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Abstract 

We analyse the effects of large-scale inhomogeneities upon the observables of a grav- 
itational lens system, focusing on the issue of whether large-scale structure imperils the 
program to determine the Hubble parameter through measurements of time delays be- 
tween multiple images in lens systems. We find that the leas equation in a spatially 
flat Robertson-Walker cosmology with scalar metric fluctuations is equivalent to that 
for the same lensing system in the absence of fluctuations, but with a different angular 
position of the source relative to the lens axis. Since the absolute position of the source 
is not observable, gravitational lens measurements cannot directly reveal the presence 
of large scale structure. Large-scale perturbations do not modify the functional rela- 
tionship between observable lens parameters and the Hubble parameter, and therefore 
do not seriously affect the determination of Ho from lens time delays. 

Subject Headings: cosmology: large-scale structure of the universe - gravitational lensing 
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.- 1 Introduction 

Gravitational lenses are proving to be both intrinsically fascinating systems and valuable 
astrophysical tools that can help determine t,he fundamental cosmological parameters (for a 
review see Schneider et al. 1992). In principle, lens observations can provide estimates of the 
Hubble parameter Ho and the density parameter R, (Refsdal1964). The consistency between 
gravitational lens estimates and more local determinations of these parameters would also 
constitute additional evidence in favor of the standard Friedmann-Robertson-Walker (FRW) 
cosmological models. 

Measurements of time delays between multiple images in a gravitational lens system 
were first shown by Refsdal (1964) to provide a potentially direct determination of H,,, 
independent of the standard cosmic distance ladder. If the structure of the deflector in a 
gravitational lens system is sufficiently well understood and its redshift known, then the 
relationship between the redshifts of the images and the deflector, and the images’ relative 
angular positions, relative magnifications, and time delays, provide a determination of the 
deflector parameters, such as its mass, as well as of the Hubble parameter. To date, the 
double quasar 0957f561, the first lens system discovered, is the only one for which a time 
delay has been reliably measured (Vanderriest et al. 1989. Lehar et al. 1992, Press et al. 
1992), and a value for Ho derived (Falco et al. 1991, Rhee 1991, Roberts et al. 1991). For this 
system, the estimated errors in Ho are around 10% to 30%, due to uncertainties in the density 
parameter fl,, in the relative angular positions of the images and the deflecting galaxy, and 
especially in the lens model parameters. It is reasonable to expect that measurements of 
time delays in other gravitational lens systems that have simpler structure than 0957+561 
will improve this estimate in the near future, and provide a valuable tool for cosmology. 

The aim of this article is to discuss whether the existence of large-scale structure in the 
Universe compromises the program to use time delay measurements to determine the Hubble 
parameter. In principle, inhomogeneities in the mass distribution along the photon paths 
affect the observables of a gravitational lens system, and if not properly taken into account 
as part of the model for the lens system, they could systematically bias the determination of 
Ho from lens time delays. Among others, Alcock & Anderson 1985, 1986, Watanabe, Sasaki, 
& Tomita 1992, Sasaki 1993, and Seljak 1994 have estimated the effect of departures from a 
FRW cosmology on the time delay between multiple images in a lens system. (Other recent 
studies of light propagation in perturbed FRW cosmologies include Durrer 1994 and Pyne 
and Birkinshaw 1994.) 

There are two effects of large-scale structure on the relation between-lens time delays 
and Ho, First, long-range fluctuations in the gravitational potential near the line of sight 
to a lensed QSO can affect the distance measure, and thus the proportionality between the 
measured lens-induced time delay and Ho. The.time delay is proportional to DdDs/Ddr - 
H;', where Dd and D, are the distances from the observer to the lens deflector and the 
source respectively, and Dd, is the distance between deflector and source. Here, the central 
issue of debate is what distance D is appropriate: the FRW angular-diameter distance, the 
Dyer-Roeder (Dyer and Roeder 1972) distance (for an empty or partially filled beam), or 
some other distance measure which also takes into account the effects of large-scale shear. 
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The second effect of large-scale perturbations is a direct contribution to the lens time delay. 
in addition to that arising from the lens itself. (This direct contribution may be present even 
if the lens-induced delay vanishes in the absence of perturbat,ions: it is therefore conceptuall! 
distinct from the indirect distance-measure effect.) 

