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Abstract 

We use numerical simulations to calculate the cosmic microwave background anisotropy 
induced by the evolution of a global texture field, with special emphasis on individual 
textures. Both spherically symmetric and general configurations are analysed, and in 
the latter case we consider field configurations which exhibit unwinding events and also 
ones which do not. We compare the results given by evolving the field numerically under 
both the expanded core (XCORE) and non-linear sigma model (NLSM) approximations 
with the analytic predictions of the NLSM exact solution for a spherically symmetric 
self-similar (SSSS) unwinding. We find that the random unwinding configuration spots’ 
typical peak height is 60-75% and angular size typically only 10% of those of the SSSS 
unwinding, and that random configurations without an unwinding event nonetheless may 
generate indistinguishable hot and cold spots. The influence of these results on analytic 
estimates of texture induced microwave anisotropies is examined, and comparison made 
with other numerical work. 

PACS numbers: 98.8O.Cq, 98.7O.Vc 
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1 Introduction 

The main rival to the inflationary cosmology [l] in explaining the origin of structure in the 
universe remains theories based on inhomogeneities formed at phase transitions. These inho- 
mogeneities may be seeded by topologically stabilised objects such as cosmic strings [2], by 
the correlation of topologically trivial variations in the local direction of symmetry breaking, 
as with nontopological texture [3], or by a combination of the two, as with global strings (41, 
monopoles [5] or textures [3]. A proper assessment of the viability of such models requires a 
detailed understanding of their influence on the isotropy of the cosmic microwave background 
(CMB). In this paper we shall study some aspects of the CMB anisotropy produced by global 
textures. 

Several authors have made studies of the predictions of the texture model for large scale 
structure [6] and CMB anisotropies [7, 8, 9, 10, 111. The CMB predictions of textures can 
be compared with observations by the Differential Microwave Radiometer (DMR) on the 
Cosmic Background Explorer (COBE) satellite [12] to fix the one-parameter normalisation 
of the theory; however, the amplitude of density inhomogeneities then seems very small 
when normalized to COBE [9, lo]. Most CMB anisotropy calculations employ numerical 
simulations of the texture field evolution over a large volume of space, in some cases including 
the entire observable universe, and calculate the field’s stress-energy tensor at each point at 
each time-step. Another approach involves calculating the anisotropy due to a single texture 
analytically and summing the result over an ensemble of textures with the appropriate number 
density and distribution. 

A feature of defect field evolution peculiar to texture is that the field may order itself in 
two distinct ways. One mechanism is simply by smoothing its spatial gradients, a process 
which involves no topology change. The alternative is in a process known as ‘unwinding’. 
During unwinding the field gradients near a point increase to such an extent that it be- 
comes energetically possible for the field to pull itself off the vacuum manifold and over the 
symmetric-vacuum energy barrier, changing the local topological charge by unity. The only 
known non-trivial analytic solution of the texture field equations describes such an unwinding 
in the Non Linear Sigma Model (NLSM) approximation [7]. It is therefore standard to utilise 
this SSSS exact unwinding solution when describing textures analytically, including in the 
determination of CMB anisotropy detailed above. Despite breaking down at the unwinding 
event itself, where a singularity occurs and one must patch the ingoing to the outgoing so- 
lution, in general the NLSM approximation is an excellent one; however spherical symmetry 
and self-similarity are not good approximations to realistic configurations. We are therefore 
interested in how more general configurations compare with the SSSS case. 

Recently, three of the present authors have published a two part numerical study of 
individual textures throughout which the NLSM approximation is lifted and the full field 
equations, including the potential term for the texture field, are used, giving non-singular 
evolution through the unwinding event. In the first part of the study [13] the assumption 
of spherical symmetry is retained but not that of self-similarity. In the second part (141 the 
spherically symmetric assumption is also dropped, allowing the study of texture unwinding 
events arising from randomly generated initial field configurations. One of the conclusions of 
the study is that the properties of the SSSS solution are not characteristic of those of more 
realistic random configurations (see also Ref. [15]). Th ere are two aspects to this. The first, 
a problem with all spherically symmetric configurations, is that spherical symmetry sets up 

