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1 Introduction 

An important motivation for the development of the quantum cosmology programme 
has been to explain the initial conditions for the emergence of the Universe as a clas- 
sical outcome. In principle one must find the form of the wave function \k satisfying 
the Wheeler-Dewitt equation [l]. This equation describes the annihilation of the 
wave function by the Hamiltonian operator and since it admits an infinite number 
of solutions, one must also choose the boundary conditions in order to specify the 
wave function uniquely. Such boundary conditions must be viewed as an additional 
physical law since, by definition, there is nothing external to the Universe. In practice 
one assumes, at least implicitly, that a finite subset of all possible boundary condi- 
tions is favoured by cosmological observations, in the sense that the wave functions 
corresponding to such boundary conditions predict outcomes which are compatible 
with observations. For example, if one believes in the inflationary scenario, the re- 
quirement that. sufficient inflation occurred in order to solve the assorted problems 
of the standard big bang model can, in principle, restrict the number of plausible 
boundary conditions. 

Among the set of all possible choices the tunneling from nothing boundary condi- 
tion proposed by Linde [2] and Vilenkin [3] and the no-boundary boundary condition 
proposed by Hartle and Hawking [4] have been the subject of intense discussion. Given 
the non-uniqueness of such conditions, the question arises as to the consequences of 
choosing different boundary conditions for the resulting wave function of the Uni- 
verse and its corresponding probability measures. An important study in this regard 
is due to Vilenkin [5], who considered the effects of the above boundary conditions 
within the context of Einstein gravity minimally coupled to a self-interacting scalar 
field. He restricted his analysis to the minisuperspace corresponding to the spatially 
closed, isotropic and homogeneous Friedmann-Lemaitre-Robertson-Walker (FLRW) 
Universe and showed that the tunneling wave function predicts initial states that are 
likely to lead to sufficient inflation, whereas the Hartle-Hawking wave function does 
not. 

It is sometimes argued that this result indicates that observations favour the 
tunneling as opposed to the no-boundary boundary condition. However, the precise 
relation between the boundary conditions and the observations is determined by the 
specific models employed and since such models always involve idealisations in the 
form of a set of simplifying assumptions, it follows that the above conclusion cannot 
be made a ptiori. Indeed it only makes sense in general if the correspondence between 
the observations and the boundary conditions is robust under physically motivated 
perturbations to the underlying quantum cosmological model. 

Consequently, it is important to consider the ‘stability’ of the above conclusions. 
In particular, are the conclusions robust under higher-order perturbations to the 
Einstein-Hilbert action? Quadratic and higher-order terms in the Riemann curvature 
tensor and its traces appear in the low-energy limit of superstrings [6] and they also 
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arise when the usual perturbation expansion is applied to General Relativity [7, 81. 
Such terms diverge as the initial singularity is approached, but can in principle be 
eliminated if higher-order corrections are included in the action. In four-dimensional 
space-times the Hirzebrucht signature and Euler number imply that the most general, 
four-dimensional gravitational action to quadratic order is 

s= J 8% J-9 & [ R - -Y Cap76 Cap+ + cl R2 ] , (1) 
where R is the Ricci curvature scalar of the space-time with metric tensor g,,V, g = 
det gpvI Cap76 is the Weyl tensor, ~~ is the gravitational coupling constant and ~1 
and y are coupling constants of dimension (length) 2. The action simplifies further 
for spatially homogeneous and isotropic four-geometries, since the conformal flatness 
of these space-times implies that the Weyl tensor vanishes. The effects of including 
quadratic terms have been investigated in Refs. [9, 10, 11). In particular MijiC et al 
[ll] studied the effects of such perturbations on Vilenkin’s result [5] and found that 
those results remain robust in the sense that the inflationary scenario still favours the 
tunneling boundary condition in the presence of quadratic terms in the action. On 
the other hand Biswas and Guha have recently arrived at the opposite conclusion [9]. 

