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Abstract 

We analyze the thickness-corrections to the Nambu walls, focussing 
on recent discussions on the subject. The presence of corrections de- 
pending on the Gaussian curvature and its implications are reviewed. 
We also highlight the consistency of the calculations, its limitations 
and the connection between alternative derivations. 
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This letter is addressed to the recent controversy in the literature con- 

cerning the thickness corrections to the Nambu action for topological defects. 

The thickness correction problem was originally analyzed by Gregory et. all 

[l], with the conclusion that the only corrections to the Nambu action are of 

second order in the thickness and proportional the Ricci curvature, R. In a 

subsequent paper, we discussed the problem in a slightly more general case 

and we showed that, if some properties of the static and plane solution are 

not assumed at the beginning, (as the original papers implicitly do), then ad- 

ditional contributions to the Nambu action, related to the mean curvature, 

arise [2]. More recently, another paper [3] addressed the same problem, as- 

serting the correctness of Gregory’s result. On the light of this recent claim, 

we want to clarify our results, stressing its basic assumptions and consistency, 

and also improving the analysis of an obscure point in our previous work. 

As in [2], we consider topological solutions of a scalar field #I with potential 

V(4) and degenerate vacuum states. In the case of walls, C$ will assume 

different vacuum states, 4’ and 4*, on each side of the wall. We consider the 

solution concentrated on a surface, and, for V( 4) = X(4* - u*)*, this surface 

may be characterized by 4 = 0. In a more general case, this surface may 

be identified by C$ = (4’ + &)/2 and V(4) does not need to be symmetric 

around this point. 

A Gaussian coordinatesystem is constructed, based on this surface. Points 

in the space-time are localized by: 

P(aA, c!yj = XP(aA) + sly (1) 

where uA are coordinates on the surfece, Xp(aA) describes the wall surface, 
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Nr( oA) are the normal vectors to the surface and c are coordinates along 

these normal directions. The derivatives of A?r(aA) are given by the Gauss- 

Weingarten equation 

where bACi is the second fundamental form and AkiA is the twisting vector. 

The metric is projected in this new coordinate system to give: 

G,,,dZ”dZ” = gABdoAdUB + 2gAjdUAd(j + gijdc@j (2) 

with 

gAB = GAB + CN&&,B -I- <‘Nj’BXv,~ i- c<jN(ANjp,B (3) 

giB = <‘NrN,j,B gAj = cN(ANpj gij = -6ij 

In this new system,the action may be written as 

(4) 

s= J J=ijkP-%d”~ 
witht=iP #6’,4 - V(4) and the equation of motion is: 

(5) 

L&( fig”aj#) + L&( figiAaA4) + ’ 

J-9 d=z 
-J$A(d?g”ja,4)+ 

+& 
W 

aA(J-SSABaB& + q = 0 (6) 



1 Approximatibn procedures 

Having in mind only solutions concentrated around < = 0, we consider 4 in 

the form: 

#J = 40(Ci) + h(ri> + 42(& 0”) (7) 

with 41 of the order of e and & of the order of e*. 

Because of the fast decreasing behavior of ai+ and V(4) for t > E, terms 

like [aid and {V(4) are one order of correction higher than ai+ and V( 4). 

This is all we will be assuming about the solution for 4. There is no reason 

forcing US to consider aia’# >> 8’4 (or &ai$ N c-*, $4 N e-l ). Had 

we in mind only a static plane wall solution, this would certainly be true, 

but there is no way to show that a solution like (7), restricted to satisfy 

[&;d < aid, must obey this extra requirement, and we must be allowed to 

proceed, consistently, without taking it. 

From (3)-(4) and (7) replaced in (6), we obtain an equation of motion 

which may be separated into the zero order and the first order equations: 

aia’q& + Kp(tQ + g 
I 

=o 
0 

and 

aia’4, + KFa’4, + KAcfiS& + 41 
d2V 
w 

I 
= 0 

0 
(9) 

where JO indicates evaluation at C#J = &, @ = gABbABi is the mean curvature 

and Kb = -bABibABj is the gaussian curvature. From the Gauss-Weingarten 

equation, we see that q and K$ are related to the gradient of the normal 

vectors, Nf. Since we have not yet solved the evolution equation for the 
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surface, we do not know, at this point, the values of @ and K,‘j, so that we 

can not yet solve (8) and (9). This was missing in our first analysis of ref.[2], 

but, in fact, it is not essential to know & and 41 at this stage as it is possible 

to proceed without the use of these explicit solutions. 