1 



very large scale correlations in the field, so that sections of the texture which are causally 
separated behave in a coherent way. The second is associated with the self-similarity; the 
initial field conditions also include a coherent velocity to keep it in the self-similar state, which 
provides a coherent ‘push’ on the texture towards unwinding. In the SSSS case this results in 
the texture unwinding as fast as is causally possible. Since the size of the CMB anisotropy is 
associated with the rate of change of the metric perturbations induced by the evolving field 
we might expect the typical anisotropy due to a more realistic texture configuration to have a 
less pronounced signature than that of the SSSS solution. In this paper we first calculate the 
anisotropy induced by a spherically symmetric but non-self-similar field configuration, and 
then those induced by general, randomly generated, configurations which have no particular 
symmetries or coherences. We thereby address the issue of how the CMB anisotropy patterns 
from realistic texture unwinding and non-unwinding configurations compare with that of the 
SSSS unwinding. 

We wish to make a comparative study of CMB anisotropy produced by localized exci- 
tations of the texture field. Various processes can be important in determining the CMB 
anisotropy; e.g. Thomson scattering may or may not be important depending on whether 
the excitation is in front of or on the surface of last scattering, cosmological expansion can be 
more or less important depending on whether the coherence length of the texture excitation 
is large or small compared to the cosmological horizon, and finally various geometrical and 
physical effects are more or less important depending whether the excitation subtends a large 
or small angle on the sky. Since we are interested in a comparison of the different texture 
configurations and since the processes mentioned probably affect the different texture config- 
urations in a similar way we feel it is reasonable to ignore all of these effects and to compare 
the CMB anisotropy for the texture excitations in the simplest possible environment. Here 
we will compare temperature patterns for texture excitations in Minkowski space. This is 
the appropriate limit if the texture excitations subtend a small angle, are well in front of the 
surface of last scattering and are much smaller than the horizon when we see them. This is 
independent of the redshift at which we see them. 

An important consideration in computing any effect of textures in a cosmological setting 
involves determining appropriate initial conditions for both the texture fields and the matter 
fields. Energy and momentum are always locally conserved, so that the energy overdensity 
corresponding to the presence of a topological defect is locally compensated by an energy 
underdensity in the other fields [16]. Naively we might assume that compensation, by restor- 
ing the initial homogeneity of the total energy density, would automatically reduce the CMB 
anisotropy generated by a particular defect field configuration. However, as two of the present 
authors have shown [17], in many cases the compensating perturbations will increase and not 
decrease both the density perturbation and CMB anisotropy. Whether or not compensation 
will decrease or increase the CMB anisotropy for realistic texture configurations is not clear; 
however, the analytic work just cited suggests that we should expect no strong cancellation 
of CMB anisotropies due to compensation. 

2 Texture Field Evolution 

The central problem in numerical studies of texture evolution is that the ratio of the two 
fundamental length scales - the macrophysical field correlation length and the microphysical 
field width - is so large that it is impossible to resolve them on the simulation lattice 
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simultaneously. We therefore have to adopt one of two approximations, either massively 
enlarging the field width (the XCORE approximation) or shrinking ‘it to zero (the NLSM 
approximation). If these results are to be taken seriously, it is crucial that these two different 
approximation methods give comparable results, and we shall see that this is indeed the case. 
A more detailed comparison and critique of these two approaches is given separately by one 
of us [18]. 

We work throughout in flat space with the texture field normalised such that the vacuum 
manifold is the 3-sphere ]+I = 1, so the potential is given by V(Q) = Vi(G* - l)*. Discretising 
the equations of motion in both space and time then yields equations for a;,,, (where i-indices 
are spatial and n-indices temporal), giving the field at points separated by the grid-spacing 
62 and by the time step bt. 

