
- - 

Fermi National Accelerator Laboratory 

July 14, 1994 hcp-ph/9407294 

FERMILAB-PUB-94/ 196-T 

UICHEP-TH/94-9 

NHCU-HEP-94-17 

CP violation in the cubic coupling of neutral gauge bosons 

Darwin Chang”qb, Wai-Yee Keungcqd and Palash B. Pal” 

a Physics Department, National Tsing-Hua University, Hsinchu, 30043 TAIWAN 
Ir Institute of Physics, Academica Sinica, Nankang, Taipei, TAIWAN 

’ Physics Department, University of Illinois at Chicago, Illinois 60607-7059 
d Fermilab, P.O. Boz 500, Batavia, nlinois 60510 

’ Indian Institute of Astrophysics, Bungalow 56003~, INDIA 

(July 14, 1994) 

Abstract 

We investigate the CP violating form factor of the 222 and 227 ver- 
tices in the pair production of 2” bosons. Useful observables in azimuthal 
distributions are constructed to probe CP nonconservation which may 
originate from these vertices. A simple Two Higgs Model of CP violation 
is used as an illustration. 
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In the near future, with the availability of experimental data at ehergy around the 
electroweak breaking scale, one expects to learn about the structure of the cubic and quartic 
self-interactions of gauge bosons. So far, these interactions have not been directly tested in 
any experiments. 

One exciting possibility is that such interactions will give new insights on CP violation, 
whose physical origin has not been understood with satisfaction yet. The observation of CP 
violation in the kaon system can be explained ‘in various ways within the framework of gauge 
theories, and choosing between them requires additional observation of CP violation. With 
this in mind, it is interesting to look for CP violating signals which may be induced by the 
self-interactions of gauge bosons. We discuss here one such possibility, where the coupling of 
three neutral gauge bosons has a CP violating term in it. We first did a model-independent 
discussion based on the most general form factors. Then a simple model, the two Higgs 
doublet model, is used as an illustration of how the form factors may arise in a realistic CP 
violating theory. 

I. HELICITY AMPLITUDES. 

Such CP-odd term is indeed allowed in general on fundamental grounds, as is obvious 
from the general parametrization of the cubic coupling of gauge bosons [l-3]. Most theoret- 
ical studies along this direction have been done [4-S] only for the process e- e+ ---) I+‘- H’+ . 
The effect of CP violation in e-e+ ---) Z”Z” has not been thoroughly carried through [7] 
and there is a need of detailed analysis. This motivates us to perform a careful model- 
independent study. In Section IV, a simple Two Higgs Model is used as an illustration. 
We follow the helicity formalism for the 2” pair production, e-(a)e+((r) + Z”(X)Z”(~‘), 
outlined in Appendix D of Ref. [3]. H ere we include explicitly effects from the form factors 
f-l and f: which describe the vertex V(P) + Z(q)Z(q’) for out-going on-shell 2” bosons, 
where the incoming particle V is either another Z-boson or a photon: 

2 
ielY~.fzz = ie 

3-m. 
M$ 

’ [ifl’( Pap + PJgp”) + if:‘Pdp(q - q’)p] (V = Z, 7) 9 (1) 

where J = P2. Note that f, term is CP-odd. The fs term, although CP-even, is included 
for completeness. The helicity amplitudes are given by 

M,.n:~.~t( 0) = 44 e2 d~~~~‘fb”‘AA’)( 0) (gd2Ax3Af(@) + c 72(gAnff - f,‘)#, 
4p2 sin2 0 + r-4 

. 

1=1,5 1 
(2) 

The kinematic variables are defined as usual, ye2 = 1 - ,L?’ = 4Mg/s. The amplitude for 
the initial helicity configuration ii = u is highly suppressed due to helicity argument in 
the high energy limit J;; > m,. Therefore we are only interested in the cases for which 
Aa - +-ii) = *l. Th e relevant Wigner d functions appearing in Eq.(2) are listed below: 

df,,,(O) = -d:,,,,(Q) = i$l f cos 0) sin 0, 
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d:.*,(O) = d!,,,,(0) = f(1 f co&), (3) 

d:,,(O) = -d!,,,(O) = -&sin@. 