An important issue here is whether or not the expansion in the equation 

of motion should agree with the expansion in the action. As we understand, 

the expansion must be made in the equation of motion, so that it is con- 

sistent with the fact that the fundamental object of the theory is the scalar 

4. The wall, and all aproximations that come with it, appear as features 

of some solutions of the equations of motion, rather than a feature of the 

action. Besides, to make the expansion in the action requires a change on 

the dynamical variables in the variational principle, which must be used as 

4s 
640 - -0andE = 0. A high price must be paid to do this, as parts of the 

original action (7’) are completely ignored in this procedure l. In the effort 

to make the expansion in the action consistent, one ends up throwing away 

parts of the action that would otherwise affect the evolution of the system. 

This means that the expansion in the action is, in fact, inconsistent, and 

must be avoided. 

So, back to the equations (8), once the solution for 6 is, formally, iden- 

tified, the next step is to obtain an effective Lagrangean to describe the 

evolution of the surface c = 0. Since we now want to explore only the evolu- 

tion Xfl ( aA) ( we are not looking for solution h(c) and &(c)), the equation 

will include only derivatives in aA, which do not interfere with the expan- 

sion in <. At this stage, we may safely expand the action in powers of e, 

‘Like the last term in the r.h.s. of (20) ref. [3] which neither contributes to the first 
order equation, because it does not depend on 41, nor it appears in the $0 equation because 
it is of higher order. 
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and using (7-9), we separate the e-dependence from the a-dependence and, 

formally, integrate out the <-coordinates. This procedure leaves behind only 

constant (a-independent) factors which depend on C#JO and ~$1. Without going 

into all the details, we just write down the final result for walls, as in [2], 

eq.(31): 

s=h J [ G l+E@ - ER+ EK d”+‘a. 
- I 

(10) 
where 

P1 =j6"C < [~~j40@40 - V(h)] ) 

J SC cwwl 
and IC’ = GABbAB, I~ = bABbAB. Since there is only one normal direction in 

the case of walls, the indices i,j in /1 and K were omitted. 

Another important point must be stressed here. We could use partial 

integration to obtain equivalent expressions for JL. However, we must also 

notice that the use of partial integrations never changes any integral; it just 

provides alternative expressions for which the power counting in E can not 

be immediately readable with the only assumptions we have, namely (7) and 

c&p - d& 

The zero order term in (10) reproduces the Nambu equation, giving: 

IP = ijABbAB = 0 
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With this result, we may now go back to (8-9) and effectively solve for & 

and &, a procedure similar to the one advocated by R. Gregory et all [l]. 

Since I(0 does not depend on aA, at least up to lower order, the requirement 

(7) is self-consistent. Note that, at this point, the zero order equation, which 

can now be solved, agrees with the equations found before in the literature 

[1,3]. The difference remains only in the 41 equation, and it arises because 

of the weaker conditions we start with. As compared with [3], the exclusion 

of the last term of the action, (eq. (20) of [3]) from the equations of motion, 

as mentioned before, is also related to this difference. 

As for the first order contribution, we must note that if V(4) is symmet- 

ric, the equation’(g), with the apropriate boundary conditions, has an odd 

solution for which 11’1 = 0 and no first order correction appears. Besides, even 

when ~1 # 0, this first order contribuition in E will only be important for 

walls that are not spatially flat. As an axample, we compare the evolution 

of a plane and a cylindrical wall in the presence of the first order term. 

2 Plane and the cylindrical walls 

We will consider walls produced by a potential V(4) which is not symmetric 

between 4’ and c#?, the vacuum states on each side of the wall. In this case, 

~‘1 # 0, and a first order contribution to the Nambu action will be present. 

