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Abstract 

The fragmentation functions for gluons to split into P-wave heavy quarkonium 

states are calculated to leading order in the QCD coupling constant. Long-distance 

effects are factored into two nonperturbative parameters: the derivative of the radial 

wavefunction at the origin and a second parameter related to the probability for a 

heavy-quark-antiquark pair that is produced in a color-octet S-wave state to form a 

color-singlet P-wave bound state. The fragmentation probabilities for a bigh transverse 

momentum gluon to split into the P-wave charmonium states xd, xcl, and xeo are 

estimated to be 0.4 x 10B4, 1.8 x lo”, and 2.4 x lo-*, respectively. This fragmentation 

process may account for a significant fraction of the rate for the inclusive production 

of X,.J at large transverse momentum in p$ colliders. 
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gluon can split into XJ at order cu.2 through the Feynman diagram in Figur: 1, gluon splitting 

into the h, occurs first at one order higher in (Y,. Since If- states of heavy quarkonium like 

the h, are difficult to observe experimentally, we concentrate in this paper on the J++ states. 

In charmonium, the charmed quark and antiquark are nonrelativistic with typical 

velocity v < 1 and typical separation l/( m,v). Our calculation of the fragmentation func- 

tion is based on separating short-distance effects involving the scale l/m, from long-distance 

effects involving scales of order l/( m,v) or larger. There are two distinct mechanisms that 

contribute to the fragmentation function at leading order in v [8], and we will refer to them 

as the color-singlet mechanism and the color-octet mechanism. The color-singlet mechanism 

is the production of a CE pair in a color-singlet 3P~ state with separation of order l/m, in 

the quarkonium rest frame. The subsequent formation of the X=J is a long-distance process 

with probability of order v ‘. In addition to the volume factor (mCv/m,)3, there is an extra 

suppression factor of v2 from the wavefunction of the P-state near the origin. The color- 

octet mechanism is the production of a CE pair in a color-octet 3Sr state with separation of 

order l/m,. The subsequent formation of the XCJ can proceed either through the dominant 

ICE) component of the xd wavefunction or through the small Ici?g) component, which has a 

probability of order v2. In the first case, the CE pair must radiate a soft gluon to make a 

transition to the color-singlet 3P~ ICE) state. In the second case, a soft gluon must combine 

with the CE pair to form a color-singlet j&g) state. In either case, the probability is of order 

v5, with a volume factor of vu3 and an additional suppression of u2 coming either from the 

probability of radiating a soft gluon or from the small probability of the IcZg) component 

of the wavefunction. Since the color-singlet mechanism and the color-octet mechanism con- 

tribute to the fragmentation function at the same order in v, they must both be included 

for a consistent calculation. 

Separating effects due to short distances of order l/m, from those of longer distance 

scales requires the introduction of an arbitrary factorization scale A in the range m,v << 

A << m,. The fragmentation functions for heavy quarkonium satisfy factorization formulas 

that involve this arbitrary scale. At leading order in v 2, the factorization formula for the 



fragmentation function for g + xd has two terms: 

D +fdhmc) = J$d!J’(zJ) + (2J + @.$&) ) 

where HI and HA(A) are nonperturbative long-distance factors associated with the color- 

singlet and color-octet mechanisms, respectively. The short-distance factors di)(z, A) and 

ds(t) can be calculated using perturbation expansions in I,. They are proportional 

to the fragmentation functions for a gluon to split into a CE pair with vanishing relative 

momentum and in the appropriate color-spin-orbital state: color-singlet 3P~ state for d(:) and 

color-octet 3S1 state for da, Note that in the factorization formula (l), the only dependence 

on A is in dy) and HL. This simple form holds if the coefficients are calculated at most to 

next-to-leading order in a,. Beyond that order, de also acquires a weak dependence on A 

and J. 

The nonperturbative parameters HI and HL can be rigorously defined as matrix 

elements of 4-quark operators in nonrelativistic QCD [9]. Their dependence on A is given by 

renormalization group equations whose coefficients can be calculated as perturbation series 

in a,(A) [8]. To order a,, HI is scale invariant and Hi satisfies 

A-&H;(A) = $&(A)Hr . (2) 

If the factorization scale A is chosen to be much less than m,, this equation can be used to 

sum up large logarithms of m,/A: 

HAh> = H;(A) + zlog 
27p. 