In the standard electroweak model at the tree level, the elements AA.AI(@) come from the 
t-channel exchange diagram. The electron couplings gAV to the 2” boson are specified by 

1 
g- = gL = 

sin 61\- cos &I. 
(- f + sin2 6u-) , 

1 
g+ = gR = sin 81,. cos @,I- > 

(sin’ e,,.). (4) 

After simplification, we summarize the result for various cases Ax = X - X’ as follows, 

7 
Ax A X’ &A,( 0) A(“) A?‘, ’ AA’ 

52 f + -X/2(1 +P’) 
*II f 0 (l/r)[AbAx(l + p’) - 2~0s 0) +&3 -A;yp2 
fi 0 f (i/y)[hAA(i +pz)-2 ~04 -irp -nxyp2 * 
0 ff -(1/-y2)c0& 0 0 

0 00 -( 2/r2) cos 0 0 0 

(5) 

When the kinematic variables of the two identical 2” boson are interchanged, i.e., 

W’)+-+(KX), O-n-0, @4+~$~, (6) 

the amplitude is unchanged because of the Bose symmetry, if one includes a negative sign 
coming from the azimuthal @ rotation exp(iAalr). 

The usual CP transformation is 

(49-,(-X,-X’), O-M-0, G-+-r++. (7) 

However, we can simplify this CP transformation by incorporating the Bose symmetry in 
Eq.(6). The resulting CP transformation becomes 

(A, A’) + (-A’, -A), 0, 9 unchanged. (8) 

The situation now becomes very similar to our previous analysis [6] in the process e-e+ + 
J,$--Jt’+. 

If CP is conserved (when f,‘s are turned off), we have the following relation for the 
amplitudes in our phase convention: 

Ma&A,A’( 0) = &.a;-AL-x( 0) - (9) 

This equality will be destroyed by the presence of CP violating form factors f, in channels 
(A,X’) = (0,k) or (f,O). 



II. SPIN-DENSITY MATRICES. - 

To avoid studying the complicated event topology in the 4-fermion final configuration 
from the decays of the 2’ pair, we concentrate our attention to the decay of a single 2”. 
This strategy is equivalent to the study of the density matrix for one of the 2” bosons. 

We only look at the 2” boson at the scattering angle 0 and temporarily ignore the 
recoiling one! which is considered as produced at the scattering angle r - 0. The polar 
angle $J and the azimuthal angle + are defined in the 2” rest frame for the lepton C- in the 
decay 2” -+ P! +. We define the axes of the rest frame of 2” as follows. The z-axis is along 
the direction of motion of 2” in the e-e+ c.m. frame. The z-axis lies on the reaction plane 
and toward the direction where 0 increases. The y-axis is given by the right-hand rule. 

The angular distribution of -!? from the 2’ -+ .P4!+ decay is specified by the the spin 
density matrix Pr,j of the 2” boson. 

p( O)t,j = N(a)-' C MU,b;*,Af( @)"z,@;j,,t( @) * (10) 

O.B,A 

Here n/ is the normalization such that Trp = 1. p is hermitian by definition. The normalized 
distribution for P is given by 

dlv( e- , 0) 
d+ dcos + 

l+ hc~s+)~p(O)++ + (1 - hcos$~)~p(@)-- + 2p(@)~~sin~ti 

-2d%e P(@)+~“( 1 + h cos $) sin $ cos 4 + 2fiIm p( O)+,“( 1 + h cos I/J)) sin $ sin 4 

-2v”SRe p(O)-,o( 1 - h cos +) sin $J cos 4 - 2fiIm p( O)-.c( 1 - h cos $J) sin $ sin 4 

f2R.e p(O)+,- (1 - cos’ $) cos 24 - 21m p(O)+,- (1 - cos’ $) sin 241 . 

The two contributions come from helicity configurations l,(h = 1) and -$(h = -l)! with 
different weights, 

W- = gi/(gi + gj!o , w+ = &/(s2 + d> 7 w- + w+ = 1 - (12) 

In our present phase convention, if CP were conserved (i.e. wvhen fJ = 0), we would have 
the following identities. 

p(@)xx = p(” - @)-x.4 , (13) 

based on the transformation in Eq.(7). S imilar expressions were first noticed in Ref. [4] on 
the process e-e+ --t W-W+ and in Ref. [8] on the process e-e* -+ tt. 

