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Abstract 

The quantum cosmology of the string effective action is considered within 
the context of the Bianchi class A minisuperspace. An exact unified solution is 
found for all Bianchi types and interpreted physically as a quantum wormhole. 
The solution is generalized for types Q and VII.o. The Bianchi type IX wave- 
function becomes increasingly localized around the isotropic Universe at large 
three-geometries. 
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The ongoing experiments investigating the cosmic microwave background radia- 
tion indicate that the Universe is very nearly isotropic on very large scales and the 
origin of this observed isotropy remains a fundamental problem in modern cosmology 
[l]. The inflationary paradigm offers a partial resolution in the form of the cosmic no 
hair conjecture [2]; a Universe dominated by vacuum energy should rapidly approach 
the de Sitter solution regardless of initial conditions and any primordial anisotropies 
and inhomogeneities are therefore washed out. Such an explanation is not complete, 
however, since there exist solutions that recollapse before the vacuum energy is able 
to dominate. This suggests that additional physics is required and further insight 
might be gained at the Planck epoch where quantum gravity effects are thought to 
be important. 

The superstring theory [3] and the quantum cosmology program [4] are two ap- 
proaches to the subject of quantum gravity that have been investigated in some detail. 
If the superstring is indeed the ultimate ‘theory of everything’, it must explain the 
observed isotropy at some level. Unfortunately a consistent quantum field theory of 
the super-string is not currently available and general solutions to the full Wheeler- 
Dewitt (WDW) equation have yet to be found. However, progress can be made by 
making a minisuperspace approximation and considering the quantum cosmology of 
the string effective action [5]. Recently an exact solution for the Bianchi IX min- 
isuperspace was found by Lidsey and remarkably the wavefunction becomes peaked 
around the isotropic solution as the three-volume of the Universe increases (61. This 
represents the first, non-vacuum, exact Bianchi IX solution to the WDW equation 
and the purpose of this essay is to derive this solution and generalize it within the 
context of the Bianchi class A models. 

The spatially homogeneous models admit a Lie group Gs of isometries transitive 
on spacelike three-dimensional orbits. The Euclidean 4-metric is 

ds2 = dt2 + hobwawb, a, b = 1,2,3, (1) 

where the 3-metric on the surfaces of homogeneity is given by 

h&t) = e2*(‘) (e*@(‘)) ab (2) 

and the matrix ,&, = diag [p+ + &,0-, /3+ - &3-, -2a+] is traceless. The one- 

forms wa satisfy the Maurer-Cartan equation dw” = :C”awb A wc, where Cog = 
made& + 6”[ba,l are the structure constants of the Lie algebra of Gs, a, = C”,, and 
mab is symmetric. The Jacobi identity Ca+Cb&.] = 0 implies that ab is transverse to 
7nab , i.e. mabab = 0, and the Lie algebra belongs to the Bianchi class A if ab = 0 [7]. 
This class consists of types I, II, Via, VII,, VIII and IX and the Lie algebra of each 
type is uniquely determined up to isomorphisms by the rank and signature of mab. 

There are no closed topologies in the Bianchi class B and this may explain why a 
standard Hamiltonian treatment is not available for this class [8]. Consequently we 
restrict our attention to the class A. The spatially flat (Ic = 0) and spatially closed 
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(k = +l) F’riedmann Universes are the isotropic limits (p+ = ,0- = 0) of the Bianchi 
types {I, VIb} and IX respectively. 

We take as our starting theory the bosonic sector of the effective Euclidean action 
of the heterotic string in critical (ten) dimensions to zero-order in the inverse string 
tension [3]. After compactification onto a six-torus the dimensionally reduced, four- 
dimensional action is equivalent to a scalar-tensor theory if the field strength of the 
antisymmetric tensor vanishes. In this case the simplest form of the WDW equation 
is derived by performing a conformal transformation &,” = f12gP, on the 4-metric in 
such a way that the action is rewritten as Einstein gravity minimally coupled to a set 
of massless scalar fields. If Q* = e-4, where 4 is the shifted dilaton, the transformed 
Euclidean action becomes 

s= 
J J( 

82 ij -ii + i (Q4)2 + i $ [(Vtij)’ + e-*$j 2rOj 2 ( )I} , (3) J=l 
where 3 z de&,, {$j, aj) are scalar fields arising from the compactification and we 
choose units such that tL = c = 167rrn~~ G 1 in the conformal frame [9]. If we further 
assume that the dilaton,is constant on the surfaces of homogeneity, the transformed 
world-interval is dg2 = dq2 + iabWaWb, where 

ia6 = e*’ e2’ ab = eeh2* (e*‘) ab . ( > (4) 
is the resealed 3-metric, q E / dtR(t) and & s a + In a. Since Gs is time-independent, 
a given Bianchi type is symmetric under the action of this conformal transformation 
and we may therefore consider solutions directly in the conformal frame. 