The renormalisation of higher loop contributions introduces terms into the effec- 
tive action that are higher than quadratic order. Consequently it is important to 
also study the effects of these additional terms. In this paper we shall investigate 
what happens to the wave function if an R3-contribution is present. By employing 
the conformal equivalence of higher-order gravity theories with Einstein gravity cou- 
pled to matter fields, we argue that this term represents a more general perturbation 
to the Einstein-Hilbert action than the R2-correction, at least within the context of 
four-dimensional FLRW space-times. We then consider the conditional probability 
that an inflationary epoch of sufficient duration can occur. We estimate how the 
qualitative behaviour of this quantity changes when higher-order perturbations to 
the action are included. Our main result is that for the R3-theory there exists a fi- 
nite region of parameter space in which neither of the boundary conditions discussed 
above predict an epoch of inflationary expansion that leads to the observed Universe. 
We use (dimensionless) Planckian units defined by tZ = c = G = 1 throughout and 
define tc2 = 87r. 

2 Higher-Order Lagrangians as Einstein Gravity 
plus Matter 

The wave function of the Universe in higher-order Lagrangian theories can be deter- 
mined in one of two ways. It is well known that theories with a Lagrangian given by 
a differentiable function of the Ricci curvature scalar are conformally equivalent to 
Einstein gravity with a matter sector containing a minimally coupled, self-interacting 
scalar field [12, 131. Th e p recise form of the self-interaction is uniquely determined 
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by the higher-derivative metric terms in the field equations. It follows that one can 
start either from the original action or the conformal action and derive the corre- 
sponding Wheeler-Dewitt equation [14]. One takes the related Lagrangian as the 
defining feature of the theory and then applies the canonical quantisation rules. The 
advantage of the conformal transformation is that it allows the known results from 
Einstein gravity to be carried over to the higher-order examples and we shall follow 
such an approach in this paper. 

Consider the general, D-dimensional, vacuum theory 

s= J dDx J-SD [ f(R) 1 9 (2) 
where the Lagrangian f(R) is some arbitrary differentiable function of the Ricci cur- 
vature scalar satisfying {f(R), df(R)/dR} > 0 and go is the determinant of the 
D-dimensional Space-time metric go pV. If we perform the conformal transformation 
P31 

. QDpw = n2gDpv 
n2 = br2 ,))2’(D-2) , 

(3) 

and define a new scalar field 

K$E (J&)“‘ln[ 2K2(F)] , 

the conformally transformed action takes the Einstein-Hilbert form 

s=jdl”G [ &f(fqy-U(J)] , 
where the self-interaction potential is given by 

)-D”D-2’ (R(4) df[ff)l _ fjR(Q)]) . 

(4 

(5) 

(6) 

Definition (4) yields a correspondence between the values of the Ricci curvature 
scalar R and the values of the scalar field 4. We shall consider the quadratic and 
cubic Lagrangians 

f2W = &(R+d2) (7) 

f3W = &(R+cl R2+c2R3), (8) 

in four dimensions, where the parameters ~1 and ~2 have dimensions (length)2 and 
(length)4 respectively before the introduction of Planckian units. The corresponding 
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potentials for positive ~1 and ~2 are given by [ll, 151: 

v,,(4) = & [ 1 - exp(-*6J)12 

v,,(6) = 27>f2 exp(-2@KJ)[ -l+$[ l-exp(mKi)] 

+ (lI%$[ l-exp(fifcJ)])3’2] , 

and are semi-positive definite for all values of 4. 