III. CP VIOLATING OBSERVABLES 

Under CP conjugation, we change variables 0 - r - 0, ~,LJ + x - $J, and 4 -) -d. 
The distribution in Eq.(ll) is transformed into itself if we assume CP conservation as in 
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Eq.( 13). In the presence of the CP-violating term f4, our analysis of CP-violating obsevables 
in Ref. [6] can be easily applied here. 

However, as the coupling of &Z” is almost purely axial-vectorial, there is approximate 
charge symmetry C, which assigns this vertex even C-parity, with the f4 term also even as 
well. Any C-odd observable wilI be suppressed. 

We find out that the most prominent effect of CP nonconservation resides in the elements 
(+, -) or (-, +) of the spin-density matrix, ’ 

Imp(O)+,-. - Imp(7r - O)-,+ = J$$ C (gAa)’ (Au) y’(P + 0”) sin’ O~~Jfn;oY~{~~ , e ACEi 

(14) 
This particular location in the density matrix produces the azimuthal dependence in the 
form of sin 24. If we integrate $J and 4 over quadrants, we expect that CP nonconservation 
appears in the folded asymmetry, d”(O), which is 

[dN(k’, 0, II-III) + dN(l, x - O,I+III)] - [dN(t, 0, II+IV) + dN(& K - 0, II+IV)] 
[dN(l, 0, I+II+III+IV) + dN(& x - 0, I+II+III+IV)J * (15) 

Here the range of the azimuthal angle has been divided into four usual quadrants X,11,111 
and IV. It turns out that this observable A” is C-even and thus it is not subjected to the 
suppression from the approximate C symmetry. 

We can show that 

d”(O) = -i(Imp(B)+,- - Imp(x - O)-,+) . 

In Fig. 1, we show the CP-odd asymmetry in the density matrix versus the scattering angle 
0 per unit of sma.lI Re f‘;’ at various energies, ,,J$ = 200, 250, and 300 GeV. Observation 
of this asymmetry is a genuine signal CP violation, as it is not faked by the final state 
interaction. 

It is interesting to note that we do not need to know the charge of 1 as the events are 
collected over quadrants I+111 or II+IV. We can use this fact to apply our formula even to 
the larger sample of jet events from the 2” pair without tagging the charges of the primary 
partons. 0 ur f ormalism can be easily translated for the process qtj - Z”Z” in the hadron 
collider. 

IV. TWO HIGGS MODEL 

Cubic couplings among neutral gauge bosons do not appear at the tree level in the 
standard model gauge group of sum x U(l),-. But they can be induced at the loop level. 
In the minimal standard model with just one Higgs doublet, such amplitudes do not have 
any CP violation even at the one-loop level, as will be clear from our analysis below. We 
therefore perform the calculation of CP violating effects in these trilinear couplings when 
there are two Higgs doublets [lo] present in the model, which is a popular model in its 
own right. Among the possibilities which open up with the two doublets are: spontaneous 
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CP violation [ll], incorporation of the Peccei-Quinn symmetry [12] to solve the strong CP 
problem, and incorporation of supersymmetry. 

At the one-loop level, cubic coupling obviously comes from triangle diagrams. If the 
internal lines are fermions, no CP violating effect is generated at the one-loop level, because 
the Z or photon couplings with fermions are flavor diagonal and CP conserving. There 
are also triangle diagrams with internal W lines. In the Feynman-t’Hooft gauge, it can 
be shown that they do not contribute to the form factors as shown in Eq. (1). Thus, for 
our purpose, we need to calculate only the diagrams involving Higgs bosons in the loop. 
Obviously, such diagrams can never involve the antisymmetric E-symbol, so one can only 
obtain a non-zero f, ‘. This term has been shown to be non-zero for WWZ coupling at the 
one-loop level for the model at hand [13]. W e want to extend their calculation for the case 
of V'ZZ couplings, where V' can be either an off-shell Z-boson or photon, and the other 
two Z-bosons are assumed to be on-shell. 

