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Abstract 

The andante regime of scalar field dynamics in the chaotic inflationary Uni- 
verse is defined as the epoch when the field is rolling moderately slowly down 
its interaction potential, but at such a rate that first-order corrections to the 
slow-roll approximation become important. These conditions should apply to- 
wards the end of inflation as the field approaches the global minimum of the 
potential. Solutions to the Einstein-scalar field equations for the class of power 
law potentials V(4) a 42n are found in this regime in terms of the inverse error 
function. 
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1 Introduction 

A study of the evolution of self-interacting scalar fields in the early Universe is im- 
portant for a number of reasons. Firstly, in addition to offering a possible resolution 
to some of the fundamental problems of the hot big bang model, the inflationary 
scenario provides a causal mechanism for generating adiabatic density perturbations 
[l]. These may produce anisotropies in the cosmic microwave background and act 
as a seed for galaxy formation via gravitational instability. During inflation the Uni- 
verse is dominated by the potential energy V(4) associated with the self-interactions 
of a quantum scalar field 4. If the field is initially displaced from the global mini- 
mum of the potential and the potential is sufficiently flat, the scalar field will evolve 
very slowly towards the true vacuum state. The potential therefore behaves as an 
effective cosmological constant and introduces a negative pressure into the Universe 
that drives the accelerated expansion. Secondly, many natural extensions to Gen- 
eral Relativity may be expressed in terms of Einstein gravity minimally coupled to 
a self-interacting scalar field after a suitable conformal transformation on the metric 
tensor. Two classes of theory that have received much attention in recent years are 
scalar-tensor theories of gravity and higher-order theories, where the gravitational 
lagrangian is an analytic function of the Ricci scalar R. 

However, only a limited number of exact solutions to the isotropic Einstein-scalar 
field equations have been found to date. These have recently been classified by Barrow 
in terms of the potential V = I$#” exp(Ab”), where { Vo, A, M, N} are constants 
[2]. Special cases include V = constant corresponding to exponential expansion, 
power-law inflation from an exponential potential (N = 0, h/l = 1) [3, 5, 6, i] and 
intermediate inflation from a combination of power-law potentials (N < 0, M = 0) 
[4, 81. Solutions corresponding to potentials leading to hybrid inflation [9] have been 
presented in Refs. [lo, 111 and exact solutions have also been found for hyperbolic 
and trigonometric potentials [12, 131. 

Consequently, it is common practice to invoke the slow-roll approximation. This 
assumes that the kinetic energy of the scalar field is negligible relative to its potential 
energy and that the dominant term in the scalar field equation is due to friction 
arising from the expansion of the Universe. The system is therefore reduced to a set 
of coupled, first-order differential equations. The slow-roll approximation is usually 
valid during the initial stages of the inflationary expansion, but as the field rolls 
towards the minimum, the approximation inevitably breaks down at some point. 
Moreover, inflation arises whenever the strong energy condition is violated and this 
does not necessarily require the slow-roll approximation to be valid. 

Therefore, it is important to develop analytical techniques that allow deviations 
from the slow-roll regime to be accounted for and in this paper we discuss how this 
may be achieved. After summarizing the general features of scalar field dynamics in 
Sec. II, we illustrate how corrections to the slow-roll approximation may be included 
in Sec. III and we derive the corresponding field equations. In Sec. 11: these equations 

1 



are solved in parametric form for the class of power law potentials V(d) cc d2” in terms 
of the inverse error function. The rapid increase in the scale factor during inflation 
is naturally explained by using the properties of this function. 

2 Scalar Field Dynamics 

Considerable progress in determining scalar field dynamics has been made recently by 
treating the scalar field as the dynamical variable, since this reduces the field equations 
to a set of first-order, non-linear differential equations [4, 5, 6, 13, 14, 151. The four- 
dimensional action for Einstein gravity minimally coupled to a self-interacting scalar 
field is 

(1) 

where g = detg,,,, ICY = 8?rmF2 and mp is the Plan& mass. We choose units such that _ 
c = fi = 1. If the Universe is spatially isotropic, closed and flat with a world-interval 
ds2 = -N2(t)dt2+e 2a(‘) [ dx2+dy2+dz2] and lapse function N(t), the Arnowitt-Deser- 
Misner (ADM) action is 

s= dtUNe3” 
1 p 

--$$ + 5~2 - w> 
I 

3 (2) 

where U = I d3 x is the comoving volume of the Universe and a dot denotes differenti- 
ation with respect to cosmic time t [lG]. The classical Hamiltonian constraint ‘FI = 0 
implies that the action satisfies the Hamilton-Jacobi equation 

