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Statistical Data Analysis 

A.A. Hahn 
Fermi National Accelerator Laboratory, Batavia, IL 60510 * 

Abstract 

The complexity of instrumentation sometimes requires data analysis to be 
done before the result is presented to the control room. This tutorial reviews some 
of the theoretical assumptions underlying the more popular forms of data analysis 
and presents simple examples to illuminate the advantages and hazards of different 
techniques. 

INTRODUCTION 

The function of this tutorial is to reintroduce the concepts of statistical data 
analysis to Instrumentation Engineers. I assume that everyone has already had an 
introduction sometime earlier in their course work. I hope to emphasize some 
practical considerations along with the theoretical underpinnings of the analysis. 
Another motivation is prompted by the availability of software packages which 
contain quite powerful statistical packages. 

The primary reference is a graduate student text by Bevington (1). Before we 
get too deep into the subject, it is useful to remind ourselves why this is an 
important topic. All the examples given below are taken from work which has been 
done in the Accelerator Division Instrumentation Department at Fermilab. 

Data Reduction and Precision Measurements 

Several instruments produce from one to hundreds of kilobytes of raw data per 
measurement cycle. Some examples at Fetmilab are the Synchrotron Light Detector 
which images the bunch by bunch transverse beam shape and is read out by a video 
camera, the Sample Bunch Display (SBD) which measures the individual bunch 
intensity and length in the Main Ring and Tevatron (2), the Booster Ion Profile 
Monitor which measures the transverse profile of the Booster beam (3), the 
Collision Point BPM system which measures the space-time collision point of the 
proton and antiproton beams at the two colliding points in the Tevatron, and the 
Flying Wire System which measures the bunch by bunch transverse beam profile in 
the Main Ring and Tevatron. What the Main Control Room wants from our systems 
is at most a few tens of words of summarized beam information. It is up to analysis 
to provide accurate and timely information. 

Several of the aforementioned systems are also being asked to provide 
automated measurements of the beam to the several percent level. It has been 
necessary to use sophisticated active noise subtraction techniques. 

*Operated by the Universities Research Association under contract with the United 
States Department of Energy. 



Calibration of Instruments 

Figure 1 shows the calibration of the Tevatron DCCT Toroid (The plotted y 
value is the number which appears in the Main Control Room. The advantage of a 
fit over simply drawing a straight line is that given the data, anyone can get the 
same answer. 

Figure 1. Calibration of Tevatron DCCT (T:IBEAM) 
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Parameterization of complex data by simple functions 

Several times I have parameterized empirical curves by a relatively straight- 
forward function, An example was the shape of the end field of a Tevatron dipole 
magnet. I needed a functional form which could be plugged into a formula to 
calculate the synchrotron photon yield. An error function shape fitted to the data 
was accurate enough for early prototyping. 

SIMPLE STATISTICS-A REFRESHER 

A fundamental requirement when a measurement is made is that a true value 
exists. This true value is often called the mean. If we make repeated measurements, 
we will find a distribution of the measurements about this mean. The width of the 
distribution tells us how precise our measurement is. A narrow distribution gives us 
confidence that we can determine the mean value well, while a wide distribution 
causes us worry. For an underlying probability distribution (either discrete, Pi, or 
continous, P(X)) we can define the mean p and the width o in the following manner: 

~ = Fjpi conrinuous ~ 
7 xP(x)& 

i=l -m 



I will sometimes refer to o as the rms (root-mean-square) width. o2 is also known 
as the variance. The distributions are normalized, i.e. 

cc 
continuous 

l=cPi- 7 P(x)& 
i=l -cc 

Sample mean and variance 

If we make n measurements of data, we can define a sample mean and width by: 

n 
XT CXi/tl 

L I i=l 

The last step was a consequence of replacing the population mean by the sample 
mean. One degree of freedom in the data has been removed since the data set has 
already been used once in calculating the sample mean. In the limit of an infinite 
number of measurements, p = lim x and (T = lim s. 

n--t- “+- 
For example if we measure the resistance of a collection of 5% I MR resistors, 

we expect the mean to be 1 MR. (Is this really true?) We also expect to find a 
distribution of the individual resistors about the mean value. The exact width 
depends upon what the 5% specification really means. Figure 2 shows an actual 
distribution of 51 measurements of 1 MQ resistors. This example illustrates the 
difference between experimental precision and measurement accuracy. The 
experimental precision of measuring was better than the resistor width distribution. 
This was confirmed by measuring the same resistor many times and noting the 
fluctuations were much smaller than 1%. But what of the absolute accuracy of the 
measurement? A summary of the data analysis is: 