To set up the notation, we call the two Higgs multiplets to be (PI and 502. Usually, 
they are assumed to have special transformation properties with respect to some discrete 
symmetries in order to avoid flavor changing neutral currents at the tree level. We assume 
that such discrete symmetries are not imposed on the soft terms in the Higgs potential, 
otherwise CP violation would be eliminated in the Higgs sector of the model. Without any 
loss of generality, we can take the vacuum expectation values (VEVs) of ‘pl and (p2 to be 
vl exp(i29) and 212. One can then define a linear combination cp of the two multiplets which 

hasaVEVv = $21 v, + v2, and the orthogonal one, cp’, has a vanishing VEV. The components 
of these doublets can then be written as 

‘p= ( $(v + 41 + 22) w+ * )j ~~=(~tm’f:im,))~ (17) 

The fields shown here are complex combinations of the fields in the (pI-‘pz basis. The compo- 
nents w* and t are eaten up by the gauge bosons and disappear from the physical spectrum. 
There are four physical spinless bosons in the model. One of them is the complex field H+. 
The other three are, in general, superpositions of the fields $1, $2, and 43. We define the 
eigenstates by H,A, where 

4a = 5 Oa.d?~ , (18) 
.I=! 

0 being an orthogonal mixing matrix. 
The coupling of these neutral Higgs bosons with the Z-boson looks very simple in the 

4-b asis: 

Using Eq. (18), ‘t 1 is trivial to rewrite these Feynman rules in terms of the mass eigenstates 
of neutral Higgs bosons: 
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-- .-- _~ . .~~~-- -- _~-- 

Vertex I Fevnman rule 

H.4 (PI -2 z(q) &OdP + du 

HA(P) -% b(q) - 2cr,a8,1, (02.403E - G303A)(P + d&i 

(20) 

Using the orthogonality of the mixing matrix 0, we can write 

02.4033 - 02B03.4 = c %lBCOIC , (21) 
c 

which simplifies the form of the Z-coupling with two physical Higgs bosons. Notice that the 
Z-coupling between two physical Higgs bosons is necessarily flavor-changing, which opens 
up the possibility for CP violation at one-loop level. For the reason that the photon field 
preserves flavors at the tree level, there is no f: form factor at the one-loop calculation in 
the Two Higgs Model. 

These cubic couplings appear in the triangle diagrams shown in Fig. 2. Notice that, in 
the figure, the Higgs boson lines have been denoted with subscripts ;,j, k, which run from 0 
to 3, where H,, is identified with the unphysical Higgs t which appears as intermediate lines 
since we adopt the Feynman-t’Hooft gauge. A straightforward calculation now shows that 
the form-factor ff from these diagrams can be written in the form 

1 e 
> 

3 
eff = -- 

128~~ sin 6~ cos Bjf- (22) 

Here, X,jk is a factor coming from vertices which will be discussed below, and the loop 
integral I( M,, Mj, 1c.ik) is equal to: 

2! JJ w)Mj - xyP2 - iO+ dXdY, (23) 
where the positive Feynman parameters x and y are restricted within the integration domain 
z+y~landalsow=l - x - y. A is a cut-off which disappears in the expression for ff, as 
we will show below. When one of the particles denoted by i, j or k is the unphysical Higgs 
boson, the corresponding mass should be interpreted to be Mz, because the propagator of 
the unphysical Higgs boson has a pole for this value of mass in the gauge we use. For future 
purposes, notice that 

I(Mi,Mj,Mk) =L: -I(Mj,Mi,Mk), (24) 

which follows from the definition in Eq. (23). 
Let us now discuss the factor X+. First, consider the case when all the Higgs bosons in 

the loop are physical ones. Due to the antisymmetry of the coupling of H.AHBZ,‘ from Eq. 
(20), all the Higgs bosons in the loop must be different. If, following the direction of the 
momentum arrow in Fig. 2, we encounter the mass eigenstates HI, H2 and H3 in that order, 
it is easy to see that the factor coming from the vertices is 

x123 = 0,10120*3 E A. (25) 

7 



Obviously, there are three such diagrams, and their total contribution is’ 

x {I(M,, M2, A&) + qf2, m, M) + w43, M*, WI * (26) 

On the other hand, if we encounter the eigenstates in the reverse order, we obtain a factor 
--A from the vertices. However, this term will be multiplied by 

By virtue of Eq. (24), the product of the two is the same as the contribution of Eq. (26). 
Next we consider diagrams where one of the internal lines is the unphysical neutral Higgs 

boson z. Note that since there is no coupling of the Z-boson with two unphysical Higgs 
bosons, at most one internal line can be the unphysical Higgs boson. In this case, one can 
derive that 

x --A -A 12u - 23U - 310 = - A, (27) 

and the same value for any even permutation of subscripts, but opposite sign for an odd 
permutation. Therefore, the last factor of summation in Eq. (22) becomes 