2.1 The XCORE Approximation 

In flat space the equation of motion of the texture field @ is 

4 - v29 = -4v,p* - l)* (1) 

Given the field at some time t and its velocity at time (t - at)/2 these may now be discretised 
to second order using a standard staggered leapfrog approach [19], giving 

*i,n+1/2 = ihi,,-I/* + ( V**i,n - 4V,(ipf,m - l)+i,vs) bt 

+i,n+l = +i,n + 4i,n+1/26t (2) 

In order to be able to resolve the texture’s core the field width must be unrealistically large, 
equivalent to making the mass of the radial mode unrealistically small. This approach was 
introduced for domain wall simulations in Ref. (201, and for texture simulations in Ref. (211. 
Care must be taken to ensure that this approximation does not qualitatively affect the field’s 
evolution, with the degree of the approximation being characterised by the ratio of the field 
width to its correlation length. We therefore work with an oversized field width 

W oEm~l= 1/m = 0.25 62 (3) 

on a grid with 963 points. We employ the catalogue of unwinding and non-unwinding random 
initial configurations developed in Ref. [14]; the initial configurations are set by randomly 
assigning field values on the manifold on a 3 x 3 grid, and interpolating between them (ac- 
counting for periodic boundary conditions) onto the 963 grid. The initial velocities are set to 
zero. A crude measure of the correlation length is therefore the separation of the uncorrelated 
points, and this value is large enough compared to the field width to be known not to qual- 
itatively distort the field’s evolution (221. Having 27 independent correlation volumes of the 
field gives a reasonable chance, about 4%, of obtaining a texture unwinding in a simulation. 

In so far as we can take the distance of 32 grid points between the randomly selected 
points to represent the correlation length, this provides an estimate of the initial ‘horizon 
radius’ in the simulations’, which we note is considerably larger in grid units than in other 

‘We ue tresding in dangerous waters here by mentioning horixon tia whU carrying out simulations in 
flat ~prce. In expanding univerrea the horizon size ia doaely connected to the Hubble length, whereu here 
we intend the term to indicate the diitance light can have travelled between some conceptual initial time 
when the correlation length approached zero and the time the simulation actually started, motivated by the 
knowledge that the texture field correlations grow at or close to the speed of light. 
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simulations, e. g. Refs. [lo, 111. The simulations are run for a maximum time of 48 grid units 
(though of course the actual number of time steps is much greater); further forward evolution 
endangers problems with the periodic boundary conditions. 

For comparison we also consider a spherically symmetric non-self-similar initial configu- 
ration of the form 

qflw) = ( cos x(f), sin x(r) cos 8, sin x(r) sin @ cos 7/1, sin x( r ) sin 0 sin 21) (4) 
i = 0 (5) 

with 
x(r) = 7r(l - e-‘I’“) (6) 

and take r 0 = 18 6x to satisfy the lattice resolution constraints. 

2.2 The NLSM Approximation 

In the NLSM approximation, the flat space equations of motion of the texture field become 

& - p** = -(@ - vs?*p (7) 

Given the field at times t and t - 61 the equations of motion may be discretised to second 
order to give 

9, s,n+l = 29&n - +ip-l + V*@i,nbt* - (&$ - V0!,,)6t*%i,n 

Following Ref. [lo], we write this in the form 

(8) 

Q, i,n+l = bQi,m + XQTi,n (9) 

with 

6Gi.n = ‘Pi,, - (Pi+,1 + V2@i,n6t2 

x = 1 - (km - va+Jat’ (10) 
we can use the constraint I+i,,+lI = 1 to solve for A, giving 

A= - 6@Zn + (9+.6*i,n)* 

Since 6Qi,fi is smatl 

(11) 

*i,n+l N 
++i,n taking the positive root in X 
-9 

i,n taking the negative root in X (12) 

The choice of the negative root in the evaluation of X is therefore equivalent to explicitly 
introducing an unwinding event at grid position i at time-step n. Since the NLSM approxi- 
mation breaks down at unwindings, this provides a means of re-introducing them. However 
although this explicit re-introduction may be necessary for spherically symmetric configura- 
tions, whose unwinding sites can be predetermined and made to lie exactly on a gridpoint, for 
general field configurations unwindings occur implicitly, off the grid, and we should always 
take the positive root in A. Indeed to do otherwise [lo, 11) is not only unnecessary but also 
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incorrect since under the NLSM approximation only at the unwinding site itself should the 
field ever leave the vacuum manifold [18]. 