(3) 

where ,& = (33 - 2nf)/6 is the first coefficient in the beta function for QCD with nf flavors 

of light quarks. The parameter HI can be related to the derivative of the nonrelativistic 

radial wavefunction at the origin for the P-wave states: 

9 I%wl’ 
HI = s ,r (1+ cqvy) . 

c 
(4) 

3 



This parameter can be determined phenomenologically from the annihilation rates of the 

X=J states. Using recent high precision measurements of the light hadronic decay rates of 

xc1 and ~~2, HI has been determined to be approximately 15 MeV [lo]. The parameter Hi 

was introduced in Ref. [ll] in a calculation of the rate for the decay b --) xd + X, which 

also receives contributions from both the color-singlet and color-octet mechanisms for xd 

production. The prime on Hi is a reminder that this parameter is not related in any rigorous 

way to the corresponding parameter HB that appears in decays of the XJ states into light 

hadrons. Using data on the inclusive decays of B-mesons into charmonium, its value for 

A = m, has been estimated to be HA(m,) x 3 MeV [ll]. Th is arameter also enters into the p 

inclusive decay rate of the T into P-wave charmonium states (121. 

We now turn to the calculation of the coefficient diJ)(z, A) in the color-singlet contri- 

bution to the fragmentation function. We follow the method and notation of Ref. [2]. Let 

Sz, denote the amplitude for g’ + CE(~PJ,~) + g corresponding to the Feynman diagram 

in Figure 1. The CE pair have almost equal momenta, and are in a color-singlet 3P~ state. 

The amplitude A, can be written down in terms of R>(O) using standard Feynman rules 

for quarkonium processes [13]. Multiplying A, by its complex conjugate and summing over 

final colors and spins, we obtain the following generic form 

c%+H, m, 
( 

Ad4(-9pB) + M4Pdv + W4b& + wd + W4qaqP 
) 

, (5) 

where p and q are the 4momenta of the CE pair and the fragmenting gluon g’, respectively, 

and s = q2. The strategy is to reduce this expression in the limit qo >> m, to the polarization 

sum (-gad + . ..) for an on-shell gluon multiplied by a function of s and z, where z is the 

longitudinal momentum fraction of the cE pair relative to the fragmenting gluon. Terms in 

(5) that are proportional to qa or qa can be dropped, because in axial gauge, qa and CJ@ are 

of order rnz/qo when contracted with the numerator of the propagator of the virtual gluon. 

In the p,pp term, we can set p = zq + pl, where pi is the transverse part of the 4vector p. 

After averaging over the directions of pl, papa can be replaced by -g&‘f/2, up to terms 

that are suppressed in sxial gauge. The terms in (5) that contribute to fragmentation then 
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reduce to 

c&d; = s mc AJ(s) + $BJ(s)) (-gap). (6) 

Energy-momentum conservation in the form 3 = (5’ + 4ma)/z + p’:/(l - z) can be used to 

eliminate Fj in (6) in favor of s and z. The fragmentation probability is obtained by dividing 

the coefficient of (-gap) by s2 for the propagator of the virtual gluon, and then integrating 

over the phase space of the cz pair and the gluon in the final state. The phase space integral 

can be expressed compactly in terms of integrals over s and z [2]. The resulting expression 

for the integral over z of dJ’( z, A) is 

I 0 
‘dz &‘(z, A) = & l;m(n, drllr&z $ (A,(.) + (’ - ‘)(; - ‘“‘)&(s)) . (7) 

We have anticipated the presence of an infrared divergence ‘associated with a soft gluon in 

the final state by imposing a lower cutoff A on the energy of the gluon in the quarkonium rest 

frame. This translates into a lower limit on 8: s ,&A) = 4mz( 1 + A/m,). The calculations 

of the functions &(a) and BJ(s) in (7) involves some rather complicated algebra, but the 

final results are relatively simple. Interchanging orders of integration in (7), we can read off 

the functions d(:)( z, A): 

