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UNIVERSALITY OF PARTICLE MULTIPLICITIES 

K. Goulianos 
The Rockefeller University 

Abstract 
We discuss the scaling properties and universality aspects of the rapidity and 

multiplicity distributions of particles produced in high energy hadronic and e+e- 
interactions. This paper is based on material presented r in three lectures on 
pomeron phenomenology, which included a review of iruditional soft pomeron 
physics and selected topics on hard diffraction processes probing the structure 
function of the pomeron. 

1 Introduction 

In this paper we discuss the inclusive particle distributions and scaling properties in 
the variables Feynman-x, rapidity-y, and scaled multiplicity z = n/C. These (x,y,z)- 
distributions are related: Feynman-x scaling leads to a constant rapidity plateau, 
which in turn results in KNO scaling, i.e. the scaling of the multiplicity by its mean 
(distribution of z = n/E independent of 5). It is shown that the scaling violations 
observed in all three distributions are also related. The (x, y, z)-relationship leads natu- 
rally to a universal description of hadronic and e+e- multiplicity distributions, which is 
traced back to the partonic strucure of the hadrons and the random nature of particle 
production in high energy collisions. 

Below, we define some variables and relationships that we will be using throughout 
this presentation: 

x=$t&=y 
y=lnh=,lnE 

mT 

Feynman- x 

Rapidity 

m$=p+$m2 Transverse mass squared 

d3p/ E = d2pT + = d2pT dy Phase space element 

- ?j = ymzo = -1n tan(0/2) Pseudorapidity 

pr, = mT sinh y 
E = r-I@- coshy 

x = (2mT/&)sinhy = (2pT/&)sinh7 
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2 Feynman scaling 

At high energies, the fields to be radiated in an inclusive process, A + I3 + C + X, 
are Lorentz contracted in the longitudinal z-direction, so that the field energy eventu- 
ally becomes a b-function in z. By Fourier analysis, the field energy is then distributed 
uniformly in longitudinal momentum space, so that there is equal average amount of en- 
ergy in any element dpL, independent of pL. If in addition the field energy is distributed 
among the different kinds of particles in constant fractions at any given z-value indepen- 
dent of &, then the number of particles C of mass m and energy E = (m’ i-p; + pfJ’/” 
within dph is 

d4B d2PT dpt 
utot 

= diB(PTI4 E = di~(pT, x:)d2pT dy 

The total number of particles, which is obtained by integration of this expression, is the 
average multiplicity of C. Assuming that the function &(pT, z) has a limit as s -+ 00 
and x --t 0 (no s-dependence), we obtain for large s 

-c 1 m 
nAB - -2 

I I x=0 PT=O dB(?h ‘1 
d2pT dx 

= &B(x = 0) ins + constant 

The factor of two accounts for the fact that the physical region extends to x = -1. The 
tilde in ,Z denotes integration over pi, where we have assumed that the pT is limited 
and that j(x) reaches a constant limit for small x. 2 Thus, under these assumptions, 
Feynman scaling leads to multiplicities that rise logarithmically with s. For a process 
to be exclusive, this multiplicity must be suppressed. Assuming Poisson statistics (al- 
though not quite right, as will be discussed in Section 5), the probability for zero extra 
multiplicity goes as e-” N l/s, which explains why exclusive cross sections fall with 
increasing energy [ 11. 

3 Rapidity distributions 

It was shown above that Feynman scaling leads to multiplicities that rise logarithmically 
with s. Since dpL/E = dy, and ln(s/m2) = 2 ]ymar] is the total rapidity space available 
to particles of mass m, the value of p’(x = 0) represents the height of the plateau of the 
rapidity distribution (Fig. la), and the multiplicity grows with energy in proportion to 
the phase space. The multiplicity is governed by the value of F(x) at 2 = 0, because 
as s + 00, x + 0 for all finite longitudinal momenta pL. The new multiplicity comes 
from the lower and lower z-values contributing around y = 0, as can be seen from the 
expression (dx/dy),=o = 2mT/fi. Th’ 1s is shown graphically in Fig. la, where the 
expected rapidity distributions for two energies are shown assuming Feynman scaling. 

Yntegrate by p arts, noting that dx/ JKZE$ = dln(z+ JiTTGZj&), and that 

the integral J,’ p’(x) In z dx converges for finite j(0). 
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In the real world, it is found that the rapidity plateau rises logarithmically with s, so 
that the average multiplicity rises as N ln2 s (dashed line in Fig. la). This behavior vio- 
lates Feynman scaling and consequently results in KNO scaling violation in multiplicity 
distributions, as discussed below. 

The shape of the pseudorapidity distribution is not expected to be flat for particles 
with mass and a flat y-distribution, The q-distribution is depleted around 77 = 0 by 
an amount depending on the ratio pT/m and the q-value. The exact shape of the 77 
distribution is given by 

1 + sinh2 77 112 

1 f sinh2 77 $ (m/pT)2 1 
where vmax = ln(&/pT), corresponding to ymaz = h(&/mT). Fig. lb shows the 
T-distribution, resulting from a flat rapidity distribution, for pT/m=l. 

Experimentally, it is found that the average pT increases with multiplicity. Thus, 
the characteristic depletion at 77 z 0 of the v-distribution of particles above a given pT 
threshold, which is usually the experimentally measured distribution, is expected to be 
more pronounced at low multiplicities. 