For spatially flat walls, we consider Xp = (t, CC, y, z(t)), the aA coordinates 

are identified with 7,x, y and dr = &?%. The only normal vector is 

given by: 

Np = (& o,o, J&) 
Using I(0 = ?jABbAB and the definition of bAB, bAB = X5N,kG,,“, we have: 
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. . 
IP = (l-52)3,2 

The Nambu action requires the plane wall to move with ir’ = 0, as expected. 

When the first order correction is considered, we get: 

= pa dtdxdy d-+ E ’ J [ 
. . 

I @j(l-3) * (12) 

. The first. order contribution turns out to be a total derivative which gives no 

contribuition to the equation of motion. So, any possible correction to the 

Nambu action for plane walls will be at least of order e*. 

To study cylindrical walls, we use P = (t, r(t) cos(@), r(t) sin(e), z), the 

aA-coordinates are identified with r, t,8 and dr = dmdt. The only 

normal vector is given by: 

Np = J&p (f, cos(O), sin(o), 0) 

Following the same steps used for the plane wall, we compute Kc: 

Making I(0 = 0, we have the usual Nambu equation for cylindric walls. By 

including the first order correction , we now obtain: 

S = h dtdedz rd- J 1 (13) 
and the equation of motion with first order correction is: 
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(12) +:+I4 
2i: 

q - 9~312 = 
0 

Using the zero order equation, we may say that, roughly, i: N r-l. So, 

the first order contribution will be basically - r-*, to be compared with the 

other terms in (14), which are - r -l. This new correction, which is already 

first order in et becames increasingly small when the limit r + 00 is also 

considered. 

Finally we would like to comment on the limitations of any of these meth- 

ods. Bight from the start, the evolution of a field configuration, c$, is arti- 

ficially splitted into two pieces: the evolution of 4(c) and the evolution of 

the surface 4 =-0. These pieces are, in fact, deeply interlocked and the split 

is promoted by the assumption that both & and 41 depend only on E’. By 

construction, we may only be sure that 4j+o = 0 and there is no way, a 

priori, to make sure that the CA-independence may be extended to < # 0. As 

it turns out, the lowest order equation for the evolution of the defect makes 

I~& = 0, which is enough to garantee that C& = do([) is a self-consistent 

choice. Any correction to the Nambu action will be of higher order and will 

not affect (8). For 41, solution of (9), the prospect is not so good. Since &l 

only affects the second order corrections to the Nambu action, we may safely 

consider Kc = 0 to solve (9). Even so, K;‘i is not necessarily aA-independent, 

thus invalidating the general use of 41 = #q(t). However, in the same way 

that the static and plane walls are considered as good local approximation 

for more general solutions, we may also consider, as a better approximation, 

that the defect is locally described by a wall with constant Kc and K, a 

higher order tangent manifold to the defect surface. It must be kept in mind 

that this is just an approximation, whose domain of validity depend on each 
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case. For plane walls, K” = 0 _ K = 0, and the case is trivial. For 

cylindric and spheric walls, we have 

jz2 

I’ = (1 - +2)3 + $(lt 3) 

with C = 1 for cylindric walls and C = 2 for spherical walls. So, the approx- 

imation that assumes both Ks and K as a-independent may be consider a 

good approximation when r is large enough or when r’ is small. The larger 

r or the smaller i, the better the approximation will do. Even though this 

procedure does not cover all possible cases of interest, it may provide im- 

portant information about the evolution of the defect. The existence of a 

rigidity term [4], which would affect the evolution of a defect originally with 

i N 0, may be analyzed within this framework, predicting whether or not 

the defect will straighten. 

In conclusion, the derivation of the effective action for defects must be 

seen as an approximation and, as such, must be used with discrimination. 

Used correctly, it may provide answer for some questions concerning the 

evolution of the defect. However, to be useful, it is important that the 

derivation is done with the least possible number of assumptions to avoid 

the influence from the trivial case of plane and static defects. With the 

assumption that 4 = #Q(~)+~J$(~)+&(~,Q~) and for the specific potential 

V(4) = w* - v*)*, this result states that there is no first order correction 

and there are two second order corrections: one proportional to the Ricci 

scalar R and another proportional to the Gaussian curvature K. 
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