-g (g)‘+ ($$)2+2U2ebV(Q) = 0. (3) 

The classical dynamics of this model is determined by the real, separable solution 

s= --$J+H(O), 

where H(d) satisfies the differential equation [4, 5, G] 

= -+‘V(qq. (5) 

This equation is equivalent to the 00-component of the Einst,ein field equations and 
therefore represents the Friedmann equation. In the conformal gauge !V = 1 the 
momenta conjugate to Q and 4 are p, = dS/do = -6K-*Ue3”& and p4 = aS/& = 
Ue3a& respectively. Substitution of ansatz (4) into these expressions implies that 

H(4) = 6, -$g = 4 
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and it follows that H(4) is the Hubble expansion parameter expressed as a function 
of the scalar field 4. The general solution to the field equations (5) and (6) may be 
expressed in terms of quadrature with respect to this function: 

dqbtH(4’,p) ( aH;$‘p)) -’ , 

where (oi, 4;) are arbitrary constants and p is a parameter associated with each 
solution H($,p) of Eq. (5) [5, 61. 

In principle the general path of the Universe in the minisuperspace (a, 4) is 
uniquely determined once the functional form of H(4) is specified and this suggests 
that it should be be viewed as the fundamental quantity in the analysis. Unfortu- 
nately, however, it is rather difficult to find exact solutions to Eq. (5) that go beyond 
the slow-roll approximation. In view of this it has been suggested that one could 
begin the analysis by specifying H(d) [ll, 171. An alternative approach is to generate 
exact solutions by viewing the expansion parameter as the effective time coordinate 
[18]. The drawback with these approaches, however, is that the exact solutions do 
not necessarily correspond to realistic potentials. Moreover, since it is the potential, 
and not H(4), that is specified by the particle physics of the model, one should aim 
to solve the model by specifying the potential. In the next section we show how an 
approximation to Eq. (5) can be made when the slow-roll approximation is not valid. 

3 Beyond Slow-Roll: The Andante Regime 

It proves convenient to introduce the resealed quantities [4] 

t? 
( ) 

112 
yv ) 

3 w 
UE xz 

0 2 K# (8) 

since Eq. (5) then simplifies to 

H2 = ( H’)2 + u2. (9) 

Deviations from the slow-roll regime have been analyzed previously by Salopek and 
Bond [5]. In order to derive a more accurate solution they subst,ituted the zeroth-order 
approximation H(o) = u into the -right-hand side of Eq. (9): 

H:l) = H(i) [1+ (“‘;y2] (10) 

and further accuracy is achieved by including higher-order terms. 
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However, deviations from the slow-roll approximation may be studied more quan- 
titatively in terms of the dimensionless parameters 

3i* I 2 
E- = 

i* + 9212 
=3 a 

( 1 

and 

2 3 H” 1 3 r/* 
rl E---g= H=E--$ ; 

0 
( 

3 I/* 
FG3$=7- (;) q’, 

(11) 

(12) 

where a prime denotes differentiation with respect to the dimensionless field z [19]. 
For convenience we consider i > 0 in this work, which implies that ,,& = -&HI/H. 
Modulo a constant of proportionality, E is a measure of the field’s kinetic energy 
relative to its total energy, whilst r] measures the field’s acceleration relative to the 
amount of friction acting on it due to the expansion of the Universe. We may therefore 
refer to these quantities as the energy and friction parameters, respectively [12]. The 
slow-roll approximation to scalar field dynamics corresponds to { ]e], Iv], ]c]} << 1 and 
in this regime the energy and friction parameters reduce to the slow-roll parameters 
introduced in Ref. (201. It is straightforward to show that inflation occurs if e < 1 
and the end of inflation can be defined precisely by the condition E = 1 [5, 6, 171. 

Eq. (9) can be written in a very illuminating form by introducing the parameter 

3 = v- -, J 77 VI = - - 1. 
E 6 (13) 

It follows that 

and differentiation of this equation with respect to x implies that 

U’ 1 - = __ 
U 

v+ v’ 
v(v* - 1)’ (15) 

A comparison of Eqs. (13) and (15) implies that the ‘steepness’ of the potential, as 
defined by Turner [21], may now be expressed directly in terms of the energy and 
friction parameters: 

(16) 

The rate of change of steepness in the potential can also be written with these pa- 
rameters and has the form 

-- = 1 = 7711 - 01 + 41 - ml 
3[1 - E/3] . (17 
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Hence, the first slow-roll condition corresponds to u’/u z - E 3 < 1, i.e. H(x) z 

u(x)- 
n- 

We may consider first-order departures from the slow-roll regime by expanding 
the terms in the square bracket of Eq. (16) to first-order in E and r]. With the help 
of Eq. (13) we find 

21’ 1 21’ -z-B+- 
U V v3+* ; 

( ) 
(18) 

and the dymanics of the scalar field in this regime of parameter space is then deter- 
mined by this equation. Eq. (18) may also be derived by expanding the right-hand 
side of Eq. (15) as a geometric progression for v > 1: 

21’ 
-z-;+; 1+v2 

( 
‘+ 

U 
$+... . 