This paper is primarily concerned with the latter, direct effect of perturbations on lens 
time delays. Our main conclusion is that. while large-scale inhomogeneities do have an 
effect upon time delays and other observables in a gravitational lens system, they do not 
compromise the program to extract from them the value of Ho. More precisely. the lens 
equation in the presence of scalar metric fluctuations is the same as that describing an 
identical lens system in the absence of fluctuations but with an (unobservably) different 
absolute angular position of the source. It is thus observationally impossible to distinguish 
time delays induced by large-scale structure from intrinsic delays due to the lens itself. The 
important corollary is that, to leading order in the fluctuations, the relationships between 
the observables of the lens system. the Hubble parameter, and the lens model parameters in 
the presence of scalar metric fluctuations are the same as if the inhomogeneities were absent, 
module distance measure effects. We also show that for large-scale> small-amplitude density 
perturbations, the modification of the distance measure from the FRW angular-diameter 
distance is small. 

Taken together, these results imply that large-scale structure does not imperil the pro- 
gram to determine Ho from time delay measurements in gravitational lenses. On the other 
hand, it also implies that one cannot use time delay measurements to detect or constrain 
large-scale inhomogeneities in the Universe, once Ho is determined reliably by other means. 
It was suggested a few years ago (Allen 1989) that time delay measurements in gravitational 
lenses could serve as gravitational wave detectors. The same technique could in principle 
have been extended to probe large-scale inhomogeneities in the matter distribution (Frieman 
& Turner 1989, unpublished). We have argued, however, (Frieman, Harari, & Surpi 1994) 
that it is not observationally possible to distinguish the time delay induced by gravity waves 
(tensor metric fluctuations) from the intrinsic time delay originating in the lens geometry. 
Here we extend this result to scalar metric fluctuations of a FRW spacetime (arising from 
matter-density fluctuations), using the same technique based upon Fermat’s principle in 
curved space-time. Our conclusions are similar to, but our methods differ from, those of 
Frieman, Kaiser, & Turner 1990 (unpublished). Our main result is that the lens equation 
in the presence of scalar metric fluctuations is effectively the same (to the relevant order of 
approximation) as in the absence of fluctuations, but with the lens system having a different 
alignment between observer, deflector, and source. 

2 The Lens Equation and Large-scale Structure 

Consider a thin, stationary gravitational lens, embedded in a spatially-flat FRW cosmology. 
with scalar metric perturbations representing large-scale matter-density fluctuations. We 
assume a weak gravitational field U(z,t) for the deflector in the lens system and small- 
amplitude metric inhomogeneities, and we work to first order in both the large-scale metric 
fluctuation amplitude h,, and the deflector potential U (which implies first order in & 
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.- the deflection angle imprinted on the light rays). We use the longitudinal or conformal- 
Newtonian gauge, and let Greek indices t‘, v run from 0 to 3 while Latin indices i. j run from 
1 to 3; we also set the speed of light c = 1. Defining the conformal time dn-= &/u(t), with 
t the proper time and a(t) the cosmic scale-factor, t,he metric is 

ds’ = a’(n)[(l + 2(C + 4))d$ - (1 - 2(11+ Q))6;jdzidrj] , (1) 

where d(z, 7) completely describes the scalar metric fluctuation for a matter-dominated 
universe, and is equal to a gauge-invariant variable; it satisfies the relativistic generalization 
of the Poisson equation. For R, = l1 the conformal time and scale-factor can be normalized so 
that t = 2$/3H, and a(n) = 2q2/H,,, where Q = 1 and subscript zero indicates the present 
epoch. For the growing mode of adiabatic scalar density fluctuations in a matter-dominated 
(Q, = 1) universe, the metric perturbation amplitude is time-independent, ~(0, I) = &,(I) 
(e.g., Mukhanov et al. 1992). The results below can easily be extended to the non-6at case 
00 # 1. 

Without loss of generality, we can place the observer at the origin of coordinates and the 
r-axis coincident with the lens axis (the line that joins observer and deflector); the deflector 
is located at D = (O,O, rd) and the source at S = (z,, 0, r,), see Figure 1. To avoid confusion 
with redshift, we use r to denote the value of the coordinate z along the lens axis. We 
denote angular positions by two-component vectors, defined by the (I, y) components along 
the photon paths in the plane perpendicular to the lens axis. The indices a, b, running from 
1 to 2, denote these components. Thus we characterize the absolute angular position of the 
source relative to the lens axis by the vector /3 = (X,/T,, 0) (these are the components at the 
source position, z = rs). 