Figures la & lb 

In the classical R3-theory the requirement that the inflationary epoch lasts suffi- 
ciently long implies that the coupling constants must satisfy 1621 < er2 [15]. Moreover, 
the observed isotropy of the cosmic microwave background radiation requires that 
El Rz 10” [ll]. In view of these constraints we specify er = 10” in the subsequent 
numerical calculations. Figures la and lb illustrate the behaviour of the potentials 
(9) and (10) for er M 10” and ~2 x 1020. The effect of decreasing the value of the 
parameter ~1 is to increase the height of the plateau and the relative maximum of the 
potentials in the quadratic and cubic cases respectively. This reflects the fact that de- 
creasing this parameter is equivalent to increasing the energy scales involved. In this 
sense there exists no continuous transformation from an R2-theory to the ordinary 
Einstein-Hilbert action as this parameter approaches zero. In the neighbourhood of 
the .origin of 4 corresponding to smaller values of R the quadratic term in the action 
dominates and the potentials in this region are equivalent. This can be seen bi ex- 
panding the last of the three terms in the square brackets of Eq. (10). The first-order 
contribution cancels the remaining terms in U~J and the second-order term reduces 
the form of Urj to that of Urz. Hence the two potentials are effectively identical if the 
third- and higher-order terms in the expansion can be neglected. It is straightforward 
to show that this is a consistent approximation if 

Ic 4 << K &limit = filn($) . (11) 

For polynomial Lagrangians with f(R) = ( C;=i ek-1 R"> / 2~~, the detailed form 
of the corresponding potential U(J) is extremely complicated and generally not ex- 
pressible in an analytically closed form. Nevertheless, one can determine the qualita- 
tive behaviour of the potential at small and large 4. Close to the origin the quadratic 
term in the action again dominates and the potential in this region is therefore similar 
to Eq. (9). The asymptotic behaviour at infinity, however, depends critically upon 
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the combination of the highest degree n of the polynomial and the dimensionality D 
of the space-time [13]. More precisely, for D > 2n the potential is unbounded from 
above, for D = 2n it flatens into a plateau and for D < 2n the potential has an expo- 
nentially decaying tail [15]. In particular, if D < 2n the effective scalar field potential 
U(J) is qualitatively equivalent to the cubic potential (10). As a result, when D = 4 
the qualitative behaviour of U(4) d oes not change relative to the cubic case as terms 
with n > 3 are considered, although the relative position of the maximum of U(i) 
will be n-dependent. This implies that the n = 2 contribution is rather special in 
four dimensions, whereas the R3-term is in fact a more generic perturbation. Thus, 
it is instructive to consider this case further. 

3 Behaviour of the Wave Function 

Within the context of the spatially closed. FLRW minisuperspace, the Wheeler- 
Dewitt equation derived from theory (5) has been solved for an arbitrary potential, 
subject to the condition that the momentum operator for the scalar field can be ne- 
glected [2, 31. This is self-consistent if IdV/dc# << max{]V], ue2}, where a represents 
the cosmological scale factor and 

VE yu CpE 
J- 

$8. (12) 

The wave functions satisfying the quantum tunneling boundary condition (@r) 
and the no-boundary proposal (rk~~) take the forms [5] 

QT = (1 -&q-‘/4 exp 
[ 
(1 -g v)3/2 - 1 

3v 1 
*NB = (1 -&q-'/4 exp 

1 - (1 - u2 V)3/2 
3v I 

(13) 

(14) 

in the classically forbidden (Euclidean signature) region defined by u2 V < 1, and 

*T = e 

*NB 

exp [-$I exp [-i (u2v3;1)3’2] (15) 

(16) 

in the classically allowed (Lorentzian signature) region u2 V > 1. SubsJituting for 
V(4) from the potentials of the quadratic and cubic Lagrangians of Section 2, it can 
readily be seen that the wave functions corresponding to the quadratic and cubic 
theories have very different types of behaviour, at least for large 4. In the quadratic 
case both qr and \k,vB remain bounded. However, for the cubic case QNB becomes 
divergent in the classically allowed region whilst *T remains regular. In. this sense 
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then the qualitative behaviour of the wave function satisfying the no-boundary pro- 
posal is fragile with respect to cubic perturbations to the action. This is significant 
because often the quadratic corrections to the action are taken as representative of 
higher-order perturbations. 

