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Abstract 

We study the effect of the non-Gaussian clustering of galaxies on the statistics of 
pencil beam aurwqs. We 6nd that the higher order moments of the galaxy distribution 
play a dominant role in the probability distribution for the power spectrum peaks. 
Taking into account the observed values of the moments of galaxy distribution we 
derive the probabiity distribution for the power spectrum modes in non-Gaussian 
models and show that the probability to obtain the 128h’1 Mpc periodicity found 
in pencil beam surveys is raised by more than one order of magnitude, up to 1%. 
E&her data are needed to decide if non-Gaussianity alone is sufficient to explain the 
128h-’ Mpc per&ii&y, or if extra large scale power is necessary. 
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1 Introduction 

The surprising discovery of a 128h -l Mpc periodicity in the distribution of galaxies (Broad- 
hurst et al. 1989) has raised an intense debate about the statistical significance of the signal 
detected. The main question is whether the periodicity is consistent with the local obser- 
vations or is rather to be regarded as a new feature appearing only when very large scales 
(> lOOh-’ Mpc) are probed. In the original paper by Broadhurst et al. (1989; BEKS) the 
statistical significance of the peak in the one-dimensional power spectrum was assessed mak- 
ing use of an external estimator, i.e. adopting a model for the clustering of galaxies. The 
clustering was assumed to be described by the usual correlation function t(r) = (T/Q)-~ up 
to the scale of 30h-’ Mpc, without any correlation beyond this scale, and without any higher 
order moment. As Szalay et al. (1991) pointed out, however, external estimators are very 
model dependent. Even slightly different assumptions, concerning e.g. selection functions 
or the parameters ro, 7, can result in dramatic variations of statistical significances. Indeed, 
Kaiser & Peacock (1991), investigating essentially the same dataset as BEKS, but including 
the effects of a realistic survey geometry, found that the mean power (or “noise”) level was 
to be significatively raised. This resulted in a much higher probability to find a peak as 
large as, or larger, the one at 128h-’ Mpc, so as to reconcile the standard model of galaxy 
clustering with the BEKS data. The strong dependence of the results upon the clustering 
model seems to force one to use an internal estimator of the noise level, i.e. an estimator 
which depends only on the data and on their expected statistics. This has been done by 
Szalay et a2. (1991), who showed then that the probability to find a peak as high as the one 
in the BEKS data, or higher, is 2.2 - 10q4, matching the original estimate. Luo & Vishniac 
(1993) also confirmed the result that, while the rest of the power spectrum is consistent with 
the hypotheses of clustering and Gaussianity, the single prominent spike at 128h-’ Mpc is 
not. They also showed that even a delta-like feature in the tridimensional power spectrum of 
the galaxy distribution can barely account for the BEKS spike. As we will show below, the 
probability estimate on which these conclusions are based relies essentially on two hypothe- 
ses: u) that the spatial bins of the BEKS survey are uncorrelated, i.e. that the clustering 
beyond 30h-’ Mpc is negligible, and b) that the components of the power spectrum can be 
assumed, by virtue of the central limit theorem, to be Gaussian distributed. The very fact 
that the probability estimate based on these two hypotheses is as low as 2.2 - low4 points 
to the conclusion that one of the two, or both, are false. This implies either that there is 
some previously unknown, and theoretically unexpected, feature in the tridimensional power 
spectrum at large scale, or that it is the other hypothesis, the Gaussianity, to be abandoned. 
The first possibility has been explored for instance in Voronoi simulations (see e.g. Coles 
1990, SubbaRao & Szalay 1992), or in truncated HDM models (Weiss & Buchert 1993). 
Unlike the precedent studies, in this paper we consider in detail the latter way out. 

The scheme of this paper is as follows. First, we derive the probability distribution of the 
components of a one-dimensional power spectrum in presence of higher order moments of 
the spatial distribution, making use of the Edgeworth expansion. Second, we ask ourselves 
which is the probability to find a spike as high as, or higher than, the one in the BEKS data 
in such non-Gaussian galaxy distribution. Finally, adopting the actual higher order moments 
found in local (< lOOh- 1 Mpc) observations, we will show that the formal probability for the 
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BEKS periodicity increases by more than one order of magnitude, approaching 1%. Even 
a slight variation in the 128h -l Mpc peak significance can bring this value up to several 
percent or down outside the three sigma threshold. As the data stand, our conclusion is that 
we cannot exclude that non-Gaussianity alone is sufficient to explain the data to a confidence 
level higher than 99% or so. The more interesting result is however that the non-Gaussianity 
of the power spectrum modes is decisive in estimating the likelihood of rare events. 