,-Jy)(t, A) = a3 O” 
27 I 

ds mi $(a 4m,?)’ fJ(4 4 9 z < (1 + 4mj/a 9)-l , (8) - 

4 - = 27 a&(a) J & m: s2(8 - 4mz)4 fJ(4Z) I 2>(1+-g, (9) 
where 

fob, 4 = (a - 12ma)’ [(s - 4rnz)l -’ 2( 1 - z)(zs - 4m,l)s] , (10) 

fl(V) = 6s2 [(s - 4rnz)l - 2(1 - t)(zs - 4mz)(s - 8m:)] , (11) 

f2(9,z) = 2 [(a~ - 4rnz)l(s2 + 96m:).‘.- 2(1 - z)(zs - 4mz)s(a2 - 24smz + 96md)] (.12) 

For z < (1 + A/mC)-l, th e integral over s in (8) can be calculated straightforwardly. The 

cutoff A can be set to zero everywhere except in terms proportional to l/(1 - t), which 
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diverge upon integrating over z. In the l/(1 - t) t erms, the limit A < m, must be taken 

more carefully, and it gives rise to a plus-distribution: 

+J l-z-” 
( > 

A + 
- 3 0 -i+ mc 

- log - 6( 1 - 2) . (13) 

For z > (I+ A/m,)-r, the limit A < m, can be taken only after evaluating the integral over 

s in (9). This gives rise to additional endpoint contributions proportional to 6(1 - t). Our 

final result for the short distance factor multiplying HI/m, in the fragmentation function is 

&‘(z A) = 2a2 , 81 W+ 1+1 I%,+ + (QJ - W+ lb$-) J(l- 2) + h(z) 1 , 

where the coefficients QJ are 

Qo=;, Qpy, Q2+ 

and the functions PJ(z) are 

PO(Z) = 
~(85 - 262) 

8 

+ 9(5 - 3%) 
4 

log(1 - 

PI(Z) = -3zy4zl , 

(15) 

(16) 

(17) 

(18) 

We next consider the color-octet coefficient d*(z) in the fragmentation formula (1). 

At leading order in Q,, this contribution to the fragmentation function comes from the 

subprocess g’ + CE(~&,~) given by the Feynman diagram in Figure 2. The c and E have 

equal momenta q/2, and are in a-color-octet 3Sr state. The projection onto this state can 

be reduced to a simple Feynman rule: 

4?/W.(!?/2) + dR&TZj /(q>( d+ 24 , 
c 

(19) 

where t?‘(q) is the polarization 4-vector of the 3Sr state and i, j, and a are the color indices of 

the quark, antiquark, and color-octet state, respectively. The parameter Ra(O) is a fictitious 
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“color-octet radial wavefunction at the origin” related to the nonperturbative matrix element 

Hi(A) by Hi = (2/3n)IRa(0)la/m:. The square of the amplitude A, for the subprocess 

g’ + CE, summed over final state colors and spins, is 

C&d; = 6na,m:Hi(A) (20) 

The qLsqp term can be dropped because qa is of order rni/qo when contracted with the nu- 

merator of the virtual gluon propagator in axial gauge. The expression therefore reduces 

to the polarization sum (-gap + . ..) for an on-shell gluon multiplied by Gna,m:HL. Di- 

viding by (4m,2)’ for th e virtual gluon propagator, we obtain the fragmentation probability 

(3ra,/8)HA/mc. This probability can be identified with the second term in (l), integrated 

over z and summed over J = 0,1,2. This term in the fragmentation function contributes 

only at the endpoint z = 1. We can therefore identify the function da(z) in (1) to be 

&l(z) = 2 S(1 - 2) . (21) 

The total fragmentation function at leading order in a, is given by the factorization 

formula (l), with the color-singlet coefficient given in (14) and the color-octet coefficient 

given in (21). T o avoid large logarithms of m,/A in the color-singlet coefficient, we can 

choose A = m,. We thus arrive at the final expressions for the fragmentation functions of 

gluon splitting into XJ to leading order in cr,: 

D o+xc, h2mc) m za’;mc’~ [(2J + ljl $+ + QJ J(l - 2) + PJ(z) 1 
+ (2J + I) ?ra’(2mc) Hi(mc) ~(1 _ *) , 

24 m, (22) 

where QJ and PJ(z) gi ven by (15)-(18). Th e c h oice of the scale ~1 in the running coupling 

constant is independent of the choice of factorization scale A. We have followed Ref. [2] in 

choosing ~1 = 2mc, which is the minimum value of the invariant mass of the virtual gluon. 