From Eq. (l), if the spatial photon trajectories are known, one can evaluate the conformal 
time of travel by integration along T (the coordinate along the lens axis), 

(2) 

The first three terms in the integrand of Eq. (2) are the geometric contributions to the travel 
time, while the last contains the gravitational potential contributions from the lens deflector 
and large-scale metric perturbations. 

We now determine the photon paths by implementing Fermat’s principle (Blandford & 
Narayan 1986, Kovner 1990, Nityananda and Samuel 1992). We first determine the time of 
travel along null trial paths of the metric (1). Each trial path is composed of two segments, 
one from the source to the deflector plane, and another from the deflector plane to the 
observer, as appropriate for a thin lens. Each segment is a solution of the geodesic equations 
for the metric (1) negEecting the gravitational potential I/ of the deflector (which is taken 
into account through the bending at the deflector), but including the effect of the large-scale 
metric fluctuation 4. We further require that the paths built in this way are null paths of the 
full metric (1) (i.e., they satisfy ds* = 0 and Eq. (2)) but not necessarily geodesics. Along 
them. we evaluate the conformal travel time from source to observer. Fermat’s principle 
states that null geodesics are those null paths for which the arrival time is an extremum. 
Making the conformal travel time an extremum leads to the lens equation, from which the 



relationships among the apparent angular positions of the multiple images, t,heir time delays. 
relative magnifications, and the lens parameters can be read off. 

The affine parameter for the photon geodesics of the metric (l), neglecting the deflector 
gravitational potential c’, may be written as X = r + O(O). To leading order in 0, the 
corresponding geodesic equations may then be integrated to obtain 

dx 
--c++(r) , 
dr 

(recall that z(r) denotes the vector whose (z,y) components give the photon trajectory 
parametrized in terms of the distance along the lens axis) where E denotes an arbitrary 
integration constant. For the scalar growing mode, A is given by 

A’(r) = -2 /’ dr@,a , (4) 

where a comma denotes an ordinary derivative in the FRW metric. Here, we have assumed 
that these trajectories form small angles with the lens axis, and we work to first order in @ 
and in the trajectory angle from the lens axis. That is, we can expand the function in eqn.(4) 
around the lens axis, A”(zb, T) = A’(r)+A>zb(r)+..., where A“(r) E A.“(O, r) is the function 
evaluated along the lens axis. Since A’(r) cx #,., the approximation in eqns.(3) and (4), i.e., 
dropping terms of order A$, corresponds to keeping only first derivatives (gradients) of the 
potential, neglecting terms of order d2#/&r”dxb. This means that we are not including 
the relative focusing due to large-scale fluctuations. For typical gravitational lenses, the 
maximum transverse separation between the image paths is { w D6’ N 10 - 20 kpc, much 
smaller than the wavelengths X 2 10 Mpc of the large-scale perturbations we are interested 
in. Thus, the second derivative terms we are neglecting are suppressed compared to the 
first derivative terms by a factor t/X 6 10m3. We shall use this approximation consistently 
throughout. As a result, the integrand in Eq. (4) is to be evaluated along the lens axis, 
which one can think of as a fiducial or ‘mean’ photon path. 

We now use Eq.(3), with appropriate values for the integration constants E in each seg- 
ment 0 < r < rd and rd < T < rs, to build a zig-zag trajectory that starts at S, is deflected 
at r = rd (the deflector plane), and arrives at the observer at the origin. There is a family 
of trajectories satisfying these focusing conditions, which we choose to parametrize in terms 
of the apparent angular position 0 of the source image relative to the deflector (since this 
is an observable quantity). To evaluate 0, we use again Eq. (3) with appropriate boundary 
conditions to evaluate the photon trajectory z~(T) that arrives directly from the deflector 
to the observer simultaneously with the source image. The apparent angular position of the 
image relative to the deflector as seen by the observer is then given by 

(5) 