Mean 1021 kR 
Std Deviation 22 kn 
Std Deviation of Mean 3.1 kn. 
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Figure 2. Histogram of measurements of IMQ 5% resistors. 
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Statistical fluctuations due to the underlying processes (radioactive decay, 
industrial production methods, measurement techniques) are easily handled by 
traditional statistical methods. Systematic or calibration errors are much more 
difficult to deal with. For example, the resistance measurements gave reproducible 
readings at the 2 kQ (0.2%) level. If we make ten measurements of the same 
resistor ,we can claim that our measurement is good (for that resistor) to 0.7 kR 
(we will show this in a following section). However the Ohmmeter may only be 
absolutely calibrated to the 1% level. What can we do to get a handle on systematic 
errors? Obviously we could buy a more accurate Ohmmeter or repeat the 
measurements with other brand Ohmmeters. (Why not use five of the same 
brand?). Changing measuring devices or techniques is equivalent to converting the 
systematic error into a statistical error. 

Common Probability Distributions 

Binomial 

P(m,p,N)= 
N!p”‘(l - P)~-” 

m!(N-m)! 

The binomial distribution gives the probability for m successes out of N 
independent trials with the probability of a single success being p. It is known as a 
discrete distribution since the observables (m) are integers. The mean value and 6 

are p=Np and a=JNp(l-p). A n example of this distribution would be the 
number of times (m) one would expect to roll doubles on a pair of dice for N 
throws. The probability (p) per throw = 6/36 = 116. 
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P(m,p) = Ilririrel’ 

The Poisson distribution can be derived from the binomial distribution in the 
limit that p-20, and N-> infinity in a manner that their product (the mean) Np -> TV a 
finite number. The observables “m” are integer and ~0, although u can be any 
positive real number. A unique and dearly beloved feature of this distribution is 
cr = &. The Poisson distribution occurs in the counting statistics of rddiwdCtive 

decay. 

1 (-r-F) * 

P(xJ&oj=& i 1 2 0 

Another limiting form of the binomial distribution when N >>l is the Gaussian 
Distribution. The Gaussian distribution is a continuous distribution x can vary 
continuously over the entire real axis. The Gaussian distribution is characterized by 
its mean u and width a. This distribution occurs everwhere! 

P(x,p,w)= + ifIx-pl<: 

=0 iflx-pi<: 

The ability of calculators and computers to generate (pseudojrandom numbers 
has made this distribution easily accessible to most people. This is a continuous 
distribution which has equal probability anywhere within the total window width 
“w” and identically zero probability outside. It can easily be shown to have a 

CJ = -\i” w /12 It serves nicely as a poor man’s Gaussian if this value of CI is used. 

The Binomial (I2 trials, p=l/l2), Poisson p=l, and Gaussian @=I, o = I) 
distributions are plotted in fig. 3a. The Gaussian is plotted only for positive x 
values. Figure 3b shows the case for the binomial (N=240, p=l/l2), Poisson ( p 
=20), and Gaussian (p =l, cr = 1). The similarity of the distributions for these 
varied conditions shows why the Gaussian is used so often. 
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Figure 3(a,b). Plots of Binomial, Poisson , and Gaussian distributions for n = 1 
and n = 20 respectively. The curve is the Gaussian Distribution. The plots illustrate 
the similarities of the three distributions. 
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PROPAGATION OF ERRORS 

Analytic approach 

If a quantity “y”, itself is a function of other variables which have errors, how 
can we determine ay? First one takes the derivative of the function with respect to 
the independent variables. Then the sum is squared and the cross terms dropped 
since they average to zero for independent measurements. 

Some common functions are: 

R=q +r2, 

R=r,*q, uRj;;=;(a,,/rt)2+(o,z/r2)2, 

R=IL 

r2 

R=r,rz, aR/R=J(url/rl~ +(20r;/r2)2, and 
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R = co+), uR/R = Ikan(r)l~,. 