If we wish to use a value for the factorization scale A in (22) which is significantly smaller 

than m,, we should use the solution (3) to the renormalization group equation for H:(A) to 

sum up the leading logarithms of m,/A. 
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Rough estimates of the gluon fragmentation contribution to the production of the &J 

states at large transverse momentum in any high energy process can be obtained by multi- 

plying the cross sections for producing gluons with transverse momentum larger than 2m, 

by appropriate fragmentation probabilities. Integrating the initial fragmentation functions 

(22) over t, we obtain the probabilities 

P B-&J = 
-R +m).& + (2J + 1) na,(2m,)HA(m,) 

J 108m, 24m, I (23) 

where R. = 5, RI = 4, and Rz = 16. Notice that with the choice A = m, for the factorization 

scale, the color-singlet pieces give rise to negative contributions to the initial fragmentation 

probabilities. Requiring that all the probabilities (23) be positive, we obtain an interesting 

lower bound on HA( m,): 

He.4 ’ g?r 
loa, (2m) Hl * (24) 

Using HI x 15 MeV, m, = 1.5 GeV, and a,(2m,) = 0.26, we find HL(m,) > 1.4 MeV. The 

estimate HA(m,) x 3 MeV obtained in Ref. [ll] is consistent with this lower bound. Using 

the value HL(m,) x 3 MeV, our estimates for the the initial fragmentation probabilities in 

(23) are 0.4.10W4, 1.8.lo-‘, and 2.4.lo-’ for xd, xCr, and xes, respectively. The production 

of XCJ states contributes to the inclusive rate for production of the l-- charmonium state 

J/ll, through the radiative decay XJ t J/$+7. Multiplying the fragmentation probabilities 

given above by the appropriate radiative branching fractions of 0.7%, 27%, and 14%, we find 

that the probability of a J/+ in a gluon jet is approximately 8 x lo-‘. This is more than 

an order of magnitude larger than the probability 3 x 10 -’ for the direct fragmentation of a 

gluon into J/$ that was obtained in Ref. [2]. 

The methods used above to calculate the fragmentation functions Dg+Xcl(t) can also 

be used to calculate the distribution of the transverse momentum pl of the XJ relative to 

the gluon jet. This transverse momentum is related to the the invariant mass s of the gluon 

jet by s = (p’: + 4m%)/z + pT/(l - 2). For the color-singlet contribution, the a-distribution 

is obtained by integrating over z in (7). For the color-octet contribution, the s-distribution 
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is a delta-function at s = 4m,2. Adding these two contributions we obtain 

d%&O - 2atm,Hl (a - 12m,2)2 
ds - 81 s3(s - 4m,2) 

ecs - s ti(A)) + na;z(A) a(8 - 4m,2) , (25) E 

dPB-+m 4ajm, HI = 8+4m,l 
ds 

- 
27 9(23 4mX) e($ a tin(A)) + 3TaifL(A) 6(s - - 4m,l) , (26) c 

e-Xc2 = 4afmcHt s2 -I- 12smz +96mf 
ds - 81 s3(s 4mZ) B(s 5 m;n(A)) + - 5ra;;;(A) qs - 4m9 , 

c 

(27) 

where s h(A) = 4m,2(1+ A/m,). Integrating over s, we recover the fragmentation probabil- 

ities given in (23). Th e cutoff-dependence of the color-singlet terms in (25)-(27) is cancelled 

by the A-dependence of the parameter Hi(A) in the color-octet terms. The color-singlet 

terms in these invariant mass distributions were obtained previously by Hagiwara, Martin 

and Stirling [14], up to an error of 4n in the overall coefficient. They did not include the 

color-octet contributions, so their answers were sensitive to the value of the infrared cutoff 

A. In the region near the lower endpoint s = 4mz, the distributions (25)-(27) must of course 

be smeared over an appropriate range in pl before they can be compared with experimental 

data. 