The family of trajectories that meet the focusing conditions at the source and the observer, 
parametrized in terms of 8, satisfies 

dx J rd A(r) 
z 

= e- 
0 

T dr + A(T) if r<rd 

dz 
;i;:= 

dr + A(r) if T > rd (‘31 



where rds z rs - rd. The deflection angle imprinted by the lens upon the trajectory at the 
deflector plane (1. = rd), which we denote by a. is given by 

dx dx 
a = ;i; ?=‘y 

-- 
dr cv; (7) 

Using Eq. (6), we find 

(8) 

where the effective misalignment angle Peir has been defined as 

P&=r+PLss 5 (9) 

with 

P l LSS = - I” A(r)dr - ; /,” A(r)dr 
rd 0 

(10) 

Written this way, Eqn. (8) is identical in form to the equation relating the image angular 
position 0 with the source misalignment angle /3 and the deflection a in the absence of 
density fluctuations, but now in terms of an effective misalignment Pee. The geometric 
meaning of peK is apparent from Eqn. (8): it is the source-deflector misalignment angle that 
an observer would infer from lens observations, assuming a homogeneous FRW spacetime, 
i.e.. with no knowledge of large-scale perturbations. .Mternatively, it is the source angular 
position that the observer would measure in the perturbed FRW universe in the limit that 
the lens mass vanishes (a + 0). 

Now we evaluate the conformal time of travel by integrating Eq. (2) along the null 
trajectories of Eq. (6). It is useful to distinguish two contributions to the travel time, the 
geometric, ns, and the potential, Q,. The former is easily evaluated: 

qs=Lrr dT [1+~(f!?)*+~(!!!)2] =;+~~e.(e-zo) (11) 

Here, we have discarded a e-independent term, irrelevant to extremizing the travel time. 
Note that Eq. (11) has the same form as the geometric contribution to the time of travel 
in the absence of density fluctuations. The fluctuations are taken into account, however, 
through the fact that 8 is the apparent angular position of the source image relative to the 
deflector in the presence of the metric perturbation 4. This is a crucial step that allows us 
to establish the equivalence between a lens in the presence of density fluctuations and a lens 
in the absence of fluctuations but with a different source alignment. 

The evaluation of the gravitational potential contribution to the time of travel requires 
more care, so we divide it into two parts, the first due to the large-scale metric fluctuations. 

% GL Lss, and the second due to the potential Ii of the deflector, n,, For the large-scale structure 
contribution, to first order in 4 and 0 we have 

VP LSS = -2 
J r’ dr@(s”, r) , (12) 
cl 
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and the integration is taken along the unperturbed path, i.e., the traject.ories of Eq. (G) with 
Aa = 0. In the integrand, we can expand the metric amplitude as 

d(xa,I^) = o(0.r) + @,.x”(T) + C$a,bz.o(~)~b(?) + , (13) 

where z”(r) is given by integrating (6). In keeping with the approximation used in eqns.(3 
and 4), we neglect terms beyond the first derivative on the RHS of eqn.(I3). Substituting 
(13) into (12), integrating by parts, and retaining only 8”-dependent terms. we find 

% LSs = -0 (J rdddr A- 0 / r*dT ?A ‘d rs > = -TdT, x 0. pLss 3 (14) 

with pLss as defined in Eq. (10). As above, the middle terms in Eq.(14) are to be integrated 
along the fiducial mean path. 

The last contribution to the time of travel, due to the gravitational potential C of the 
deflector, is a local effect in a thin lens. It results in a function $(<), where c is the impact, 
parameter. Integrating eqn.(6), one finds < = z(rd) = rd& Thus, 11 can be expressed in 
terms of the lens mass density projected on the lens plane, C(c) (Schneider, Ehlers Sr Falco 
1992), 

GL- 
‘7, -- 

2 ” J o U dr = -4G d’[’ X(<‘)ln J -G(E) (15) 