To proceed it is important to ensure that for the regimes under consideration the 
conformal transformation (3) remains non-singular. This is the case if the condition 
dfW/dR # 0 is valid for all values of R. The conformal transformation is singular 
at the point 

(17) 

in the R2-theory and at the point 

R=-&/-I (18) 

for the R3-theory. Since ~1 and ~2 are taken to’ be positive, these conditions imply 
that in both cases the problematic values of R lie in the region R < 0. However, for 
a classical, spatially closed FLRW model, the Ricci curvature scalar is given by 

where q E -Ca/ci2 defines the deceleration parameter and a dot denotes differentia- 
tion with respect to cosmic proper time. Now if, as is generally assumed, the Universe 
tunnels into the Lorentzian region in an inflationary phase (q < 0), it follows that 
R will be positive-definite. Thus, the conformal transformation is self-consistent in 
these theories. 

4 Interpretation of the Wave Function 

In the previous section we saw that the wave functions corresponding to the tunneling 
and the Hartle-Hawking boundary conditions have qualitatively different modes of 
behaviour for the quadratic and cubic theories. To see what predictive effects such 
changes might have, we employ the notion of a probability density p as is usually done. 
For the cases of the tunneling and the no boundary boundary conditions respectively, 
p takes the form [5] 

PTb#> = 

PNB(%~) = CNB exp 

. 
(20) 

(21) 



on surfaces of constant scale factor in the classically allowed region of minisuperspace, 
where the normalisation constants CT and CNB are given by 

CT-l = J 2 

V(O)>0 
d4 exp -- I 1 3wJ) 

CNB 
-1 = J 2 

vt4wJ 
d# exp - 1 1 3V(4) * 

Since p(4) is usually not normalisable, the common practice is to employ the 
notion of a conditional probability [14]. 0 ne argues that the initial values of the 
scalar field must lie in the range &in < di < 4 p. The lower limit &in follows from 
the requirement that the Universe expands at least until the formation of large-scale 
structure and the upper bound follows from the condition that V(&p) z 1, since 
the minisuperspace approximation is unlikely to be valid when the potential energy 
of the matter sector exceeds the Planck density. However, in a chaotic inflationary 
scenario there is a critical value of the scalar field, &I, and sufficient inflation occurs 
if $i > 4sJUr but not for & < 4Ju,. We must therefore calculate the conditional 
probability that sufficient inflation occurs given that 4i is bounded by 4min and 4p. 
This quantity takes the form [14] 

. 

‘( $4 > 4iWf 1 &in < di < bp ) = 
SE, ~(4) d4 

J”Ji, ~(4) d4 ’ 

(24) 

and allows us to determine which of the two boundary conditions considered here 
“naturally” predicts a phase of sufficiently long inflationary expansion. Sufficient 
inflation is a prediction of a theory if P e 1, whereas it is not if P < 1. 

For standard reheating the minimum amount of inflation that solves the horizon 
problem is determined by the condition N E ln(oj/oi) x 65, where subscripts i and - 
f denote the values of the scale factor at the onset and end of inflation respectively 
[16]. It is then straightforward to deduce from the classical field equations that 

N e 65 z 6 J ‘- ~, 
where the value of the scalar field at the end of inflation, 4i, is computed from the 
relation 

; V-l@) 9 
[ I 

2 

= 1 . 
b=d, 

(26) 

This condition corresponds to the breakdown of the slow-roll approximation [.li]: 

*Strictly speaking, conditions (25) and (26) are only valid in spatially flat FLRW models, but we 
are considering spatially closed cases in this work. However, during inflation the curvature term in 
the Friedmann equation is redshifted to zero within one Hubble expansion time and the Universe 
effectively becomes spatially flat at an exponentially fast rate. For our purposes, therefore, these 
expressions remain valid. 
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Once t$f is known, the value of 4JUf can be determined numerically by evaluating the 
integral in Eq. (25). 

To understand how the probability densities (20) and (21) change in the quadratic 
and cubic cases, we shall consider them in turn. Since (20) and (21) are usually not 
normalisable (unless the range of values that 4 can take is bounded), we set the 
“normalisation constants” equal to one as is the common practice. 