We can now take the same set of initial field configurations as in the XCORE runs, with 
identical simulation parameters, but now evolved via Eq. (9). For the spherically symmetric 
configuration, the unwinding occurs at a grid point and is explicitly introduced by taking the 
negative root in Eq. (11) when the field within one grid spacing of the unwinding site covers 
more than half of the vacuum manifold. 

3 The CMB Anisotropy 

3.1 Analytic Formalism 

The evolving texture field will produce an inhomogeneous time-varying gravitational field. 
Photons travelling along different trajectories will gain or lose different amounts of energy 
in the time varying field which will thus result in different shifts in temperature of the 
CMB photons in different directions on the sky. For the weak fields produced by textures 
the temperature shifts are given by the Sachs-Wolfe integral [23]. The Sachs-Wolfe integral 
may be re-expressed as an integral over the stress-energy distribution which produces the 
gravitational fields. This last integral was examined in Ref. (241 for sources which are far 
from the observer and subtend small angles in flat space, and re-examined by Hindmarsh [25] 
in a rather clever and simple way which also applies to gravitational lensing. Extensions to 
large angles are given in Ref. [26] for flat space and in Ref. [27] for a matter-dominated FRW 
cosmology. Here we use the small-angle large-distance approximation in flat space. In this 
case the temperature pattern we see depends only on the stress-energy on the past light cone 
of the observer. 

In the small-angle large-distance approximation the photons we see at one instant were 
approximately in a plane when they passed by the object we are viewing. We may thus 
label the temperature pattern by a 2-dimensional vector, XL, which is perpendicular to the 
direction fi in which we are looking. The congruence of photons may thus be approximated 
as x&) = Xl - fi(l - t;) where t; is the impact time, so this plane passes by the observers 
at the time of observation. With this notation the temperature pattern is given by [26, 251 

v:+) = -8rGV* * U(xJ 

where the e-dimensional vector U is (i,j,k, . . . are spatial indices) 

( @oj(t, XT(t)) - fikOjk(t, q(t))) dt 

(13) 

(14) 

and o,(t, x) is the stress-energy tensor. Note that Eq. (13) only determines the temperature 
pattern up to an arbitrary function satisfying Vi4 = 0. However setting zero boundary con- 
ditions at infinity determines the function uniquely, while the periodic boundary conditions 
that we shall use determine 4 up to a constant. This constant is chosen so that the mean 
anisotropy is zero. The texture stress-energy tensor is 

Op@ = &xw3+ - 9a& (15) 
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and taking the line of sight to be fi = (-l,O,O), Eq. (14) becomes 

Ui(X,l) = - 
I 

O” (&a + al*)&@ dt 
--oo (16) 

for i = 2, 3. Given a field configuration and its initial distribution, Eqs. (14) and (16) 
determine the anisotropy completely. 

There is an analytic solution to the field equations in the NLSM which describes an 
unwinding knot. The field configuration is spherically symmetric and remains on the vacuum 
manifold at all times. In spherical polar coordinates (t, 0, $), 

9 = (cos x(r, t), sin x(7,1) cos 0, sin x(r, t) sin B cos $, sin x(r, t) sin 0 sin 7+5) (17) 

has only one degree of freedom, x(r, t), remaining, and any non-singular configuration has 
x(O,t) = 0 or ?r. In this form the SSSS solution is 

i 

2 tan-‘( --T/t) t<o 

x(O) = 2 tan-‘(t/r) + ?r O<t<r (18) 
2 tan-‘(r/t) + T O<r<t 

At the origin x(O,t) jumps discontinuously from 0 to r at the unwinding at t = 0, and 
the outgoing solution has a gradient discontinuity at r = t (though the stress-energy tensor 
remains smooth). Applying Eq. (13) to the SSSS solution one reproduces the result of Ref. [7], 
i.e. 

where c = 8rZG9z, /xl1 gives the impact parameter of the photon from the texture centre, 
and ti gives the time that the photon sheet passes through the centre. The pattern is a cold 
spot of depth -6 if the photons pass the centre before unwinding (ti < 0) and a hot spot 
of height +e if the photons pass after unwinding (ti > 0). The FulI Width Half Maximum 
(FWHM) of the hot/cold spot, that is, the diameter of the circular ring centered on the spot, 
along which the temperature is half the central value, is fit&i and grows unbounded both 
before and after the unwinding. 