2A{ + 1(&M2,&) + I(hf;!,M3,Ml) + I(M3,hMZ) 

1 .J.h 
- I(M,,M2,Mz) - I(M2,MJwz) - ~(~dK,&) 
- 1(fkfZ,Ml,4f2) - I(MZ,M2,M3) - I(MZ,M3,Ml) 

+~(~Z,M,,jM3)+I(~Z,M2rM,)+I(MZ,IMO,M2)}. c28) 

One can see that the cutoff A dependence is cancelled by pairs in Eq. (28). We also note 
that ff remains finite when P2 = Mi as noted in Ref. [3]. 

Fig. 3 shows the extremely tiny size (- 10sG ) of ff for typical choices of parameters. We 
only use this Two Higgs Model as an illustration how CP violation occurs even in a purely 
bosonic sector. 

V. CONCLUSION 

At LEP II, the Z”Z” production cross-section is about 1 pb (See Fig. 4) for 4 = 200 GeV 
which can provide about 500 .Z?‘Z” pairs per year for the design luminosity of 5 + 10’” crne2 
S-‘. As we have shown in the paper, it is possible to test CP symmetry in purely charged 
leptonic, purely hadronic or mixed channels of the two 2” boson decays. We may require 
that at least one of the 2’ decays into the charged leptons in order to avoid backgrounds from 
the w’+l+‘- production. The branching ratio of a single 2” decaying into all charged leptonic 
channels (e+e- + p+p- + r+r-) is about 10%. While the event statistics probably will not 
be large enough to test some of the popular alternative gauge models of CP violation, it is 
nevertheless sufficient to provide nontrivial constraints on the CP-odd form factors in the 
three gauge boson couplings. 

The research of WYK was supported in part by the U.S. Department of Energy. 

8 



REFERENCES 

(11 K. J. Kim, Y-S. Tsai, Phys. Rev. D 7, 3710 (1973) . 
!2) K.J.F. Gaemers and G.J. Gounaris, Z. Phys. Cl, 259 (1979). 
[3) K. Hagiwara, R. D. Peccei, D. Zeppenfeld, and K. Hikasa, Nucl. Phys. B282,253 (1987). 
(41 G. Gounaris, D. Schildknecht, and F. M. Renard, Phys. Lett. B263,291 (1991). 
(51 M. B. Gavela, F. Iddir, A. Le Y aouanc, L. Oliver, 0. Pdne, and J. C. Raynal, Phys. 

Rev. D 39, 1870 (1989); A. B&I, E. Masse, and A, De Rtijula, Nucl. Phys. 355, 549 
(1991). 

[6] D. Chang, W.-Y. Keung, and I. Phillips, Phys. Rev. D 48, 4045 (1993). 
(71 M. Zralek and P. Ch rrs ova, ’ t Acta Phys. Pol. 20, 739 (1989). 
[8] D. Chang, W.-Y. Keung, and I. PhiIIips, Nucl. Phys. B408, 286 (1993). 
[9] D. Chang, W.-Y. Keung, and I. Phillips, Phys. Rev. D 48, 3225 (1993). 

(lo] A. MCndez and A. Pomarol, Phys. Lett. B272, 313 (1991). 
[ll] T. D. Lee, Phys. Rept. 9, 143 (1974). 
(121 R. D. Peccei, H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977). 
[13] X. G. He, J. P. Ma, B. H. J. M c e K II ar, Phys. Lett. B304, 285 (1993). 

FIGURE CAPTIONS 

Fig. 1 The CP-odd asymmetry in the density matrix versus the scattering angle 0 per unit 
of Re f: at various energies, J;j = 200, 250, and 300 GeV. 

Fig. 2 Triangle diagrams with internal scalar lines which give rise to the 2’22 coupling. 

Fig. 3 The size of fT/O,rO 0. r2 13 versus the lightest Higgs mass at 4 = 200 GeV, for the 
case .&f2=150 GeV, and M? = 250 GeV. The real and the imaginary parts are given 
by the solid and the dashed lines respectively. 

Fig. 4 Differential cross-section da/dcos 0 for e-e+ + 2’2” at various energies &= 200 
(solid), 250 (dashed), and 300 GeV (dased-dotted), predicted by the Standard Model. 
The horizontal lines indicate the level of the corresponding total cross-sections. 
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