Let us note that we will not question in any way the reliability of the BEKS data or 
of their noise estimate. Bather, we derive our conclusion only taking into due account the 
already known level of non-Gaussianity in the galaxy distribution. 

2 Non-Gaussian pencil beam statistics 

The BEKS data consist in a set of counts along a survey geometry that approximates a long, 
thin cylinder directed towards the galactic poles. The galaxy positions are binned in N small 
cylinders of radius R = 3h-’ Mpc and radial length 30h-’ Mpc, out to L/2 N lOOOh-’ Mpc 
in both directions. The details of the survey are given in the original paper (BEKS) and in 
Szalay et al. (1991). Let us denote the cell counts as n;, with i = 1, ..N M 70. The discrete 
Fourier transform of the dataset is 

1 N 
fk = p C nj exp(i2?rkrj/L), 

j=l 
(1) 

where rj = 30jh’’ Mpc is the radial distance to the j - th bin, and P = C nj is the 
total number of galaxies (396 in BEKS). The counts nj have mean fi = P/N and variance 
a* =< (nj - ii)* > as well as higher order irreducible moments (or cumulants, or disconnected 
moments) k,. Let US recall that k2 = a*, ka =< (nj - ii)3 > , kd =< (nj - ii)” > -3kij, 
etc., and that for a Gaussian distribution k,, = 0 for n > 2. The power spectrum of the 
dataset nj is defined as (for k = 1,2, . . . . N/2) 

Ak = ]fkl*. (2) 
Let us define the quantity 

ak = (o* N/2)-“* c nj cos( 2xkrj /L) . 
j 

(3) 

SqUaIkg ok we obtain af = ( R4)*/[u2(N/2P2)]. L’k r 
bk = cj nj sin(2rkrj/L)/crJNTi and form the modulus 

ewise, we can define the quantity 

z zs ai + b: = Ak 
a*( N/2P2) - (4) 

The problem is now to find out the probability distribution density (PDD) of AL: when 
we know the one for nj. First, however, we have to derive the PDD of ok and bk. They 
are constructed as a linear sum of N independent variables (as long as the various nj are 
uncorrelated), so by the central limit theorem ok, bk should tend to be Gaussian distributed. 
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However, since N N 70 is not really very large, one should check if the higher order terms 
are significant. This is indeed what will be shown to happen. We make use of the so-called 
Edgeworth expansion (see e.g. Cramer 1966, Abramovicz & Stegun 1972, whose notation 
we will follow), according to which the variable 

z=Ci(X-mi) 

(Ci U;2)l'* (5) 

(the sums run over N terms) where the Yi are independent random variables with mean mi, 
variance oi and n-th order cumulants k,,i, is distributed like a function j(z) that can be 
expanded in powers of N-l/* around a normal distribution. To the order l/N the Edgeworth 
expansion is 

m - w 1+ r: &Hea(z) + &He4(%) + -He(l) + G(N-3’2) 1 . 

Here, G(z) is the normal distribution, He,(z) = (-l)“(dnG(z)/dzn)/G(z) is the Her- 
mite polynomial of order n, and the expansion coefficients are given by the general formula 
(Abramovitz & Stegun 1972) 

In general, to the order l/N” we will need the (2m + 2)-th order cumulant of K. Notice 
that properly speaking the Edgeworth expansion is not a probability distribution, since it is 
not positive definite. However, what is relevant here is that the error one makes to the order 
N -m is indeed of order N”“- r/* (Cramer 1966). The Edgeworth expansion has been used 
recently in astrophysics by several authors to quantify slight deviations from Gaussianity 
(Juszkiewicz et al. 1993, and references therein). In the form (6), the Edgeworth expansion 
can be considered as the mathematical expression of the central limit theorem for finite 
values of N. Now we can notice that, as long as the counts nj are uncorrelated, the variables 
ok and bk are indeed in the form (5), where x = (2/N)‘/*n#i and 0i = cos(2?rkr;/l) or 
sin(2?rkri/l), and where C mi = 0. Thii allows us to apply the Edgeworth expansion. To 
evaluate the expansion coefficients we need the sums 

c kr,i = (2/N)r’2kr c 8: , (8) 
i i 

where k, is the r-th cumulant of the counts n;, that is the observable quantity. For r = 2 
the variance squared replaces k2 in Eq. (8). The sum over the sines and cosines can be 
approximated as C 0: = N < cos’(z) >, where the average indicates the mean value of the 
function over a period. Then, the sum over the odd moments of the variables Y$ vanishes, 
so that ryr-2 = 0 for r odd. For the even moments we have that Ci a: = o*, while the non 
vanishing coefficients ~~-2 are 