3.2 Numerical Methods 

For each initial field configuration under investigation the CMB anisotropy is computed in 
much the same way as in Ref. [28]. F or each simulation we follow planes of photons once 
across the simulation cube, utilising the periodic boundary conditions to allow each plane to 
travel the same distance through the simulation. The photon planes, each separated by one 
lattice spacing, are taken to be orthogonal to one of major axes of the cube. We may label 
each plane by its initial co-ordinate along that axis which corresponds to the label ti defined 
above. Following the sheets in sequence then gives the evolution of the anisotropy in time as 
viewed by the observer. On each plane the temperature is calculated on a grid with the same 
spacing as the grid for the texture evolution. At each gridpoint at each time step the field’s 
spatial and temporal derivatives are calculated and the integrand of Eq. (16) is summed over 
the run-time to obtain U. We then calculate AT/T from U using Fast Fourier Transforms. 
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For configurations admitting an unwinding event 20 photon sheets are chosen such that 
half pass the unwinding site before the unwinding event occurs and half afterwards. In order 
to include the necessary post-unwinding field evolution we only consider configurations known 
to unwind within the first two-thirds of the total run time. Our catalogue of random field 
configurations [14] contains 11 whose unwinding event meets this criterion, and the specimen 
spherically symmetric configuration is explicitly chosen so to do. To these we add a further 
11 non-unwinding configurations for which we follow all 96 photon sheets. We thus throw out 
the vast majority of random configurations since only a few percent of such configurations 
exhibit an unwinding. Our sample therefore has a far greater proportion of unwindings than 
for patterns picked at random. 

4 Results 

4.1 CMB Amplitude 

As discussed above the SSSS unwinding has a constant CMB anisotropy peak height AT/T = 
fe. As a test of our evolution and CMB anisotropy codes we are able to reproduce this ana- 
lytic result numerically to within 5%. By comparison the more general spherically symmetric 
configuration has peak heights 

-0.56 t: XCORE 
-0.60 CF NLSM 

+0.67 c XCORE 
+0.66 tz NLSM 

Here and subsequently, the asymmetry between the maxima and minima is presumably at- 
tributable to the minima being generated earlier in the evolution (photons climbing out of 
the collapsing texture) than the maxima (photons falling in with the collapsing texture); the 
field correlations are therefore more pronounced for the maxima systematically enhancing 
the anisotropy. 

Texture field evolution generically includes two sources of metric perturbation. The first 
is from the collapse, and possible unwinding, of gradient energy on sub-horizon scales, and 
generates primarily short wavelength modes. The second is from the correlation of the field 
on horizon scales, and generates primarily long wavelength modes. For spherically symmetric 
configurations the field is artificially correlated on all scales at the outset, and the second 
term is not present. However, for random initial conditions this is not the case, and we expect 
contributions from both sources. The mean peak height associated with the random texture 
configuration unwinding events is 

(-0.62 f 0.17) e XCORE 
(-0.66 f 0.18) tz NLSM 

(+0.76 f 0.17) c XCORE 
(+0.78 f 0.20) 6 NLSM 

where the error bars here and below are one standard deviation over the set of simulations 
in question. 
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We are also interested in the typical amplitude of the background, long wavelength, 
anisotropy modes. Reading the amplitudes directly from the simulations with no unwinding 
event is problematic since even here the gradient energy may locally collapse before being an- 
nihilated by large scale correlation, introducing short wavelength modes. We find significant 
non-unwinding events in all but two of the configurations investigated, with over one third of 
them exhibiting two events. However, none of these occur in events with a true unwinding. 
The mean anisotropy across each sheet has been set to zero but we can still quantify the 
amplitude of the long wavelength fluctuations about this by calculating the mean modulus 
and the standard deviation of the anisotropy averaged over the entire pattern for all simu- 
lations. These quantities are measures of the long-wavelength modes since the high peaks 
which contain most of short-wavelength power subtend a small solid angle. Taking all 22 
simulation datasets together we find 