Example: Error in the mean from n measurements 

We can calculate the error in the mean on n measurements by noting we can use 
the propagation equation for a sum of terms: 

and & = C-dn-i, giving 
j=, fl 

UT = 
n 

, if aXi are the same = a,, then 

+ ~,=5%;n=~ d i=l n n 

This is a very important result. It says that the uncertainty in the mean value 
decreases as the square root of the number of measurements. An important 
corollary is that the error does not decrease as fast as the number of measurements. 

Monte Carlo approach to propagating errors 

The analytic approach to error propagation assumes that all higher derivatives of 
R are negligible compared to the first derivative. This is obviously false whenever 
R is at a relative maximum or minimum since here the first derivative is zero. An 
example is the case R=cos(r) when r is 0. Notice that in the analytic description, 
u,= O! At these points it is necessary to employ a Monte Carlo approach to error 
determination. Sometimes it is easier than calculating a complicated derivative, even 
if the analytic approach is in principle fine. The method is quite simple. One 
generates n random numbers. If a Gaussian generator is available, so much the 
better. However a uniform distribution with window w = 3.46~ works fine. So 
r = rmean+(Ran-0.5)*w will do the trick ( Ran is distributed from 0->l). Just 

calculate the function R using each of the generated r values. The resulting 
distribution represents the uncertainty in R. Note that it may be asymmetric due to 
the higher derivative terms which are always left out in the analytic approach. 
Figure 4 illustrates data generated for R=cos(r), with r = O.O+O. I 
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Figure 4. Histogram of Cos(r) with r randomly generated in the interval 
r = O.O+O.l. 
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Central Limit theorem-or Why Daddy is everything a Gaussian? 

Given an arbitrary distribution which has a mean and variance defined, the 
Central Limit Theorem tells us that the distribution of the AVERAGE of N 
measurements is Gaussian with a variance o2iN. The way this is typically 
interpreted is that most measurements we make are due to averages of processes 
which are ongoing at the microscopic level. For example, if we measure the current 
through a circuit, it is the sum of 1023 moving electrons. The individual electrons 
probably have a Maxwell-Boltzmann Distribution, but our measurements of the 
current will resemble a Gaussian distribution. 

Central Limit Theorem. 

Lr I 1111 dd? II .- I 
=u 200-I B 
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Figure 5 illustrates the Central Limit Theorem. The data on the left of the plot 
are inputs into the calculation and the data on the right are the outputs. An 
experiment consists of 100 random numbers (trials) generated uniformly in a 
window of Width =5.0 (rms=1.443), and centered at 3.70 (Mean ). The sample 
mean was calculated from the data of each experiment. A total of 10000 
experiments were run and the mean from each was histogrammed in the plot. The 
smooth curve is a Gaussian with K = 3.7, et= rms/sqrt(#trials)=0.1443, and area 
equal to 10000. The curve is in excellent agreement with the histogram. The 
quantities on the right are calculated from the actual histogram. 

ESTIMATION OF PARAMETERS FROM DATA. 

Principle of Maximum Likelihood 

Suppose we have n independent data measurements yi taken at n points xi. 
These points xi could all be the same point or they could just be the order in which 
the measurement was made. How can this data be used to learn something about the 
underlying functional relationship of y versus x? Clearly we have learned how to do 
this already in the case of an calculating a mean. 

Figure 6. The Probablity of measuring yi at xi 

Let’s assume we know the form of the functional relationship, if not all the 
details. An slightly more complicated example than the mean would be 
y(xi)=al +az*xi, where al and a2 are unknown parameters that we would like to 
determine. At each independent point xi, the measurement vi is distributed about the 
“true” value y(xii with a width oi. Figure 6 illustrates this concept. At any point x 
the measured yi is distributed according to the Gaussian distribution. The true value 
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y(x) is represented by the ridge y(xj=lO+ I Ox on the figure. o(x) was made to vary 
as the squareroot of y(x) to illustrate the effect of a non-constant o. Thus the 
Gaussian distribution is narrower and “peskier” at low values of x. However the 
area under each Gaussian along they direction is equal to one. The probability for a 
particular measurement vi is Pi which depends on vi, y(xi), and oi. Figure 7 shows 
Monte Carlo data generated using the above assumptions. The data are plottted with 
the window error bars (3.460). The other curves will be explained in the next 
section. 