Putting together the results from Eqs. (ll), (14) and (15), the total conformal travel 
time for a source image, n = 7s + r$ss + nFL, becomes (up to e-independent terms) 

ce - ‘&,) ’ e - e-do) , (16) 

with P,s as defined in Eq. (10). The main conclusion of this article derives from equation 
(16), which may be thought of as an “equivalence principle” for gravitational lenses. The 
travel time (16) is equivalent to the time of travel in a lens system identical to the one 
considered from the outset, but with no metric perturbations and with a different source 
alignment given by P,,s instead of p. However, as noted above, P,s is precisely the mis- 
alignment angle the observer would infer from lens observations vrithout taking into account 
the large-scale perturbations. Thus, the observer can self-consistently ignore the presence of 
metric perturbations from the outset and obtain the correct time delay. The second term 
in equation (16), which partially originates in the metric fluctuation 4, masquerades as an 
intrinsic geometric effect of the lens. The lens equations, deduced from the condition that 
n be an extremum under variations of 6’ for fixed source position, are the same in the two 
cases, so an observer measuring redshifts, relative angular positions, relative magnifications, 
and time delays, is unable to tell the two situations apart-we will show this explicitly below. 

To apply the results above, we must translate the conformal time delay between two 
images at angular positions 8, and 8,, 

A~ = q7(e,) - 17(e,) = * 2TdrceI - 8,) (e, + 0, - 24,) - (da) - wd) 3 (17) 

into the proper time delay At measured by the observer. We treat the first and second terms 
on the r.h.s. of Eq. (17) separately. The second term, due to the deflector gravitational 



potential, is a purely local effect, which occurs when the photon paths are close to the 
deflector. Thus. the passage from conformal time-delay to proper time-delay at the observer’s 
position is simply given by the factor (1 + zd)> with zd the deflector redshift, which accounts 
for the time dilation caused by the expansion of the Universe as the photons travel from the 
deflector to the observer. The first term in Eq. (li), on the other hand, is translated to the 
observer’s proper time by multiplying it by the present scale factor o, (a good approximation 
since At << H;‘). In order to make contact with observations, it is best to express the 
result in terms of the source and deflector redshifts z,, rd. For the leading order contribution 
to the time delay, we evaluate the relationship between comoving coordinates and redshifts 
in the unperturbed FRW background (see discussion at the end of this section). For a photon 
emitted at coordinate distance r’e at time t = t. and observed at T = 0 at time t = 1, in a 
matter-dominated spatially-flat FRW cosmology (e.g., Schneider et al. 1992), 

2 vGLl=L& 
re = Hoao m a, - (18) 

where the last term defines the angular-diameter distance D, to the event with comoving 
coordinate r.. In terms of angular-diameter distances, the observer’s proper time delay 
between the two images becomes 

At = (1 + Q) - o,r) - (V@dh ,) - wdw 1 (19) 
The appearance of the angular diameter distances Dd, D, and Dd. in this expression does 
not imply the need to independently determine the distance scale to the source and deflector: 
the combination (1 + zd)DdD./D,n should simply be taken as shorthand for 

DdD, 2 (1 - m)(l - G) 
(1 + &,)- = - 

Dds HO e-m 
(20) 

The lens equation. obtained from the requirement that the time of travel for each image be 
an extremum with respect to variations in 0 (Fermat’s principle) is now 

a$ DdD, 
as = Dds (e-m (21) 

This agrees with Eq. (8), since the deflection angle imprinted by the lens is given as a function 
of the lens mass distribution by CY = 3$/a<. 

In the limit that the relative change induced by large-scale structure upon the angular 
separation between multiple images is small (j,BLssl << 10, - @,I), use of the lens equation 
(21) allows the time delay to be written in a simpler form, 

at = Atintrinsic + A~LSS , 
(22) 

where Atintrinsic is the time delay due to the lens geometry evaluated in the absence of metric 
perturbations, and At L’S is the lowest-order effect of the metric perturbations, 

AtLSS = -(I + rd)F pLss (el - 0,) 



Here it suffices t,o evaluate t,he angular separation bet,ween t,he images in the absence of 
metric perturbations. 

In the general case, we cau use the lens equation (21) to rewrite the proper time dela! 
for the image observed at angular position Bi in terms of lens observables as 

wi5 
(1 + :d)Dd = 

-a ax 
2Dd, + G. 6 - s(e;) ? 

where u(0) = $(0)/L& is the dimensionless lens potential. The fact that this expression does 
not contain 13~ss, and is therefore independent of 4, embodies our main conclusion: while it 
is clear, for instance from Eqs. (22) and (23), that large-scale inhomogeneities do influence 
the time delay between multiple images in a gravitational lens, at the same time they affect 
the other lens observables in such a way that they leave no observable tracks of their presence, 
That is, in Eq. (24), lens observations in principle provide the required distance factors and 
the angle LJ;, while modelting of the lens (baaed on an inferred velocity dispersion and the 
observed surface brightness distribution) provides a parametrized determination of k. with 
no reference to large-scale structure. Thus, (24) is just the time delay that an observer with 
no knowledge of large-scale structure would use to constrain his or her lens model. 