We have calculated the fragmentation functions for gluons to split into P-wave quarko- 

nium states to leading order in a,. The fragmentation functions satisfy a factorization for- 

mula with two nonperturbative parameters HI and HL which can be determined from other 

processes involving the annihilation and production of P-wave states. These fragmentation 

functions are universal and can be used to calculate the rates for the direct production of P- 

wave states at large transverse momentum in any high energy process. They are also needed 

to calculate the total production rate of the l-- states from the fragmentation mechanism, 

since the P-wave states have significant rates for transitions to the l-- states. The fragmen- 

tation probabilities for g + xc1 and g + x,.2 were estimated to be on the order of lo-‘. This 

is large enough that gluon fragmentation into XJ should account for a significant fraction 

of the XJ’S that are observed at large transverse momentum in hadron colliders. Fragmen- 

tation into XJ followed by its radiative decay may also account for a significant fraction of 

the J/$‘s that are produced at large PT. 
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While this paper was being written, we received a paper by Ma [15], in which the color- 

singlet term in the fragmentation function for g + xc1 is calculated for longitudinally and 

transversely polarized xc1 separately. After summing over polarizations, his result agrees 

with ours except near the endpoint z = 1. In the endpoint region, Ma’s fragmentation 

function is sensitive to an infrared cutoff. 

This work was supported in part by the U.S. Department of Energy, Division of High 

Energy Physics, under Grants DE-FG02-91-ER40684 and DE-FG03-91ER40674 and also by 

the Texas National Research Laboratory Commission Grant RGFY93-330. 

References 

[l] See, for example, R. Baier and R. Riickl, 2. Phys. ClQ, 251 (1983). 

[2] E. Braaten and T.C. Yuan, Phys. Rev. Lett. ‘71, 1673 (1993). 

[3] G. Curci, W. Furman&i, and R. Petronzio, Nucl. Phys. B175, 27 (1980); J.C. Collins 

and G. Sterman, Nucl. Phys. B185, 172 (1981); J.C. CoIlins and D.E. Soper, Nucl. 

Phys. B194, 445 (1982). 

[4] E. Braaten, K. Cheungj and T.C. Yuan, Phys. Rev. D48,4230 (1993); Phys. Rev, D48, 

R5049 (1993). 

[5] C.-H. Chang and Y.-Q. Chen, Phys. Lett. B284,127 (1992); Phys. Rev. D40, 3845 

(1992). 

[6] A.F. Falk, M. Luke, M.J. Savage, and M.B. Wise, Phys. Lett. B312, 486 (1993); Phys. 

Rev. D49, 555 (1994). 

[7] Y.-Q. Chen, Phys. Rev. D48, 5158 (1993); T.C. Y uan, U.C.-Davis preprint UCD-94-2 

(April, 1994). 

[8] G.T. Bodwin, E. Braaten, and G.P. Lepage, Fermilab preprint FERMILAB-PUB-94 

073-T (in preparation). 

10 



[9] W.E. Caswell and G.P. Lepage, Phys. Lett. l67B, 437 (1986). 

[lo] G.T. Bodwin, E. Braaten, and G.P. Lepage, Phys. Rev. D46, 1914 (1992). 

[ll] G.T. Bodwin, E. Braaten, T.C. Yuan, and G.P. Lepage, Phys. Rev. D46, R3703 (1992). 

[12] H. Trottier, Phys. Lett. B320, 145 (1994). 

[13] J.H. Kiihn, J. K pl a an, and E.G.O. Safiani, Nucl. Phys. B157,125 (1979); B. Guberina, 

J.H. Kiihn, R.D. Peccei, and R. Riickl, Nucl. Phys. B174, 317 (1980). 

[l4] K. Hagiwara, A.D. Martin, and W.J. Stirling, Phys. Lett. B207,527 (1991) and erratum 

(to be published). 

[15] J.P. Ma, Melbourne preprint UM-P-94/01. 

Figure Captions 

1. Feynman diagrams for g’ + cc’ + g which contribute to the color-singlet term in the 

fragmentation function for g + XJ. 

2. Feynman diagram for g’ + CE which contributes to the color-octet term in the frag- 

mentation function for g --t xd. 
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Figure 1 

Figure 2 