Figure 7. Data generated along the line y(x) = 10 + IO x The data points are 
shown with window errors (3.460). The Curves are explained in the text. 

Y 

x 

The total probability or Likelihood, L to have measured the particular data set of 
” 

yi values is L = n Pi, where Pi is the probability for each particular yi Given 
1 

this data, we would like to estimate values for the parameters a of y(x). Coming to 
our rescue is the Principle of Maximum Likelihood stating that the best estimate we 
can make for the parameters will be the ones which maximize the Likelihood (or 
total probability). I like to think of this as the Principle that Nature Plays Fair. 

Uniform and Gaussian examples 

If the underlying statistical distribution is known, one can calculate the 
probabilities for different values of the unknown parameters. Figure 8 plots the 
Uniform and Gaussian Likelihood distribution (using the same equivalent rms 
(Sqrt(y(xJ))) for the data shown in fig.7 by varying the parameters al and a2 and 
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recalculating L. Notice that the Uniform Likelihood Distribution is flat all values 
for al and a2 in the plateau are equally likely. All values outside are excluded 
(L=O). Without invoking a new principle we cannot go further with this 
distribution. The Gaussian Likelihood is peaked about a particular value of (al,a2) 
= (10.1,9.6). These values represent the most likely values for (ul,u2). It will turn 
out that the Gaussian Distribution will have some very convenient mathematical 
features which will save us from having to do all this work. In fig. 7, the dotted 
lines are the (al,u2) values from the comers of the Uniform Likelihood distribution. 
The heavy solid line is the actual theoretical curve (al,aZ)=(lO,lO). The heavy 
dashed line is determined from the peak of the Gaussian Likelihood Distribution 

Figure 8. The Likelihood distributions for the data. The left plot is from a uniform 
orobabilitv function. The rieht olot from a Gaussian probability function. Both use 
‘the same data and rms width. ’ 

, 

Development of Least Squares Fits 

If the individual y(x) distributions are Gaussian, some wonderful things 
happen. The Likelihood function is: 

-1 
2 

Notice that once we have our data set, and have determined the errors at each 
point, the only dependence in L is in the parameters u, which appear only in the 
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function y(x,u). Therefore maximizing the Likelihood is equivalent to minimizing 
sum of the squares in the exponent. This exponent is known as chisquare, 

x2=4 

i l ! 

(Yrd;i,, 2 

1 

Linear fit to parameters 

We can gain some insight by expanding x2 in a second order Taylor’s series 
about about its minimum, 

&‘(a”) 

X2(‘)= X2(‘O)+C a 

j 'J 

Firsr derivative terms 

The first term in the expansion is just the value of x2 at the minimum. The second 
term is 

dx’(“O)= d~ii(ri’~~-yi)i =2~(y(-‘i,a)-Yi)di(rj,“) 
c?aj r3aj i CT,’ aj 

The nomenclature is that “j” refers to the jth parameter, and “i” to the ith data point. 

Since we want to minimize x2 ,we set the each of the first derivative terms to 
zero. If y(x,a) can be written as a linear function of the parameters aj, 

the mathematics simplifies even further and we have what is known as a Linear 
Least Squares Fit. With this assumption the equations simplify to: 

0 = 1 cx jkak - Bj , where 

andpj=xyifjF), 

i ai 
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Notice that crjk , which is an element of the curvature matrix (see next section), 
depends only on the functional form of y(x) and the error values but NOT the actual 
yi data values. All information about the data are contained in the pj These 

equations simpify in form into a matrix equation {u}(a) = (8). This equation can 
be inverted to solve for the a parameters giving 

(a) = {aF’(P) = {E)(P) or 
aj=&jkak 

&jk is an element of what is known as the error matrix, 

Second derivative terms 

With y(xj,a) a linear function of the a, it is easy to show that the coefficient of 
the second derivative of x2 is cfjl;. Therefore around the minimum, 

X2(a)= X2(“o)+~aj&,d~k 
This is exact for the linear function case. ajk.represents the curvature of x2, We 

will see that a steep curvature of x 2. Implies small uncertainties in the determination 
of the pammeters a. 