4.1 The Quadratic case 

To begin with, we note that the shape of V(4) does not qualitatively change with 
changes in the coupling constant 61. This parameter only fixes the height of the 
plateau and as a result leaves the shapes of the two probability densities unchanged. 
Consequently the qualitative behaviours of the probability densities are robust with 
respect to changes in ~1. Figure 2a gives a plot of PT showing that it starts at 
zero when 4 = 0 and asymptotically approaches a constant value. On the other 
hand, as can be seen from Figure ?b, PNB decreases from infinity and asymptotically 
approaches a constant value. We should emphasise here that since the probability 
distribution functions (20) and (21) typically take values of the order exp(f10r4), 
we, for the sake of graphical representation, applied non-linear scalings of the kinds 
fi = pT’lc and $NB = In (~NB”‘) respectively (where C is a constant) to the two 
probability distribution functions. Note, however, that the values of the argument $I 
remain uneffected by this scaling. 

Contrary to the claim of Biswas and Guha [9], the two probability distribution 
functions reveal no qualitative changes as compared to the case of “chaotic” type 
potentials (e.g. V(4) = m2 b2/2) as discussed by Vilenkin [5] and Halliwell[14]. This 
means that the tunneling wave function has its maximum nucleation probability for 
the Universe coming into existe_nce somewhere on the plateau of the potential V(d), 
whereas the no boundary wave function peaks near the true minimum of the potential 
at 4 = 0. Translated into initial values of the Ricci curvature scalar, this means that 
the tunneling wave function prefers values of & near the Planck scale, whereas the 
no-boundary wave function favours a Universe of large initial size, i.e. small Ri [ll]. 

Figures 2a & 2b 

We now consider the conditional probability (24). The range of values of 4; is 
specified by the range of initial values Ri . In Planckian units, where Rp = 1, we 
deduce that dp = 13.0. The value of 41 is calculated from (26) to be dr = 0.38 and 
condition (25) is therefore satisfied for & = 2.27. Since the conditional probability 
measure (24) essentially amounts to a comparison of areas between the p(4) curve 
and the positive &rxis in Figures 2a and 2b, it seems obvious that the tunneling wave 
function leads to sufficient inflation whereas the no-boundary wave function does not. 
This is in line with the conclusions of Vilenkin [5] and Mijic et al [ll] and in contrast 
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to what is claimed by Biswas and Guha [9]. 

4.2 The Cubic Case 

We now consider the effects of adding a cubic term to the action. In general PT is 
peaked around the maximum of V(4) at &,az and falls off to zero on both sides. In 
contrast PNB decreases from infinity near q!~ = 0 to a minimum at q5,,, and diverges 
again as 4 --, 00. In this sense the presence of the cubic term drastically alters the 
shapes of the two probability distributions. This qualitative behaviour is illustrated 
in Figures 3a and 3b for ~1 = 10" and ~2 = 1020. 

Figures 3a & 3b 

Now, regarding the location of the maximum nucleation probability, the tunneling 
case is unambiguous since there is only a single peak in the probability distribution 
function. Note, however, that in the cubic case this wave function favours smaller 
values of the initial curvature R (viz. 4;) as compared to those in the quadratic 
case, where they are of Planckian order. On the other hand, the case of the Hartle- 
Hawking boundary condition is ambiguous because of the presence of two peaks in the 
probability distribution function, corresponding respectively to low and high valies 
of R;. 

From a practical point of view, the question arises as to whether the tunneling wave 
function still predicts a phase of sufficiently long inflationary expansion immediately 
after tunneling into the Lorentzian signature region. To investigate this, we confined 
ourselves to the region on the left of the maximum in the potential (lo), i.e. C$ 2 +maz. 
Although inflation occurs on both sides of the turning point, there is no end to the 
superluminal expansion if the field rolls down the right-hand side and consequently 
there is no reasonable mechanism of reheating [15]. On the basis of these physical 
considerations it is therefore more appropriate to identijg the upper limit 4~ of the 
integrals in Eq. (24) with $maz rather than with the Planck limit. 