~7.~2 = 2”* < COSr(Z) > (kr/O’) . (9) 

Due to the symmetry of the Fourier modes, the expansion in powers of N-l/* becomes an 
expansion in powers of l/N. 
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Since we wish to include terms to the order l/N2 in the Edgeworth expansion, we need 
the coefficients yi for i = 2,4. As we have shown, this requires an estimate of the 4-th and 
6-th order cumulants of the counts ni. The higher order moments of the galaxy counts have 
been calculated for different surveys (Saunders et al. 1991; Bouchet, Davis & Strauss 1992; 
Gaztaiiaga 1992; Loveday et al. 1992). Gaztaiiaga (1993) gives the cumulants up to kg for 
the APM angular catalog, by converting the angular moments to the corresponding spatial 
ones. The general result is that, for counts on scales ranging from some megaparsecs to more 
than 50 h-’ Mpc, i.e. in the linear or mildly non-linear regime, the dimensionless cumulants 
,Y,,, = km/Cm obey the hierarchical scaling relation 

Pm = s,pp 3 (10) 
where S,,, are the scaling constants (we have checked that the shot-noise correction is negli- 
gible in our case). Let us note that the count ni on a scale R >> r,, if r, is the correlation 
length of the fluctuation field, is a sum over N w ( R/T,)~ independent random variables. 
Then, by applying the Edgeworth expansion to ni, one can easily see that, to the lowest order 
in the variance, the scaling relation is a purely mathematical consequence of the Edgeworth 
expansion. On these scales, the physics of the clustering process is contained in the scaling 
constants S,, and has been widely investigated in several works, from the book of Peebles 
(1980) to recent generalizations as in Bernardeau (1993). 

Coming back to the Edgeworth expansion coefficients, we see that, from (9) and (10) , 

(11) 
where the numerical factor A r = 2’/* < cos’(z) > equals 3/2,5/2 for r = 4,6, respectively, 
and vanishes for r odd. The value of ~2 = a*/ir* can be expressed as a function of the correla- 
tion function (e.g. Peebles 1980), ~2 = (b+l/ii), where <o = VW2 j’d3rld~r2W(rl)W(rz)r(rl- 
r2) and where W is the window function corresponding to the BEKS cylindrical cells of vol- 
ume V. Since fi x 6 and &, is of order unity, we can approximate ~2 with Es, so that 
Yr-2 

x A S #-*)/* . The values of 7z,74 will result to be crucial. Several uncertainties, 
however, irekent their exact estimate. For <s we must rely on very local observations of the 
correlation function parameters 7 and ro. For 7 = 1.8 and ro = 5h” Mpc one gets CO % 1 
(see e.g. Szalay et al. 1991), but this value depends on ro as rl. We can consider the range 
<e f (0.8 - 1.3) as an acceptable one. For S4, Ss, one problem is that we need the scaling 
constants for quite elongated cylindrical cells, while the observations have been carried out 
mostly for large spherical or cubic cells. Since the scaling coefficients are indeed expected to 
be constant only for r >> ro (e.g. Lahav et al. 1993, Colombi, Bouchet & Schaeffer 1994), we 
cannot simply extrapolate their large-scale values down to our cell size. For S4, Gaztafiaga 
(1993) reports from the APM catalog values ranging from 20 to 40, for spherical cells of 
radius R = lOh-’ Mpc to R = l/z-’ Mpc. For 5’6, the range of values is even larger, from 
lo3 to 9. 103. In the mildly non-linear regime, these values are in agreement with the results 
of higher-order perturbation theory (Bernardeau 1993). One can naively assume for our 
cylindrical cells of volume V x 850(h-’ M~c)~ the value corresponding to a spherical cell of 
radius R = (3V/47r)li3 M 6h-’ Mpc. Then we obtain 5’4 M 25 and S’s M 2000. The reference 
values for the expansion coefficients can be then 72 M 40 and 74 M 5000. However, values 
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as large as 72 = 60 and 7.4 = lo4 can still be perfectly consistent with the observations. We 
will explore numerically all this range of values. 