Erron for the parameters u 

Now that we have a mathematical prescription to find the parameters, it is 
reasonable to ask what are the rms errors of the parameters themselves? The 
uncertainty can be propagated back to the source of the uncertainty the errors in yi. 
Since oj = Ejk/lk , 

daj=C%yi=x @k 

j&i i 
dYi=~Ejk~$Yi~ 

'jaj=C&jkC dyi = xEjk xwdyi. Therefore, 
k i k i Oi 
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~Ejk~~)‘i 
k i ai 

~&~~~fm(:,r)d~,, 

m n %I 

= ~j!?lm~ 
fk(xi)fm(xi) &2 = zE.kE a 

I 
up I J im km = C&jka/k = &jl 

[ i km k 

This explains why &jk is called the error matrix. 

Explicit example 

This section calculates the fit and errors for the sample generated data which has 

been used throughout this paper. With the function yacluai(~) = 10.0 + 10.0x, the 
data are 

xi =[O, 1, 2, 3, 4, 5, 6, 7, 8, 9, IO] 

Yi =[I36 14.1, 25.3, 38.9, 40.0, 67.3, 77.8, 72.0,75.0, 97.1, 115.31 

uyj =[3.2, 4.5, 5.5, 6.3, 7.1, 7.8, 8.9, 9.5, 10.0, 10.51 

With these values the matrices are: 

and, 

Solving for the parameters and their errors gives 

(a)={&}(~)=!~~~)=(‘~~~~) U, =(g)=(l6JL), with 
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x2 = 10.4 / 9 degrees of freedom at the minimum. 

Calibration errors from results 

Now that we have determined our parameters it would be useful to use the 
results. Suppose y(x,a) represent a calibration of a system. How do we state the 
error of the calibration? It is incorrect (in principle) to claim the uncertainty of the 
calibration as being given by the data fluctuations from the curve. Why? Because if 
(a big if!) the data are really described by our chosen function, we should be able to 
do better since the fit is using all the points. A good example would be the error in 
the mean. If we make 100 measurements of a value, the error in the mean should be 
a factor of 10 lower than the rms width of the actual data distribution. If we know 
the rms width, an easy check is calculating the x2 value. It should be (as we will 
see) approximately equal to the number of data points for a good fit. Likewise in 
the case we have just calculated, our knowledge of the equation of the line is much 
better than the fluctuations of the data around it. But how well do we know it? The 
uncertainty can be calculated by propagating the errors. However we will propagate 
the error only to the parameters instead of going all the way back to the data. The 
error in y(x)=ul+a2x is 

~Y(x.a)=~~~j=~fj(X~Uj. 

J j 

a~(X,CZ) = Cfj(x)dQjCfk(X)dak 

i k 
= Cfj(X)fk(X)(dajdak) 

i.k 

In our particular example, the last equation become? 

a+,,) = fl(x)fl(X)El I +2fl(~)fz(~)~I* +f*(X)f*(Xk22 

= El, +2x&,2 +x%** 

= 6.00 -2.04x+.38x2 

Notice that the parameters are correlated. We cannot ignore the cross terms. The 
reason for this is that they have been determined from the the same set of data. 
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aycx,a) is plotted as a function of x in fig. 9. Notice how the error is smaller at all x 
values than our data estimations. Also note how the error grows very fast for x 
values outside our data set (~10). This tells us to beware extrapolations! 

Figure 9. The error in the fit y(x)= al+ azx as a function of x The parameters a 
are the fit values. 

(5 y(.r.a) 
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Non-Linear Least Square Fits 

Log and other endruns 

Some functions with non-linear parameters lend themselves to a linear fit by a 
remapping of the independent and dependent variables. The most common are 

y = qeazx + log(y) = log(al) + a2~ and 

y =a,x”2 + log(y) = log(a,) + a.2 log(x). 

The new variables are log(y) and X, and log(y) and log(x) respectively. This 
was an important feature, especially when most data analysis took place on graph 
paper (remember semi-log, logarithmic, and probability paper ?). Even now the 
technique is useful due to the simplicity and availability of software on computers 
and calculators. However caution should be applied since the error bars are 
certainly not equal (generally what the software assumes), even if they were for the 
original y values. Typically the smaller values of y are overweighted if one assumes 
equal errors for log(y). This will cause the fit to overemphasize the small y values. 
In addition the error bars are no longer symmetric about the “true” value. For 
example if the error is +lO and y=lO, ydata might range from 0 to 20. On a log 
scale, the error bar should range from -infinity to log(20). 
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Lineurization 

