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ABSTRACT 

We determine the nature and position of the Bore1 singularity of instanton- 
induced amplitudes in theories having explicit dimensional parameters. A strong 
energy dependence of the strength of the Bore1 singularity is found. Using the 
Bore1 transform, we show that the large-order behavior of the Green’s functions 
has generally nontrivial energy dependence. Specifically, we calculate the large- 
order behavior of forward scattering amplitudes in several models, including the 
standard model of electroweak interactions. 

1. Introduction 

In this talk, we discuss nontrivial energy (momentum) dependence of large-order 
behavior (LOB) of perturbative series. In the I$’ theory, the largcorder behavior of the 
r-point Green’s function G(‘)(pr, . . . ,p,) takes in general the form’ 

{G(‘)(PI,;- ,fi)}, - C&l,-..,p,)n!n”-‘R” for n + co, (1) 

where Y and R are constants and C, is independent of n. The momentum-dependence 
of the large-order behavior is factored out, and thus trivial. Nontrivial momentum- 
dependence of LOB could appear in theories having instanton solutions. For example, 
we show that in the quantum mechanical double-well potential problem, the LOB of 
the twopoint, off-shell Green’s function is given by 

{G(w, -IO)}" - C(w) n! r~("-l+~) & ( > 
n for n + 00. 

Here C(w) is a function of the energy w, Ss is the ins&ton action, and c = w/m, 
where m is the mass parameter of the theory. Note that the energy dependence in 
(2) is no longer factored out. In general, we find that the necessary condition for 
nontrivial energy-dependence of LOB is that the classical fields that determine the 
Bore1 singularity must have quasi-zeromodes coupled to the external momenta. 
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2. Bore1 singularity 

We consider a theory having a dimensionless coupling g and mass m. An extension 
to theories hav ~; more than one mass parameters should be straightforward. The 
Lagrangian is 

E = +$,m) (3) 

with 4 representing generic fields. We assume that m is independent of g, and g can 
be always factored out of L so that L is independent of g. We also sssume that there 
is an instanton solution with the action 

SIC? (4) 

where SO is a constant. Let us consider the perturbative expansion in the coupling g of 
the two-body forward scattering amplitudes 

A(-pi, -h : PlrPz,S) = 2 ang”. (5) 

As shown by Crutchfield 11,s the coefficients of the perturbative series can be deter- 
mined by the Bore1 transform, b(b), defmed by 

6(b) = & / 
o+ia 

erb u(g) d z (6) 
a-ice 

where r = 2&/g, and u(g) is the forward scattering amplitude in the instanton-anti- 
instanton baclcground. The Bore1 transform (6) is defined such that the instanton- 
anti-instanton singularity of the vacuum tunneling amplitudes is located at b = 1. 
Expanding S(b) at the origin, b = 0, 

s(b) = 5 c,, b”, (7) 
nrO 

we can obtain the coefficients on by 

an = (n - l)!c+, (&)n. (8) 

As will become clear, the leading singularity of the Bore1 transform arises from the 
Espinosa-Bingwald type cross section3 which is an imaginary part of a(g). The Espinosa- 
Ilingwald type cross section is generally given in the form 

and 
F(z) = 1 -U(z) 



with v a model-dependent constant, z = s/z, and e = E/m where E is the c.m. energy.4 
U(z) can be calculated perturbatively in z by doing perturbation about the instanton 
background, and its first few terms are known in several models.4” In the double-well 
potential and the two-dimensional abelian H&s model, 

CT(z) = -+rln(z) - +r in (In i) + O(z), 

with 1 = 2, k = 0 and 1 = 1, Ic = l/2 respectively. For the three-dimensional nonabelian 
Higgs model, 

U(z) =24+..., (12) 

where c is the ‘t Hooft-Polyakov magnetic monopole charge, and for the standard model 
of electroweak interactions 

U(z) = $34: +. . . . (13) 

Substituting (9) into (6), we have 

e(b) - & /.:I: exp[z(b-l+U(r))+~lnr] dz, (14) 

which may be evaluated by the saddle point approximation. The equation for the saddle 
point E, or equivalently 5 = e/Z is 

l-b=;*+ 1-z; U(z), 
( ) 

and the Borei transform is given by 

Substituting (11),(12), and (13) into (15), it is easy to check that the Bore1 singularity 
occurs at Z = 0, or equivalently at b = 1. Solving (15) in series of (1 - b), we find the 
leading singular behavior of the Bore1 transform for the above models,s 