= 0.12e 

u = 0.17 e (22) 

in both the XCORE and NLSM approximations. 
The non-unwinding events are of considerable interest, especially in the light of the rarity 

of actual unwindings. The mean peak anisotropies associated with them are found to be 

(-0.65 f 0.29)e XCORE 
(-0.67f0.29)~ NLSM 

(+0.60&0.25)~ XCORE 
(+0.63 f 0.25)~ NLSM (23) 

Ln order to describe features common to both unwinding and non-unwinding events we 
shall henceforth use the notion of the event midtime, being the time at which the associated 
anisotropy changes from being a cold to a hot spot; this is clearly identical to the unwinding 
time, where one exists. Table 1 provides a quick comparison of the maximum and minimum 
anisotropies from the different field configurations and numerical methods. 

Table 1 Comparison of the peak temperature anisotropies as described in the text. Here SS 
is the spherically symmetric configuration of Eq. (6) in 52.1. The anisotropies are in units of 
c= 8n2Giq. 
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Fi ure 1 The radii of microwave spots above a given anisotropy threshold, as described 
in t 1 e text. The solid line corresponds to the exact SSSS solution, the dot-dashed to the 
spherically symmetric simulation, the dashed to the average of the unwinding events 
and the dotted to the average of the non-unwinding events. 

4.2 CMB Spot Size 

The size of the CMB spot can be parameterized by the radius at which the anisotropy falls 
to some specified threshold, IAT/Tl = f c, at any given time. From Eq. (19) for the SSSS 
solution this is I 

(24) 

For the more general spherically symmetric configuration we can simply read off the value of 
the threshold radius from the numerical calculations. In the case of the random configurations 
the spot radius is calculated by counting all points in the vicinity of the peak with AT/T < 
-fc on sheets whose impact time is before the event’s midtime, and with AT/T > +fc on 
those for which it is afterwards, and taking 

where Nt(ti) is the number of lattice points satisfying the appropriate criterion at any impact 
time. We take the threshold value to be f = 0.5 e, being 30 in the background anisotropy 
determined above. 

Figure 1 shows the variation in mean spot radius with time in each case. In contrast to 
the linearly divergent SSSS case, in all the other cases the spot radius reaches a maximum 
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before falling off at early and late times. Except at their midtimes, the random and SS 
configurations’ maximum radii are typically between l/5 and l/3 of that of the SSSS solution 
at the same time. 

We would now like to make some estimate of the angular size that these spots would have 
on the microwave sky. This is never going to be completely satisfactory while we restrict 
ourselves to flat space simulations, but nevertheless estimates can be made. Recalling our 
designation of the initial horizon radius as 32 grid units via an estimate of the correlation 
length, and given that unwindings typically occur after around 30 time units, the horizon 
radius at unwinding is around 60 grid units. This is to be compared with a typical threshold 
spot radius of around 3 grid units, so we estimate the spot radius to be of the order of 5% of 
the horizon radius. 

Independent of any simulation parameters, we know directly from cosmology the angle 
subtended by the horizon at last scattering. As a function of the redshift t of last scattering; 
it is simply 

&,, 2( (1 + &)-ri2 radians (26) 

The angular radius of the spot on the microwave sky is hence of order 

Rt et - &,or(h,r ) ‘Or (27) 
where Rhor(t,,) is the ‘horizon size at the event’s midtime. In the spherically symmetric 
cases the correlation of the field on super-horizon scales means that the CMB spot may 
become larger than the horizon away from the unwinding event. This is certainly the case . 
for the SSSS solution, where the spot size grows linearly with impact time, although we note 
that we would only trust the result Eq. (19) close to the unwinding site. By contrast the 
general spherically symmetric configuration spot size shows similar behaviour to those of the 
random configurations, reaching a maximum radius both before and after the midtime. In 
the SSSS case, since a super-horizon sized coherent anisotropy is unphysical we impose a 
cutoff at the horizon size, setting the prefactor in Eq. (27) to one, though this is still a far 
from satisfactory state of affairs suggesting that, at least in estimating metric perturbations 
in the texture model, one should steer well clear of the SSSS solution whenever possible. 

