 
ewH(Y)H(y) 

esH(‘) t1 + H(y)) - 1 _ yHf(y) v-t- ) 

Note that unitarity requires 

c > 0. 

(51) 

(52) 

(53) 

(54) 

When c = 0, F approaches to a constant. Substituting the asymptotic form of U(s), 

U(z)+l-d-cz (55) 

into (45), we find 

d 2 0. (56) 

Let us now show that 

F(z) > 0 for I > 0. (57) 

First note that 

F(0) = 1, F(m) 2 0. (58) 

To prove (57), let us suppose that at some finite value of z, F(z) 5 0. Then F(z) must have 

a minimum F(m) at a finite 10 satisfying 

F(4 5 0. (59) 
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However this would contradict (45), because 
t 

U’(zo) = 0. (60) 

Thus the conclusion in (57) follows. Of course, this conclusion does not exclude the possibility 

of observing baryon number violation in high energy scatterings, because the physical value 

of g is finite and F(cg) could have a value close to zero. 

Now a speculation on the asymptotic behavior of H(y). We see in Fig.4 that H(y) 

oscillates around zero. It is tempting to assume that H(y) converges to zero asymptotically. 

One may doubt this on the observation that the amplitude between the origin and the first 

node of H(y) is much smaller than that between the first and the second node. However 

this kind of behavior is expected to satisfy the unitarity condition (54); Since the former is 

negative, and the integral in (47) ’ h IS eavily weighted toward the origin, there must be a large 

positive region for H(y). If H(y) ’ m ee converges to zero, the constant d becomes unity d d 

and the anomalous cross section is exponentially suppressed at asymptotic energies. Note 

that then gN also converges to its vacuum value that is unity. If H(y) begins to converge at 

not too large y, higher order terms of H(y) could eventually reveal the symptom. Thus it 

is a very interesting problem to calculate higher order terms of H(y) and see the functional 

behavior. 
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6 Conclusion 

We gave a new formulation of the anomalous cross section from the viewpoint of perturbation 

theory, and showed that order by order our method consistently gives better high energy 

behavior for the anomalous cross section. In our formalism the energy expansion of the 

anomalous cross section is an intermediate step toward the c/n expansion. Using unitarity, 

we argued that under a plausible condition the asymptotic form of F is either linear in 

energy or a nonnegative constant, and that F(cg) > 0 for all energies. A speculation on the 

asymptotic behavior of H(y) was made. 
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Appendix 

Let us consider the integral in (12), 

ewN) = 0+iaO 
-I- dze- 

z+K(r)+Nlnr = dr emF. D im J (61) 

We would like to show that in the weak coupling limit W is exactly given by the saddle point 

approximation in (13). This can be shown conveniently in the Feynman diagram technique 

as employed in the proof that the leading Bore1 singularity of instanton-induced amplitudes 

is determined by the saddle point approximation [7]. To simplify the argument, let us assume 

K(z) is given by the leading term in (3), 

K(r) = ;(ac)f*-f E C&f (62) 

Adding higher order terms should be trivial. Expanding 3 about the saddle point r(N), 

ew = -3(2(N)) - k3’f(s(N))nz- C 3t”)$(N))nn} 
n&3 

= exp 
( 

-3(r( N)) - i In [3”(2( N))I + c ( bubble diagrams)) , (63) 

where n-integration is over the real axis. Let us call the vertex with i number of legs the 

i-th vertex. Now consider a vacuum bubble diagram B with ni number of the i-th vertex, 

and I number of internal lines. Then 

and 

B- 
ni [3(i) (z(N))]“’ 

[3(s) (z(N))j’ 
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= N-ci-a(j-,)ni ll ((i - l)Y (1 - +$&4+(N)-f)“’ 

(1 - s*(N)+) 
I (65) 

Since at the saddle point N = N, 

+q-i N (+> + m O(l), 

we have 

(66) 

B w 0 N-C~-r(i-~h 

> 

. (67) 

However, to survive the weak coupling limit B must be at least of C’( N), which is impossible. 

Therefore, the corrections to the saddle point approximation generates negligible terms in 

the weak coupling limit. Similarly from (66) 

h3*‘(r(N)) + In N = O(1) (68) 

in the weak coupling limit. 
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Figure Captions 

Fig. 1: F and Fo versus 3cg to the leading order. Solid and dashed lines are for F and F,, 

respectively. 

Fig. 2 : The function 3yexp(-H(y)) versus 3y to the second order. Dashed line is for 

3yexp(-H(y)). 

Fig. 3: F and Fo versus 3cg to the second order. Solid and dashed lines are for F and F,, 

respectively. 

Fig. 4 a, 4 b: The functions H(y),3yexp(-H(y)) versus 3y for X = -1 and -0.6 respectively. 

Dashed and dot-dashed lines are for H(y), 3yexp(-H(y)) respectively. 

Fig. 5 a, 5 b: gN, F and Fo versus 3cg to the third order for A = -1 and -0.6 respectively. 

Note the large difference between F and F. at high energies. For X = -1, gm oscillates 

around unity. Dot-dashed lines are for gN, the solid and dotted lines are for F and F. 

respectively. 
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