Let us apply now the Edgeworth expansion (6) to ok or bk. Due to the cancellation of the 
odd orders in N-l/*, only the even Hermite polynomials are left in Eq. (6), so that f(ak) is 
an even function of ok. The PDD for y = uf is then P(y) = 2f(ak)ldak/dyl = f(y’/*)/y’/*, 
that is, to the order (l/N*), 

P(Y = a;) - id’1 + &- [gsps - W3 + 3g&] 
+& [!27P7 - 15g5ps + 45g3P3 - 15g1P1] 

[id'9 - 28&T + 2lQiP5 - 42O&P3 + 105glPl] s C CjPj(Y)v (12) 
j 

where g,, f 2”/*I’(n/2) and P,(y) = g;1yn/2-‘e-y/2 is the x2 PDD with n degrees of freedom. 
Now that we have the PDD for a$, bi we must find the distribution for z = a: + bi. Let us 
denote with d(t) the characteristic function (CF) of a generic probability distribution P(x), 
where 4(t) = J eitzP(z)& . The general theorems about probability distributions say that 
the CF of the sum of two independent variables is the product of the CF of the variables. 
Furthermore, by linearity, we see that the CF of P = PI + P2 is I + +(Pz). We are to 
use these two properties to derive the general distribution P(&). First, we calculate the CF 
4(P) for P(Y) g’ rven by (12), P(y) = CjCjPj. Denoting the CF for the x2 distribution P, 
as T),, G (1 - 2it)-“I*, we have 

4[%] = 4[a~]&] = P[Y] = (C cjtij)* 9 
j 

(13) 

where the sum runs over all the x2 PDD in the expansion (12), with the same cj’s. Now, 
since lltnlltm = 1Dn+m, we can see that the CF for the unknown distribution P(%) is a sum 
of x2 CFs, so that the final result P(%) is again a sum of x2 PDDs. Before writing down 
the result, we note that z = Ak/[02(N/2P2)] = 2Ak/&, where A0 is the noise level in 
the notation of BEKS. It follows & = a*N/P* = (<o/N + l/P), which gives an external 
estimate of the noise level. However, as already remarked, the estimate of ,4e by Szalay 
et al. (1991) is internal in that is not based on a a priori model for t(r), but rather on 
fitting the observational distribution function for A, at small amplitudes with the exponential 
P(Ak) = (~/Ao) exp(-A&o), as it should be in the purely Gaussian case (or for N ---) 00). 
The same internal estimate applies here, since as we will see the Gaussian and non-Gaussian 
PDD are equivalent at low amplitudes. 

Finally, the normalized distribution function for Ak to the order l/N* is 

P(% = 2Ak/Ao) = P2 + a#$ - 2P4 + P2) + a@10 - 4P8 + 6Ps - 4P4 + P-) 

+aa(Pfj - 3P6 + 3p4 - p2) , (14 

where al = -y2/4N, a2 = (19/96)$/N* and a3 = ~4/24N*. Eq. (14) gives the general 
PDD for the power spectrum amplitudes relative to a set of pencil beam counts with scaling 
coefficients s4, s6. When s4 = & = 0 we return to the exponential distribution P(%) = P2 
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on which the calculation of BEKS and of all the other works on the subject were based. As 
a digression, let us note that Eq. (14) can also be written in a very compact symbolic form, 
P(%) = P*[l + CT=,Uj(P* - l)j+l], in which the “products” of x*-functions P, are to be 
defined such that P, - Pm E P,+,. 

We can see from P(%) why the higher order terms are important. Since the peak-to-noise 
ratio X E Ak/Ae found by BEKS is very large, XBEK~ = 11.8, the terms containing higher 
order x2 functions will dominate over the P2 term when integrated to give the cumulative 
probability, even if the constants oj are small, i.e. even if N is large. Actually, for any given 
N there is a value z, such as the higher order terms dominate over the lower orders in the 
integral Jzrn P(%)dz . This is a consequence of the fact that, while the convergence of any 
distribution f(z), where x is as in (5), to the normal one for N --) 00 is ensured by the 
central limit theorem, the convergence itself needs not be uniform. The fractional difference 
between the cumulative distribution of f(x) and the one relative to a normal distribution 
can be arbitrarily large for large deviations from the mean. 