The specific value of the conditional probability depends on the magnitude of 
~2 and it is therefore necessary to determine the relevant range of values for this 
parameter. We noted in Section 2 that ~2 is bounded from above by the condition 
E-2 <ii Q2. As ~2 is decreased relative to a j?xed ~1, the location of the maximum 
is shifted to larger values of 4 and eventually beyond the Planck limit #p. This 
follows since the model reduces to the R2-theory for .which the potential exhibits a 
plateau, i.e. the maximum is effectively located at infinity in this case. However, 
according to condition (l-1) the region over which the cubic and quadratic potentials 
are equivalent also increases as ~2 decreases. The question then is whether 4limii grows 
fa&er or slower than 4mat. By explicitly calculating the values of Cp,,, and ti/imit it 
is found that 4limit exceeds diaz for all parameter values ez 5 1020. This implies that 
the R2- and R3-theories are equivalent for C$ < 4 mar in this range. Hence the results 
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in Section 4.1 for R*-theory may be carried over directly to the cubic case in this 
region of the variable r$, although there is the important difference that the upper 
bound on di is now identified with &,, and not 4~. 

For any given ~2 the end of inflation occurs at 4r = 0.38 as in the R2-case, since’ 
the R3-contribution is negligible at very small 4. Unfortunately a direct numerical 
integration of Eq. (24) cannot be performed, because the integrands are typically of 
the orders of exp(f1014). However, since the probability density p is a single valued, 
positive-definite function of 4, it follows that a handle on the qualitative behaviour 
of the conditional probability can be obtained by investigating how the area under 
the p(o) curve changes as ~2 changes. The problem then reduces to determining how 
the limits of the integrals in the numerator and denominator vary as the parameters 
of the theory are altered. 

The dependences of the parameters of interest on ~2 are summarised in Table 1. 
We find that &r for the potential (10) settles at the same value as in the quadratic 
case when ~2 is of order 10" or smaller. We also find that I$,,, rapidly approaches 
Vmlf in the region 1018 2 ~2 2 10 2o . This implies that the integral in the numerator of 
the conditional probability (24) becomes much smaZZer than the term in the denom- 
inator for 62 2 10 . r8 Consequently the tunneling approach does not predict a phase 
of sufficiently long inflation in this region, contrary to the results for the R2-model. 
We further note that for the same range of initial values of 4, the H&&-Hawking 
wave function shows no qualitative change from the quadratic case. Consequently, 
it appears that neither boundary condition predicts inflation for this choice of the 
parameters er and 62. This behaviour occurs because the presence of the cubic per- 
turbation severely restricts the range of initial field values di for which a phase of 
sufficiently long inflationary expansion is likely. 

Including the full range of values of & up to the Planck limit tip would not 
significantly improve this result in the tunneling scheme. In the Hartle-Hawking 
case, however, the integral in the numerator of (24) would have a large contribution 
from the second peak in PNB. However, this range of +i was excluded, as discussed 
above, in order to avoid the problem of exiting the inflationary expansion. 

Even though the conditional probability P of Eq. (24) cannot be estimated nu- 
merically in this case, nevertheless, we present a set of values of “scaled conditional 
probabilities” in Appendix A which are obtained by applying a non-linear scaling to 
the probability distribution functions as discussed in Section 4.1. These values, which 
may be treated as qualitative indicators of P, also support the conclusions given in 
this section. 

5 Discbssion and Conclusions 

In this paper we have investigated how the probability of realising sufficient inflation 
from quantum cosmology is altered when higher-order corrections to the Einstein- 
Hilbert action are introduced. Our results confirm that the addition of quadratic 
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terms to the action does not reverse the conclusions of Vilenkin [5] regarding the 
effects of boundary conditions on the likelihood of sufficient inflation, in contrast to 
some recent claims [9]. On the other hand, cubic perturbations can produce qual- 
itative changes to the nature of the probability distribution function p(4). From a 
physical point of view one is confined to consider initial values of the scalar field that 
allow an exit from the inflationary expansion. As a result the important physical (as 
opposed to purely mathematical) consequences of cubic perturbations are that they 
restrict the measure of allowed initial field values di that lead to sufficient inflation. 
This is in agreement with the classical arguments [15]. By considering the conditional 
probability (24) ( see also Appendix A) we have argued that if the coupling constant 
~2, which determines the strength of the R3-contribution to the Lagrangian, exceeds 
a critical value, neither the tunneling nor the no-boundary boundary conditions pre- 
dict an epoch of sufficient inflation, in the sense that the conditional probability is . 
significantly less than unity in both cases. 