For textures unwinding at decoupling, assuming that these results can be carried into the 
matter dominated epoch and that the redshift of last scattering is given by one of 

1+tl,- 5. 1 
1000 no re-ionisation 

re-ionisation (28) 

this yields 

84 a 
0.1’ no re-ionisation 
0.4’ re-ionisation (29) 

Bearing in mind that these are radii, our predicted spot-size appears similar to that found in 
Ref. [l l] who only considered a cosmology with reionisation. 

Illustrating these features together, Figures 2a-d shows the spot anisotropy profile for 
the SSSS solution, the spherically symmetric configuration, a typical unwinding event and a 
typical non-unwinding event. In each case the profiles are taken immediately before, at, and 
immediately after the midtime. 
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Figure Pa The fractional anisotropy generated by the evolution of various initial field 
configurations in units of C. In each case three photon sheets are shown, bein 
gridtimes before, at, and three gridtimes after the event midtime. These are 

$ 
three 

SSSS exact solution, a) the 

11 



- 

‘1 

Figure 2b (b) th e spherically symmetric configuration, 
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Figure 2c (c) a typical random unwinding configuration, 
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Figure 2d and (d) a typical random non-unwinding configuration. 
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5 Discussion 

It is encouraging to note the strong consistency between the results in the XCORE and NLSM 
approximations. Not only can the statistical results over the ensemble of simulations be 
treated as identical, but individual simulations with the same initial conditions exhibit events 
whose individual properties are quantitatively extremely similar. Since the two approximation 
methods are very different, this congruence of results lends considerable weight to our belief 
that both sets of simulations are accurately modelling the texture field’s evolution. While 
this is only the case at the level of resolution employed here (in both approximations any 
significant reduction in resolution is seen to introduce serious numerical errors - see Ref. [ 181 
for details), we are confident that the results in this paper are trustworthy and allow a genuine 
comparison between numerical calculations and the analytic solutions. 

Our key results from this comparative study are the following 

1. The randomly generated configurations produce microwave anisotropy patterns with 
completely different properties to the exact NLSM solution. 

2. Localised concentrations of gradient energy which do not lead to unwindings can still 
generate anisotropies which are extremely similar to those generated by genuine un- 
windings. 

3. We find a characteristic spot size considerably smaller than the horizon size at the 
collapse time. 

Let us comment on each of these in turn, before making some final comments on the relation 
between our work and that of other authors. 

We have found considerable differences between the properties of the microwave aniso- 
tropies generated by the exact SSSS solution and our more realistic randomly generated 
configurations. The peak anisotropy of the random configurations is smaller by 20-40%, and 
much more significantly the spot size is considerably smaller, leading to a huge reduction in 
the spot area on the sky and hence in the anisotropy integrated over a beam profile. This 
effect can doubtless be attributed to the SSSS configuration’s spherical symmetry imposing 
unphysical correlations on scales vastly greater then the horizon size whilst its self-similarity 
forces the collapse to occur as fast as causally possible, together leading to a msximisation of 
the anisotropies. The failure of the SSSS solution to represent the properties of true textures 
appears to be even more dramatic when looking at microwave anisotropies than the failure 
already noted [13, 141 when only considering the unwinding dynamics. 

Perhaps our most significant result is the observation that localised concentrations of 
gradient energy which nevertheless fail to unwind can still lead to very substantial microwave 
anisotropies; indeed the anisotropies due to such non-unwinding events are indistinguishable 
from those due to unwinding events. Furthermore the number density of such events is vastly 
greater than that of unwinding events; unwinding events occur only in around 4% of our 
simulations whilst non-unwinding events typically occur once per simulation. Given their 
indistinguishability we are led to believe that the non-unwinding events are the dominant 
contributors to the microwave background anisotropies, with unwinding events playing only 
a minor role. 