> 
(19) 

It is seen, therefore, that accounting for first-order deviations from the slow-roll regime 
is equivalent to including the first term in this series. 

For a specific choice of potential the solution to Eq. (18) will determine V(X) 
and the functional form for H(x) then follows directly from Eq. (14). Eq. (18) 
describes the dynamics of a scalar field that is evolving moderately slowly down its 
self-interaction potential but at a sufficiently fast rate that the usual slow-roll approx- 
imation is no longer valid. Consequently we refer to this region as the moderately 
slow, or andante, regime of scalar field dynamics *. The slow-roll limit corresponds 
to the regime where the energy and friction parameters are negligible with respect 
to unity and the andante regime applies when these parameters are small but finite. 
Expressions for the amplitudes of the scalar and tensor fluctuations when these latter 
conditions apply have been derived previously by Stewart and Lyth (221. 

An alternative form of Eq. (18) may be derived by viewing the volume of the 
Universe as the effective dynamical variable. Since the volume is a monotonically 
increasing function, it is a suitable choice for the ‘time’ coordinate. It follows from 
the general solution (7) that the number of e-foldings of expansion that occur as the 
scalar field rolls from some initial value xi to a value x is given by 

J 
-1 

lnaocN(x) = ‘dt’H(t’) = -- 
li 

; J; dxH(x’) 
=B 

1 T 
‘=3.; J dx’v(x’). 

Hence, the ratio Z/Zi = (a/ai)3 = exp(3N) re p resents the fractional increase in the 
volume of the universe that occurs when the field rolls from xi to x and it follows 

2Similarly the slow-roll regime could be referred to as the ‘largo’ regime, whilst the epoch after 
inflation that arises when the field undergoes rapid oscillations about the miuimum would represent 
the ‘allegro’ regime. 
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immediately from the definition (13) that 

dx 1 
dz = E’ 

If we now define a new function m(z): 

m(z) f %X(Z), 

it can be shown, after differentiating with respect 
that 

dm 1 
z=x+; 

and 
&m 21’ 

mdr2 = -x- U’ 

We shall show in the following section that Eq. 
potential is given by V(d) cc g!~*“. 

. (21) 

(22) 

to z and substituting in Eq. (18), 

(23) 

(24) 

(24) is exactly solvable when the 

4 Power Law Potentials 

In this section we consider the class of power law potentials 

V(4) = Ju2n, n = constant. (25) 

where X is the coupling constant. In the chaotic inflationary scenario, the andante 
regime should apply during the final stages of the inflationary expansion when the 
scalar field approaches the global minimum of its potential. In this region it is useful 
to consider the general inflationary potential as a truncated Taylor series expanded 
about this minimum. It is therefore a good approximation to assume the potential has 
the power law form (25) with positive-definite n. However, the class of potentials with 
n < 0 is also interesting and potentials of this form may be important if the Universe 
contains a nonvanishing vacuum energy at the present epoch [23). Moreover, they 
arise in generalized scalar-tensor theories when the Brans-Dike parameter is viewed 
as a truncated Taylor series in t.he dilaton field [24]. 

When the potential is a power law, Eq. (24) admits the first integral 

dm 
- = f(c-2nlnm)r’*, 
dz 

where c is an arbitrary constant. For consistency we require m > 0 in Eq. (26), and 
since we assumed i > 0, this implies that both x and z must be negative if n > 0 
and they must be positive if n < 0. However, ]z] provides a measure of the amount 
of inflation that occurs and it varies much more rapidly than the scalar field x. Thus, 
the evolution of the function m is dominated by z, which implies that nz increases as 
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121 increases. Consequently, the negative square root should be chosen when n > 0 
and the positive square root corresponds n < 0 . 