If y(x) is not a linear function of the parameters, what can be done? Due to the 
success of the Linear Least Squares Fit mathematics, the answer is obvious- 
linearize the function! Expanding y(x,a) about the parameters (I gives: 

x*Z~(Y(xi~aJ-Yi~ +c 

(llXi,~“)-Yj+z”~~~)~ajj’ 

I u;z i a; 

The entire formalism for the linear least squares fit can be taken over with the 
substitution of (y(Xi) - yi) for (-yi) ’ d dn realizing that the parameters are now daj. 
The &’ ‘s are considered as constants, and hopefully close to their true values. The 
implemented algorithms usually require the user to make an initial guess at the &’ 
In addition one usually supplies the fit with the analytic partial derivatives, again 
computed at the & starting points. Some algorithms will compute the derivatives 
numerically for you, but this triples the number of calculations of a complicated 
function (which is already being evaluated at every x value). The fit calculates the 
do’s which then are added to the a@s and the process starts over again, this time 
using the new so’s to calculate y(x) and its derivatives again. The process can be 
numerically intensive if there are a lot of data points. Generally the user uses some 
requirement to stop the iteration such as Chisquare not changing. The definition of 
errors in the parameters is the same pi as in the linear case. 

As has been mentioned, many packages exist in spreadsheet, statistical, and lab 
data acquisition software which will fit non-linear functions. The art of the process 
is starting the fit off at the right point. It is one thing to fit a curve by hand- 
specifying the starting parameters, and quite another to automate the sequence under 
all conditions the aaccelerator provides. If the signal to noise of the data is good, it 
will usually be easy to automate the process. Most of our work has been done with 
functions which are close to being Gaussian in shape and on a reasonable 
background: 

1 x-&j 
2 

y(x,a) = a, + a*x + axe t 1. 2 05 

We typicallly estimate the background a] at the ends of the data array, set a2 = 
0, a-3 = (maximum value al ), aq =x value of the maximum value, and finally find 
the full width half maximum (FWHM) peak heights on either side of the maximum 
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and set (15 =(FWHM/2.35). This method is reasonably insensitive the poor signal to 
noise ratios. 

Chisquare Phenomenology 

Chisquure Contours 

If the contours of x2 are rotated ellipses with respect to the parameter axes 
(easiest to visualize in a two parameter fit), the error matrix is not diagonal (notmal 
case). If the ellipse’s major and minor axes are aligned with the parameter axes, 
then the errors in the parameters have no correlations (and the error matrix is 
diagonal). A simple example (case 1) can be had from our simple Linear Least 
Squares Fit to the line y(x)= lO+lOs. (assume constant errors for this example). 
The contour of x2 is shown in fig.lOa. It is rotated. If we use a function (case 2) 
y(x)=al+a2*(x-5), the ~2 contour is shown fig.lOb. What we have done is 
replaced the y intercept of the first function with a constant which is now equivalent 
to the average y value (recall that x = 5 is the center x value of our data). Since the 
average y value is independent of the slope,we have “decoupled” the two 
parameters. If one recalls the formula for the off-diagonal element of {a}, the two 
parameter version has the value 

For case 1 and 2 respectively, these values are at2 = 0.55 and at2 = 0. The 
values of x = (0, 1, 2, 3,..10), are the values used in generating the data. This 
example suggests how to “orthogonalize” the function, even in the case where oi is 
not constant. Set the off-diagonal elements of {a}=0 and solve for the constant. 
The actual goodness of the fit is exactly the same in both cases. The difference is 
that it is easier to understand the errors of the parameters in case 2. Practically 
speaking, this technique is almost never used. However I plan to use it to make a 
point in the next paragraph. 