Our results appear to exhibit some generality in four-dimensions. As discussed 
in Section 2, the qualitative shape of the self-interaction potential V(4) remains 
unaltered if general polynomial perturbations with a highest order term ~,,-r R” are 
considered. In general this result is true when D < 2n. This immediately implies 
that neither of the two probability distributions PT and PNB for the n = 3 case will be 
qualitatively affected under n > 3 perturbations. The qualitative conclusions drawn 
for the case of cubic perturbations in Section 4.2 therefore remain robust under higher- 
order perturbations to the action, although of course the details of what happens will 
depend on how the precise location of the maximum in the potential V(4) is related 
to the highest-order term, 

However, the consequences of the quadratic and the cubic perturbations (as well 
as those of general polynomial types) depend crucially on the values of the free pa- 

w rameters of the system, namely ek (/c = 1,. . . , n - 1) , D, n, as well as on the initial 
field V~IES die In particular, the dimensionality D of the space-time is crucial in 
deciding the maximum degree n of perturbations allowed (D < 2n say) above which 
the perturbations would be qualitatively inconsequential, i.e. the system would be 
robust. 

Finally we remark that inflation is possible, at least at the classical level, if the field 
is initially placed to the right of the maximum in Eq. (10) and given sufficient kinetic 
energy to travel over the hill towards 4 = 0. Unfortunately, our analysis cannot con- 
sider this possibility since the scalar field momentum operator in the Wheeler-Dewitt 
equation then becomes important and the solutions (20) and (21) are no longer valid. 
Furthermore, if one is prepared to include the effects of the R3-contribution in the 
action, the cubic term RIJR should also be considered. In this case the effective the- 
ory resembles Einstein gravity minimally coupled to two scalar fields after a suitable 
conformal transformation on the metric [15] and in principle a similar analysis to the 
one presented here can be followed for this more general case. We shall return to 
some of these questions in future. 
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Appendix A 

As was pointed out in Section 4.1, the integrands involved in the definition of con- 
ditional probability typically have magnitudes of order exp(flO’t), which makes the 
numerical calculation of the integ@s not possible in practice. Now due to the nature 
of these numbers no linear scaling of the probability function p can bypass this dif- 
ficulty. The question then arises as to whether appropriate non-linear scalings exist 
which keep the conditional probability P invariant. To see that there do not, recall 
that the only scalings that leave the Wheeler-Dewitt equation, H \r! = 0, of the 
D-dimensional minisuperspace models of Quantum Cosmology invariant are given by 
I? = Re2 H, 6 = ay !I ---) I? $ = Rre2 H 9 = 0, (n(g) is an arbitrary function‘of the 
minisuperspace co-ordinates q) provided +y and < (a free parameter in the Wheeler- 
Dewitt equation) are given by y = (2 - D)/2 and < = -(D - 2)/8( D - 1) respectively 
[18]. Effectively this amounts to a redefinition of the potential U(g) and the Dewitt 
metric of minisuperspace f”O( q), which occur in the Hamilton operator H. More 
importantly, under such scale transformations the conserved probability current ja 
defined from \E remains unchanged. This freedom, however, is not of much use in 
bypassing the numerical difficulty mentioned above in order to obtain quantitative 
values for P. Nevertheless, if we confine ourselves to qualitative information, we may 
choose non-linear (but monotonic) scalings of p, which, while violating the invariance 
properties of the model, would nevertheless supply us with a qualitative indicator of 
P. This is not dissimilar to the way non-linear scalings of functions are employed for 

- the purpose of graphical representation. 
To calculate a qualitative indicator of P we define the non-linearly scaled condi- 

tional probability P as 

‘( 4i > 4Ju.f 1 &njn < 4i < C$p ) G Jz, p’%V d4 
foci, ~“‘(4) d4 ’ (27) 
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where C is the index of non-linear scaling. Clearly such a scaling will not change the 
qualitative behaviour of PT and the values of its argument 4, and therefore the values 
of the boundaries of the integrals occurring in Eq. (24) (as listed in Table 1) remain 
the same. Furthermore, such scalings leave P invariant in the limiting cases where 
P=OandP=l. 