Eq. (26) is solved exactly in terms of the error function: 

f =b+yerf F & -ln(*x) i ( l/2 ) 1 , 

where b is the second integration constant and 

7r 
( > 

112 
Y= 2n ec/(*n) 

(27) 

(28) 

This solution may be derived from the identity d[erf(y)]/dy = (2/,,/$ exp( -y*) [25]. 
Eq. (27) can be inverted to yield 

x(z) = ec/c2n)i exp [- (Ierf (?))*I, (29) 

where Ierf(y) is the inverse error function and the expression for v(z) follows by 
substituting Eqs. (26) and (29) into Eq. (23): 

1 
- -x - &Ierf ?-Z-k . -- 

V .( 1 Y 

Finally we find z(x) by substituting Eq. (30) into Eq. (29): 

(30) 

These solutions exhibit the correct qualitative behaviour that one would expect 
for a scalar field rolling down a polynomial potential. Figures la and lb illustrate 
the behaviour of the functions x(z) and v-l(z) for n = 1, c = 0 and b = -y and 
similar results are found for others choices of these constants. A relatively small 
change in the value of the scalar field in the range -30 5 z < -10 results in a huge 
change in the value of z by a factor w 1O’8o The origin of this behaviour is traced . 
to the properties of the inverse error function. Ierf(y) is an odd function of 3 and is 
undefined for 191 > 1. For positive arguments it is a monotonically increasing function 
with Ierf(0) = 0 and Ierf(1) = 00. However, the slightest deviation of the argument 
from unity results in a sharp decrease in the value of the inverse error function. For 
example, Ierf(1 - 10-looo) = 47.9 and Ierf(1 - lo-“‘) = 15.1. This implies that 
Ierf(y) is a relatively slowly varying function in the range 0 5 y < 1 - 10-‘03 and 
consequently z may change by a factor 10”’ without there being a significant change 
in the value of the scalar field. This feature leads to a rapid growth in the scale factor 
for a very small change in the value of the scalar field. 

7 



In the limit 1x1 > v-l the functional form of the solution (31) implies that the 
scale factor may be expressed directly in terms of the scalar field as 

,-~*/(6n) (32) 

From this expression it follows that Eq. (20) may be employed to evaluate H(x): 

H* = u* 1-k $ n, [ 1 (33) 

and if one expands the right-hand side to first-order, the result is equivalent to Eq. 
(10). Hence, the Salopek-Bond approximation [5] is recovered from the parametric 
solution (29)-( 30) in the limit that v diverges. 

Similar arguments apply when n < 0. Considering negative values of n is equiva- 
lent to Wick rotating y to the imaginary axis, i.e. y + i-y. The error function with 
imaginary argument is related to the imaginary error function, erf(iy) E ierfi(y), and 
it follows that solutions (29) and (30) take the form 

and 

x(z) = ec/(2nJiexp [ (Ierfi (%))I 

1 
-=-x+@j$erfi(z), 
V 

(34) 

(35) 

respectively. Figures 2a and 2b illustrate the evolution of x(z) and v-‘(z). The 
De Sitter solution is the attractor at infinity for these models and the intermediate 
inflationary solution is recovered at large x [8]. Solutions (34) and (35) illustrate 
analytically how these asymptotic solutions are reached. 

5 Conclusion 

In this paper we have considered deviations from the slow-roll approximation by 
including the first-order contributions from the kinetic energy and acceleration of the 
field. This allows a more accurate analysis of scalar field dynamics to be performed. 
Such improvements are expected to be relevant towards the final stages of inflation 
when the scalar field is close to the global minimum of its potential. In view of this we 
considered a class of power law potentials and an exact parametric solution to the field 
equations was found in terms of the inverse error function. This function exhibits some 
very interesting properties and it was shown how the rapid growth in the scale factor 
of the Universe during inflation is naturally explained by employing the properties of 
this function. Since a large increase in the scale factor for a very small change in the 
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value of the scalar field is a generic feature of the inflationary scenario, we conjecture 
that the inverse error function may arise in the general solution to the field equations. 
This possibility is currently under investigation. The solutions presented here should 
improve our understanding of how the Universe moves out of the inflationary epoch 
and into the reheating phase. It will be interesting to investigate whether solutions 
to Eqs. (18) and (24) can be found for other potentials. 

Note: After this work was completed we received a preprint by Liddle et al. that 
also discusses the slow-roll approximation though with a different method of analysis 
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Figure Captions 

Figure 1: (a) A plot of the solution (29) representing the evolution of the scalar field 
x with respect to -log,+ for the quadratic potential u(x) 0: x (n = 1). The numerical 
values of the integration constants are specified to be c = 0 and b = -( 7~‘/2)‘/~. (b) 
The solution (30) for the same choice of parameters as in Figure la. 

Figure 2: (a) Illustrating the solution (34) for the decaying power law potential 
u cx x-l (n = -l), where b = c = 0 and y = (7r/2) ‘I*. (b) The corresponding solution 
(35). The solutions approach the intermediate inflationary solution and the De Sitter 
solution is the attractor at infinity. Hence, there is no exit from inflation for these 
potentials. 
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