If we look at the contours in fig. 10, the first contour drawn is the one which is 
one (1) higher than the minimum value of x2. This means that the probability for 
our data to have been generated by the values of the pararameters which lie on this 
contour is 

L oE e-f(x’in+l) = b,,x;i = O&l&, 
‘ix 
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In case 2 with the “orthogonalized” function, the error matrix diagonal elements 
are just the inverse of the curvature matrix diagonals (since {IX} is diagonal ). Thus 
it is true that the one sigma error in the parameter is given by the increment which 

increase x2 by one unit since x2(o)= X*(“O)+CrjjEjj =~*(a’)+]. This can 

shown to be true even in case 1, as long as the other parameters are re-optimised. 
As a matter of fact, the technique of finding the 1 sigma contour is the best way to 
define the parameter errors since it works even in the case when ~2 is not well 
described by the second order expansion - the case in some nonlinear fits. It should 
be noted that the second order expansion of x2 is exact for all functions which are 
linear in their parameters. Also note again that {a}, the curvature, is completely set 
by the estimate of the data error (once the function has been set and the data 
measured).The actual data points yj have nothing to do with {a}. This means that 
the parameter errors are very sensitive to the estimation of errors. As a side note, 
the parameters are also sensitive to the xi values that the yi are measured at. One 
cannot expect a fit to work without sampling the data where the function is 
significant. 

Figure 10. Contour Plots of x2 for the Linear Fit. The horizontal axis is n, , and 
the vertical axis is a~. (a) is using the function y(x) = ((1 + u2 x while (b) uses the 
function Y(X) = a, + cl2 (X -5). 
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After all this work it would be nice to get error bars from our fits. Unfortunately 
most software packages leave out this step. This is fine if the error bars are the 
same magnitude for all data points, because at least the formulae for the the 
parameters are correct. Even still most packages don’t calculate either the curvature 
or error matrix so they leave it to you anyway. Calculating the curvature matrix is 
not such a big deal if you really need it, and most packages do have matrix 
inversion routines which will get you the error matrix. If the errors are really 
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varying dramatically across the data set, these packages may not even calculate the 
parameters very well. 

Of course the major difficulty is estimating the error bars in the first place. I 
suspect most of us do this empirically by checking the repeatability of our 
measurements. If one is fitting curves automatically under widely varying 
conditions, this option isn’t generally available. A trick which does work if one can 
assume equal errors is to measure the point to point fluctuations in the background 
region of the fit with a simple rms calculation. If it works, use it! 

Chisquare and goodt~ess of Fit: 

Most of us have heard about the goodness of the fit or x2. If we look back at 
the definitions of x2 we see that if the theoretical function ~(sj is close to reality, 
and if we have estimated the errors at each point correctly, (y(x)-vi ) should 
sometimes be less than o and sometimes greater, since a Gaussian distribution has 
been assumed. Therefore over a data set we should expect that each term in the sum 
should contribute one unit to x2, and x 2 wdl approximately equal the total number 
of data points N. Usually we divide ~2 by the number of degrees of freedom 

Y = (N-n) to give what is known as the “reduced” chisquare or ~2,. = $/(N-n). ~2, 
by the preceding arguments should now be approximately I if the fit is good. 

Probability tables exist for ~2,. which can be used to check the goodness of the tit. 

What if ~2,. is too ridiculously big or small? The first question should deal with 

the d estimations. Are they too small (large x’,) or too big (small x$). If this looks 
fine then one wonders about the function and/or the data themselves. Unfortunately 
there is no easy way to disentangle the two except by looking. Is the data 
asymmetric about the mean?, . ..Is the background handled correctly?, . ..Are there 
obviously bad data points? This is the black magic of the process. 

Fitting versus simple statistical analysis 

Suppose one is trying to extract the mean and width of a gaussian-looking peak, 
which is riding on a noise floor, i.e. 

I x-p 2 

y(x)=Ae * c 1 o +B. 

When is a simple moment analysis appropriate to get the centroid and width of the 
peak? 

1 have found that when the signal to noise is IO/l or better, it is possible to 
forego fancy fitting and do a simple moments analysis. By this is meant 
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t(Yi -B)xi i(Yi -B)(Xi -P)* 
~ = i=l and o= i=l 

IFlot -B) lb-“) 
i=l i=l 

These are simply the weighted u and o of the x values, using the yi ‘s as weights 
Before one can make this calculation it is necessary to strip away the noise floor. 
The resulting (yi-B) (in the background region) will fluctuate both positively and 
negatively around zero, and on the average cancel. However if the fluctuations are 
large compared to A, the peak amplitude, the results (especially o) will be very 
erratic. One must always be on guard under these conditions. 

CONCLUSION 

Statistical Analysis of data is within the reach of all Instrumentation Engineers. This 
tutorial has tried to stress the assumptions which are implicit in most analyses. One 
should realise that we have only scratched the tip of the iceberg. 

- 
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