Here we chose C = 1014. Table 2 gives the values of P as a function of ~2 for the 
tunneling wave function in the case of the R3-model, calculated for ~1 = 10” and 
the boundary values of 4 given in Table 1. We approximated 4min by 4~ = 0.38. For 
the corresponding value of P for the tunneling model in the R2-case of Section 4.1 
we found P = 0.85. 

As can be seen from Table 2, the behaviour of p supports the conclusions drawn 
in Section 4.2 on the basis of qualitative analysis. 
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Figure 1: (a) Th e effective self-interaction potential (9) corresponding to the R2- 
theory with er = 10”. The scalar field and magnitude of the potential have been 
resealed via Eq. (12) to enable easy comparison with the results of Section 4; (b) 
The resealed effective interaction potential (10) corresponding to the R3-theory with 
~1 = 10” and ~2 = 1020. 
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Figure 2: (a) The probability distribution m(4) associated with the tunneling bound- 
ary condition for the R2-theory with a resealing Pr(#) = [ exp( -2/3V) llO-“; (b) The 
probability distribution p,v~(qS) associated with the no boundary boundary condition 
for the R2-theory with a resealing PNB(~) = In [ exp(2/3V) ll’-“. We choose these 
particular resealed values of p(4) in order to obtain easily interpretable plots from 
our numerical programme. 
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Figure 3: (a) The tunneling probability distribution m(4) for the R3-theory with the 
same resealing as for Figure 2a; (b) The no boundary pkdbability distribution PUB 
for the R3-theory with the same resealing as for Figure 2b. 



62 62 1020 1020 10’8 10’8 1ol6 1ol6 lOI lOI 10’2 10’2 1o’O 1o’O 108 108 106 106 

4P 4P 23.6 23.6 21.3 21.3 19.0 19.0 16.7 16.7 14.4 14.4 13.1 13.1 13.0 13.0 13.0 13.0 

4,imit 4,imit 2.65 2.65 4.95 4.95 7.25 7.25 9.56 9.56 11.9 11.9 14.2 14.2 16.5 16.5 18.8 18.8 

4 ma2 4 ma2 1.59 1.59 2.68 2.68 3.78 3.78 4.94 4.94 7.06 7.06 9.34 9.34 11.7 11.7 13.0 13.0 
II II II II II II II II 

4 4 4 4 1.59 2.24 2.27 2.27 2.27 2.27 2.27 2.27 1.59 2.24 2.27 2.27 2.27 2.27 2.27 2.27 

Table 1: Summarising, for different values of es, the values of the scalar field corresponding 
to Rp = 1 (4p), the limit of 4 below which the R2- and R3-potentials are equivalent (+limit), the 
location of the maximum in the potential (4 ,,,ot) and the values of the field that just lead to sufficient 
inflation (c$.~,). We specify cl = 
9 increases to order of 1018, 

10” throughout due to microwave bachground considerations. As 
the magnitudes of the quantities I$,,,~~ and 6,“~ become comparable 

to one another and this implies that the numerator in the conditional probability approaches zero. 
This suggests that the conditional probability will become significantly smaller than unity for values 
of C’2 2 10’8. 

n 

62 1020 10’8 10’6 10’4 10’2 10’0 108 106 

ij 0.00 .0.20 0.45 0.59 0.72 0.79 0.84 0.85 

L. 

Table 2: Behaviour of the non-linearly scaled conditional probability distribution 9 for the 
tunneling wave function Ikv in the R3-model of Se&ion 4.2. We specify e1 = 10” throughout. 