Theory (3) has ten degrees of freedom @‘ = (~5, PA, 4, $j, aj) with conjugate mo- 
menta p,, = M/&J‘. It is quantized by identifying these momenta with the operators 
Pp = -ia/&‘ and viewing the classical Hamiltonian constraint as a time-independent 
Schriidinger equation that annihilates the state vector q(q”) for the Universe. It is 
given by [6] 

[ 

e-e a* a* 
-jt$z&L--- 

a2 
aii ap: ap2 + W&P*> - 53 

-125 
( 

a2 
-+ep+j-$ rk=o, 

j=l a+; 3 )I 
where the superpotential 

u=;[( - n&d2 + (nlh - n&d* - 2n&33(nA + m&22)] 

(5) 

is determined by the structure constants of the Lie algebra and the constant p ac- 
counts for ambiguities in the operator ordering. The non-zero eigenvalues of nab are 
summarized in Table 1. 
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Type nll 

I 0 

II 0 

Vb -1 

VIIe 1 

VIII 1 

IX 1 

nz2 n33 

0 

1 

0 

0 

-1 

1 

ISI 

0 

ie20+2@+ sinh 2&- 

ie2’+2p+ cash 2&3- 

$e2& [ -es4@+ + 2e20+ cash 2 &?-I 

ie2& [em4@+ + 2e2P+ cash 2 tip-1 

Table 1: The non-zero eigenvalues of nab for the Bianchi class A are shown for each Bianchi type. 
This matrix has the same rank and signature for a given Bianchi type as_the matrix determining the 
structure constants of the Lie algebra of Gs. The function S = flnabhab, where summation over 
upper and lower indices is implied, is a solution of the Euclidean I&milton-Jacobi equation (7). It 
is interpreted physically as the conformally transformed Euclidean action for the classical vacuum 
theory. The reader is referred to the text for details. 

Although solving this equation appears to be a formidable task, one gains valuable 
insight from the Hamiltonian F& of the vacuum theory. At the classical level the Uni- 
verse may be thought of as a zero-energy point particle moving in a time-dependent 
potential well with 0 = Xg (x G’“p~p, + U(q”), where GxK is the (2 + 1)-Minkowski 
space-time metric, & plays the role of ‘time’ and {X, K} represent the &,/3* minisu- 
perspace coordinates. This implies that the vacuum Bianchi A minisuperspace can 
be supersymmetrized [lo] by solving the Euclidean Hamilton-Jacobi equation 

u 
= -- (7) 

and introducing the fermionic variables x’(, xX defined by the spinor algebra 

XKXA + xAxK = k”xA + -&” = kKxA + x”kA _ G”x = 0. (8) 

The Hamiltonian is then equivalent to tig CK QQ + QQ, where the supercharges 

satisfy Q2 = 0 = Q2, and after quantization one obtains the ‘square roots’ of the 
WDW equation, i.e. QQ = 0 = Qlk. It follows that a solution to the standard WDW 
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equation may be found by solving these square roots and restricting one’s attention 
to the bosonic sector of the wavefunction. It is straightforward to’show that, modulo 
a constant of proportionality, the bosonic component of the wavefunction annihilated 
by the super-symmetric quantum constraints is [lo] 

_ * bosonic = e 
-S 

- 

We find that a unified solution to Eq. (7) is 

(10) 
I_ 

s = Z!Z&.“&b (11) 

where summation over upper and lower indices is implied and the full expressions for 
each Bianchi type are presented in Table 1. The elegance of (10) and (11) motivates 
us to separate the matter and gravitational sectors of the WDW equation (5) with 
the ansatz 6 = X(6, &)Y(d, $j, aj), where X = IV(&)e-s(6@*). This implies that 

and 

[ 
a2 a a2 a2 s+pz---- ap: ap2 +u-.z2 x=0 1 
a2 3 a2 

[ ( 
@ + g 

a2 2 
j-l @ I +e2yg 3 ) ; 12 1 y = 0, 

(12) 

(13) 

where z is an arbitrary separation constant that can be interpreted physically as the 
total momentum eigenvalue of the matter sector. This separation is possible for any 
theory that is equivalent at the classical level to Einstein gravity minimally coupled 
to a stiff perfect fluid. 