The final thread in the argument that large-scale fluctuations do not perturb the relation 
between Ho and measured lens time delays involves the distance measure. In eq.(18) and 
following, we used the angular-diameter distance for the FRW background. Since the matter 
in the universe along the line of sight to a lensed system is clumped, it is not clear that, 
this is the appropriate distance measure to use, and there is a large literature that treats 
this thorny issue. Here, we note that by focusing on the effects of small-amplitude, large- 
scale perturbations, we may essentially sidestep this debate. For linear perturbations, one 
can expand the distance measure around the FRW background (e.g., Sasaki 1993). The 
distance measure perturbation is then proportional to the density perturbation averaged 
over the beam. It is clear that this average is generally less than of order the typical 
perturbation amplitude. Thus, for linear density perturbations, 6p/p < 1, the distance 
measure perturbation is small, 6D/D ,$ 6p/p (< 1. 

3 Conclusion 

The measurement of time delays between multiple images in a gravitational lens system can 
yield an estimate of the Hubble constant, as well as the lens mass or other lens parameters. 
Indeed, once a model for the deflecting object is assumed, knowledge of the redshifts of the 
images and the deflector, of their apparent relative angular positions, relative magnifications, 
and time delay allow a determination of the Hubble constant, since At cx DdDr/Dds x Hi’. 

For the lens equation in the presence of large-scale matter-density fluctuations. the per- 
turbations appear only through the quantity pLss of Eq. (lo), which is simply added to the 
intrinsic lens misalignment p, to give the effective misalignment angle 0,s = p+pLss. Thus. 
matter-density fluctuations have exactly the same observational consequences as a change 

I 
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m the (unobservable) misalignment angle between the source and the lens axis. The stan- 
dard method to determine the Hubble constant Ho proceeds from the lens observables in the 
usual way (Schneider et al. 1992). as if the large-scale inhomogeneities were absent. Indeed. 
the unobservable effective misalignment P,s cancels out from bhe espressions that relate the 
angular separation between the images, 8, - 82, and the time delay & (Cf. eqn.(24)). 

he 
,I, 
re 

Thus, large-scale matter-density fluctuations along the lineof sight do not compromise the 
program to determine the value of the Hubble constant through time-delay measurements 
between multiple images in gravitational lenses. This also implies that lens time delay 
measurements are not likely to provide information about large-scale inhomogeneities in the 
matter distribution. 

It is important to emphasize that this conclusion is limited to the effects of small- 
amplitude (i.e., linear), large-scale density fluctuations. The assumption of linearity enters in 
several places. First, it implied that the scalar potential 4 is time-independent in a spatially 
flat FRW background. While this simplifies the calculation, it is not an essential ingredient. 
More important, it is only for small-amplitude density perturbations that one can justify 
using the angular-diameter distance rather than a perturbed distance measure. This does 
not preclude the possibility that non-linear structure on small scales (e.g. galaxies) could 
significantly perturb the distance measure. The assumption of ‘large scale’ entered when we 
neglected second derivatives of the potential: this restricts the treatment to perturbation 
wavelengths X much larger than the maximum transverse path separation, [ N 10 - 20 kpc. 
Observations of galaxy clustering indicate that fluctuations in the galaxy density are non- 
linear on scales less than several Mpc, so the restriction to linearity already implies that the 
assumption X > [ is satisfied. Finally, we note that our conclusions are valid not only for 
scalar metric perturbations, but also for tensor metric fluctuations (gravitational waves), as 
shown in Frieman. Harari & Surpi 1994. 
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Figure 1: Gravitational lens geometry. The observer is at the origin of coordinates. The 
z-axis coincides with the lens axis. and the t-coordinate is labeled by r to avoid confusioll . - 
with redshift. The source forms an angle fi with respect to the lens axis. 0, and 6$ are 
the apparent angular positions of the images and h-’ is the deflection angle. 
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