Our estimate of the spot size is that their typical radius is around 5% of the horizon radius 
at the time the spot is generated. As stated above, this is considerably smaller than that 
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generated by the SSSS solution, although that solution can only have a spot size attributed 
at all by the imposition of a horizon-size cut-off to remove the unphysical correlations. If 
we follow most authors in assuming that the texture scenario re-ionises the universe to a 
redshift of around 50, and take the liberty of extrapolating our flat space results directly into 
a matter dominated universe, then we anticipate a typical spot diameter, be it generated by 
an unwinding or a non-unwinding event, of about a degree. By contrast, in the absence of 
re-ionisation the typical spot diameter is only of the order of 10 arcminutes. 

Our study has been entirely a comparative one, concentrating on the relative results from 
alternative choices of initial conditions and approximation methods in the simplest possible 
environment. The emphasis has been primarily focussed on the behaviour of individual 
textures. We have not attempted any full cosmological simulations, and indeed the computing 
resources which we believe are required to mount accurate simulations of ensembles of textures 
are beyond those available at present (see Refs. [22, 181 for a detailed discussion). The 
cosmological simulations that have been done [lo, 11, 5) may therefore include systematic 
errors due to their inability sufficiently to resolve the microphysical events associated with 
the concentration of field gradient energy. In particular it should be noted that low resolution 
simulations are susceptible to spurious unwinding events, where configurations covering less 
than half of the vacuum manifold nonetheless unwind. With this caveat firmly in mind we 
now compare our results with those from such simulations. 

The most interesting. paper to consider in this context is that of Co&on et al [ll], 
who include a large number of physical processes in their cosmological NLSM simulations 
in an attempt to generate predictions for degree scale anisotropies. We are unable to say 
anything about their quantitative value for the magnitude of the anisotropy, or even about 
the statistics, as we have no guidance as to how to combine our different choices of initial 
conditions into an ensemble. Nevertheless, in two important qualitative aspects we are in good 
agreement with their results. Firstly, their spot size is typically of order one to two degrees (it 
is slightly hard to estimate which as they smooth their data with a gaussian filter on around 
this scale). This is considerably less than the horizon size as they assume.reionisation, and 
hence is in conflict with the original expectation based on the NLSM solution that the spots 
would be of order ten degrees [7, 81. However it is consistent with our result that typical 
texture unwindings do not lead to such large spots. Secondly, they exhibit a diagram of 
their simulation covering an area thirty degrees on a side (i.e. about 2% of the sky) which 
includes several spots. However, the number density of texture unwindings is known to be 
so low [3, 221 that it is very unlikely that even a single unwinding would have occurred in 
such an area. It is possible therefore that their spots actually correspond to non-unwinding 
events, which we have seen greatly dominate over unwinding events while giving rise to a 
very similar signature, although such results would also be consistent with spurious unwinding 
events. Qualitatively therefore our picture of many small spots is consistent with their results, 
although we emphasise again that we have no means of assessing their quantitative estimates. 

However, our results do seriously undermine the alternative method of estimating mi- 
crowave background anisotropies, where photons are traced through an ensemble of SSSS 
initial configurations which are evolved in flat or matter-dominated backgrounds [8]. The 
spots found in such calculations are probably too bright by a modest factor, but much more 
significantly the area is overestimated by a factor which could easily be in the range 25-100 
- both factors being attributable to the use of a maximal coherent initial velocity field. 
On the other hand such simulations only include unwinding events, whereas in practice the 
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all-sky anisotropy is dominated by non-unwinding events, so the number of spots appearing 
in their simulations is down, conceivably by a similar factor. Such opposing effects may en- 
able simple measures such as the all-sky rms fluctuation to emerge in acceptable agreement 
with other derivations (e. g. Ref. [lo]), despite the detailed microwave anisotropy distribution 
being totally different. 
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