It follows from Eq. (11) that as/a& = 2s and G”‘d2S/dqKdqx = 12s for all 
Bianchi types. We therefore deduce with the help of these identities that 

x = e(3-~w-s 

is a solution to Eq. (12) provided we choose p2 = 4(9 - z2). It only remains to solve 
Eq. (13) and this is achieved with the separable ansatz 

Y = A&h >&G+hJAd~de 
fi7+fi(wlul +w2u2+ww3) 

(15) 

where Aj satisfy the wave equation of Liouville quantum mechanics and {y, wj} are 
separation constants [6]. A reduction to the Bessel equation follows after the change of 
variables $j = In& and this yields the general solutions A, = Z*~cos~j(~je@j), where 
2 denotes some linear combination of modified Bessel functions of the first and second 
kinds, A2 = r2 + z2/12 and the constants Oj are solutions to the constraint equation 
Cf=l COS28j = 1. 
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Finally the solution in the original frame follows from Eq. (4). We therefore arrive 
at the unified set of solutions 

\k=exp 3-z cr- 
K > 

$e-“lnabhabl+ (:(~-6)ki7)@] 

j-1 

These solutions cannot be interpreted as Lorentzian four-geometries because the wave- 
function is Euclidean for all values of the scale factor. On the other hand, they remain 
regular, in the sense that they do not oscillate an infinite number of times, when the 
spatial metric degenerates (cy = -00) and, with the exception of the type I solution, 
they are exponentially damped at large cr. Consequently they satisfy the. Hawking- 
Page boundary conditions and may therefore be interpreted as quantum wormhole 
solutions [ 111. 

The function W behaves as a variable amplitude for the gravitational component 
of the wavefunction. The type VI0 and VIIe solutions may be generalized in such a 
way that this amplitude becomes a function of both the & and p+ variables. We find 
that a second solution to Eq. (12) is 

(p2 - 12p + 4z2 + 36)a + (p” - 36 + 4z2)/3+) - S] (17) 

and these solutions do not depend on a specific choice of factor ordering. 
The problem of extracting physical predictions in quantum cosmology from the 

wavefunction of the Universe is an unresolved one. However, it is reasonable to sup- 
pose that a strong peak in the wavefunction represents a prediction in some sense. 
This is the case, for example, if one. adopts the Hartle-Hawking proposal and in- 
terprets ]@I2 as an unnormalized probability density [12]. When the three-surface 
degenerates, S becomes vanishingly small for all Bianchi types, and the wavefunction 
exhibits no peak in the (p+, ,0-) plane. As shown in Figure 1, however, the Bianchi IX 
wavefunction becomes strongly localized around the isotropic solution ,0+ = p- = 0 
as the scale factor increases. This suggests that there is a progressively higher proba- 
bility of finding this Universe in the isotropic state as a increases [13]. Unfortunately 
the same is not true for the Bianchi type VIIe. We see from Figure 2 that the wave- 
function is indeed peaked around p- = 0, but there is no local maximum for finite /3+. 
Consequently, it is not clear whether this solution selects the spatially flat Friedmann 
Universe. 

In conclusion we have found a unified exact solution to the WDW equation for the 
Bianchi class A minisuperspace with a matter sector motivated by the string effective 
action. If such a solution is to have any direct cosmological relevance, it is necessary 
to find a mechanism that leads to the emergence of the classical domain. In principle, 
such a domain could be reached if one or more of the scalar fields were to acquire an 
effective mass once the scale factor became sufficiently large. In the type IX example 
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the Universe would then tunnel from the Euclidean regime into a highly isotropic 
Lorentzian state and this may point towards a possible non-inflationary resolution of 
the isotropy problem. 
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Bianchi IX Solution 

Figure 1: The gravitational component of the Bianchi type IX wavefunction (15) 
is plotted when & = 0. The wavefunction is localized around the point /3+ = /3- = 0 
b the (P+,P-> ~1 ane.. This point corresponds to the isotropic Friedmann solution. 
The peaked becomes more pronounced as the scale factor increases. 

Bianchi VII0 Solution _ 

Figure 2: The equivalent solution to Figure 1 for the Bianchi type VII0 cosmology. 
The wavefunction is peaked around ,0- = 0, but there is no local maximum for finite 
P +- 