W&D N (l-b)- (u+l+eli, (In &) -rk’r , 

Wa, N (1 - b)-(zy+3/z) exp 

Ws,v N (1 - b)-(“+I), for b+ 1. (17) 

Note that the strengths of the Bore1 singularities in the double-well potential and the 
three-dimensional nonabelian Higgs model depend strongly on the energy. 
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3. Large-order behavior 

Expanding the Bore1 transform in (17) around b = 0, we can find the large-order 
behavior of the forward scattering amplitudes. The coefficients c,, can be determined 
by 

where C is a path encircling the origin in the complex b-plane. With 3(b) given in 
(17), equation (18) may be evaluated by the saddle point method for large n. It is easy 
to check that the saddle point for the double-well potential and the twodimensional 
abelian Higgs model is given by’ 

and the perturbative coefficients have the asymptotic form 

a, + C’(E) n! &-I++) (ln,)-e”l’ for R --t cm, 

where C’(E) is a function of the energy. A similar calculation for the nonabelian Higgs 
model in three dimensions gives, 

and 
a* + C”(E) n! &-1) ,w= for n+ca, (22) 

where C”(E) is a function of the energy. Note that 

6+1 for R --f cc (23) 

in (19) and (21), which implies that the main contribution to the integral in (18) comes 
from the region near the singularity, where the Bore1 transforms in (17) are valid. For 
the standard model, the LOB of the forward scattering amplitudes has the identical 
form as that of the vacuum amplitude. 

4. Lipatov method 

In previous section, we have derived the nontrivial energy-dependence of LOB 
in several models using the Bore1 transform. Those results may be checked using the 
Lipatov methods of calculating the large-order behavior. For simplicity, we consider 
the twopoint, off-shell Green’s function in the double-well ,potential 

G(w, -w, g) = 
/ 

04 e-S(Q)&w)& -w). (24) 
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Scaling the field 

(25) 

and writing Q as a sum of the valley configuration9 &.I of instanton-antiinstanton pairs 
and the fluctuations n about the valley, 

OJ 

Y 
G(Y -w,g) - ; D’I dR e- :S(h.l(R)+n)(h.l(W) + i(W,,(4”&w, + i(-w)), 

(26) 
where R is the distance between the instanton-anti-instanton pairs. Writing 

G(w, -wr d = c an(w) g”, (27) 

and naively applying the residue theorem, we have 

G(u), -w, g) 
an(w) = &kg g”+l 

-I dRdg exp -$%.r(R) - (n + v + 1)lng &.I(w)&,~(-~). (28) 
[ 1 

In the last step, we have integrated out the fluctuations by the Gaussian approximation, 
and 

-L(R) = S(cib(R)) = 2.90 11 - V(mR)l (29) 
is the valley action. For large R, 

&,(w) cd &(w) eiwR” + &(w) cciWR’Z, (30) 

where $l,r are antiinstanton and instanton configurations respectively. Analytic con- 
tinuing the Green’s function to Minkowski space by w + -iw, we have 

a,(w) - J dRdgexp -$S,.I(R)-(n+v+l)lng x 
1 1 {hb4&(-4 + &J)h(-+wR + 4r(-w)h(w)e-"R + &(w)h(-70)) 

-/ dRdg exp wR - 
[ 

y(l - V(mR)) - (n + v + l)In.g] , (31) 

since for large n, main contribution to the integral comes. from the region R + co. 
Now Eq. (31) may be evaluated by the saddle point approximation to obtain 

a,(w) - &eF(R.,*), (32) 

where 

F(R,g) = wR - ?(l - V(mR)) - (n + v + l)lng, (33) 



and 

P=i( jj #$)I. (34) 

The saddle points are determined by 

WS $I”( R) = 0 
{R=R..g=g’} 

+qR’))=n+v+l. (35) 

For the double-well potential, the potential energy of instanton-antiinstanton pairs is 
given by 

V(mR) - t~-*~~. (36) 

With this potential, it is easy to work out (34), (35), to obtain 

oJw) + n! &-‘+4m) l ( > n EJ ’ 
which is exactly the result obtained from the Bore1 transform method. 
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