We can now directly compare the PDD (14) with the power spectrum coefficients found 
by BEKS. We use the tabulated values provided by Luo & Vishniac (1993), binned in peak- 
to-noise intervals of 0.5. We plot in Fig. 1 the cumulative function of the BEKS coefficients 
versus peak-to-noise ratio (a point at abscissa X represents the fraction of values of Ak in the 
BEKS data with peak-to-noise ratio larger than X) and compare this with our theoretical 
cumulative function : 

F(X) = /,:” P(+.J%, (15) 

where X = Ak/& = t/2 is the peak-to-noise ratio. The functions plotted are for the 
Gaussian case (72 = 74 = 0), and for three possible values of the constant 72: from bottom 
to top, 72 = 20,40,60, fixing y4 = 5000. It is clear that as 72 increases, the observed 
distribution becomes more and more consistent with the non-Gaussian behavior, except 
for the last point, the 128h-’ Mpc spike, which appears still far away from its expected 
frequency value. However, we can estimate now the probability to have XBEK~ = 11.8 or 
higher in one of the N 30 k-bins to which BEKS assigned the data (see Szalay et al. 1991 for 
a detailed exposition) and compare with the very unlikely value 2.2 - low4 originally found 
for 72 = 74 = 0. The non-Gaussian result is 

P(> 11.8) = 30F(11.8) = 0.003 - 0.01, (16) 

for the range 72 = 20 - 60. We obtain a record value P(> 11.8) = 0.015 assuming the ex- 
tremal values 72 = 60 and 74 = 104. The inclusion of non-Gaussianity pushed the probability 
to obtain the BEKS spike by more than one order of magnitude, without any need to invoke 
non standard features in the galaxy distribution. The result (16) states that the BEKS spike 
should occur roughly in 0.3-1.0% of the cases if the very large scale galaxy distribution has 
to be consistent with the local observations of variance and kurtosis. The result can be in- 
terpreted in two complementary ways. If further data do not reduce the peak significativity, 
our result indicates that is difficult, though not impossible, for the non-Gaussianity alone to 
explain the observations. On the other hand, if the observed peak-to-noise ratio is somewhat 
reduced, the deep scales probed by the BEKS pencil beam can become consistent, at a two 
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sigma level, with the local picture of galaxy clustering. In any case, it appears that the effect 
of non-Gaussianity cannot be neglected when one estimates the probability of rare events. 

In Fig. 2 we display the behavior of P(> 11.8) us. 72 for several values of 74. Assuming 
= 5000, the BEKS spike is inside the three sigma levels for 72 > 12, and inside the 1% 

Eve1 for 72 > 54. If 74 is larger, the range is widened. A value of XBEK~ smaller by even 
a ten percent would result in quite higher values of P(> 11.8), as shown by the dot-dashed 
curve in Fig. 2. A probability of 3% can be then reached assuming 72,74 in the acceptable 
range. Notice that for a purely Gaussian distribution the probability would still be outside 
the three sigma level. 

3 Conclusions 

We have shown that the higher order moments of the galaxy clustering play a dominant role 
in assessing the significance level of peaks in one-dimensional power spectra. The scaling 
constants S4, Se and the correlation average Q on the spatial bin in a pencil beam survey are 
combined in the crucial parameters 7~~74. Assuming that the spatial bins are uncorrelated, 
the question raised by the remarkable periodicity discovered by Broadhurst et al. (1989) in 
the very large scale galaxy clustering can then be expressed in the following way: are the 
values of S4, Se and of [e determined by local observations compatible with the clustering 
of galaxies at the very deep scales probed by the pencil beam? To give an answer, we 
have to determine the probability distribution for the power spectrum amplitudes of a non- 
Gaussian field sampled in spatial bins. We find by means of the Edgeworth expansion, 
truncated for sake of simplicity to the order IV -2, that the BEKS most prominent spike 
around 128h-’ Mpc has an occurrence probability of roughly 10m2 for acceptable values of 
72, to be compared with the value 2.2. 10V4 obtained by SzaIay et aI. (1991) neglecting the 
higher order correction. If the BEKS periodicity is not smeared out by further observations, 
we should probably conclude that the spatial bins cannot be assumed uncorrelated. Indeed, 
this is what the large coherent structures reported in deep surveys seem to require. In any 
case, the non-Gaussian terms have to be taken into account when estimating the likelihood 
of rare events. It is also possible that further orders in the Edgeworth expansion make a 
non-negligible contribution to the expected probability: an estimate of this, however, would 
require a much more precise knowledge of cumulants to the eighth order and beyond than 
is available at present. 

We also compared the peak occurrences of the full spectrum of BEKS and found it in 
a good agreement with our non-Gaussian probability distribution, especially if large values 
for 72 are allowed. This raises the possibility that further pencil beam data can measure 
the parameter 72, i.e. the product S&a, down to very deep distances (the distribution being 
less sensible to the other parameter, 74). However, because of the central limit theorem, the 
power spectrum statistics is certainly not the best place to look for non-Gaussianity. This 
is even more true for the three-dimensional power spectrum Ps(k): being it an average over 
k-directions, we expect that non-Gaussian deviations are negligible, except perhaps for very 
small wavenumbers. 
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