/------ 
------. \ 

‘\ 
‘\ \ 

t 
P(O) 

1 
t 

y=o 

Fig. 1 
(a) Rapidity distributions for two ems energies: (solid lines) assuming Feyman Scaling; 

(dashed line) a more realistic situation at the higher energy. 
(b) Pseudorapidity distribution for Pt=m (approximate shape). 
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4 KNO scaling 

Koba, Nielsen and Olesen (KNO) h s owed [2] that Feynman scaling leads to scaling of 
multiplicity distributions. Specifically, they showed that the distribution of the number 
of particles n in the final state should be a function only of the variable z - n/n, where 
?i is the average multiplicity at fi. Their result can be expressed as 44 nP,(s) 3 fi- = 

n tic ) - 
~tot( s) ii 

where a,(s) is the cross section for the multiplicity being n. 
Formally, this result was derived by proving that all scaled factorial moments, defined 

as C* = nP/fiq, are constant, i.e. independent of s (or fi). In the special case of the 
second moment, or scaled variance, which we denote by (D/ii)“, KNO scaling predicts 
that the width D of the multiplicity distribution increases in proportion to the average, 
5, as ii increases. 

KNO scaling is a direct consequence of the rapidity plateau remaining constant as 
the energy increases. The increase of multiplicity comes from the stretching of the 
available rapidity space. The field “emits” the particles uniformely in y, so that the 
entire distribution fluctuates up and down with the total field energy, in a manner 
independent of fi. Therefore, the multiplicity distribution in general, and the ratio of 
the width of the distribution to the mean in particular, stay the same. 

Feynman scaling violations, which distort the rapidity distribution in the manner 
illustrated in Fig. la (dashed curve), are expected to induce KNO scaling violations. 
Experimentally, KNO scaling was found to hold at energies up to fi - 60 GeV (ISR), 
which was a surprising result given the relatively low energies and the fact that Feynman 
scaling was observed to be violated, as evidenced by the rise of the rapidity plateau with 
increasing energy. Later, when data bacame available at energies up to fi - 900 GeV 
(SPS), KNO scaling was found to be violated logarithmically with increasing &, and 
the apparent scaling observed at the lower energies was interpreted as being accidental. 
Below, we present a model that fits well the observed multiplicity distributions, and 
provides some insight into KNO scaling and violations. 

5 Multiplicity distributions 

There has been an enormous amount of data on particle multiplicities, and a large 
number of papers that offer interpretations. In this note, it is not our purpose to review 
all the data and theoretical papers. Rather, we present the salient features of the data 
in a pedagogical fashion, using approximations to make them more comprehensible and 
accessible for further use, and easier to relate them to the underlying physics principles. 
For more details, the reader may consult the references provided [3,4]. This presentation 
is based mainly on reference [4]. 

We begin with a discussion of hadronic multiplicities, followed by some comments on 
efe- annihilation. 
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5.1 Hadronic multiplicities 

Hadronic multiplicities have the following general features: 

l Universality: Both ?i and the shape of the multiplicity distribution depend only 
on the hadronic energy M and not on the nature of the hadrons involved in the 
process. The energy M is fi for colliding hadrons and Mx for diffractive or other 
subprocesses leading to a distinct hadronic mass (e.g. deep inelastic scattering). 

l Charged/neutral ratio, R = sicJfio: The ratio of charged to neutral multi- 
plicities (TO’S, not y’s from TO’S) is approximately two, as expected from isospin 
conservation. 

l Average multiplicity: The average total multiplicity (charged+neutral) in- 
creases with M as 

?itot M 4 + ln2 M at high M (GeV) 
fit*t = 3d7iT for M <- 60 GeV 

l Charged multiplicity distribution: Negative binomial. 

l Charged-neutral correlations: Binomial. 

l Total multiplicity distribution: Gamma. 

l Scaled width: The scaled width of hadronic multiplicities is D/C M l/2 indepen- 
dent of the energy, except for a logarithmic broadening observed at high energies 
due to KNO scaling violations. 

l KNO scaling: Approximately observed, violated logarithmically as M increases. 

The it - ln2 A4 dependence shows that the average multiplicity grows by a factor In M 
beyond the one power of 1nM expected from the increse of the rapidity phase space. 
This extra factor is due to the rising rapidity plateau, which is in turn connected to the 
rising cross sections with energy, and is also responsible for the observed KNO scaling 
violations. As we have seen, in Regge theory the total cross section grows as se. For 
E z 0.1) SC z Ins in the ISR to Tevatron collider energy range, i.e 60 < 4 < 1800 
GeV. Thus, it appears that the deviation of the pomeron intecept at t = 0 from unity 
governs not only the rising total cross section, but also the rise of the rapidity plateau, 
the corresponding rise of the average multiplicity, and KNO scaling violations. 

In the parton model, the function p(z) we introduced in Section 2.1 corresponds to 
the F,(x) structure function measured in deep inelastic scattering. A constant Fz(x) as 
x --) 0 leads to constant cross sections (see “Quarks & Leptons” by Halzen & Martin, 
p.199). For the cross section to rise as s’, it is required that F,(x) be - l/x’. This results 
in more partons being concentrated at lower z-values, producing a higher cross section 
as they become energetically available to create particles (x,;, = m2/s for creating a 
particle of mass m). 
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KNO scaling restricts the statistical functions that can be used to describe multiplicity 
distributions. For example, the Poisson distribution, for which the scaled variance is 
given by (D/ii)” = 5-r is excluded, since ii is a function of fi. The well known 
Gaussian or Normal distribution can be written in terms of the KNO scaling variable 
z = n/fi, and (D/E)” could be set to a constant, but a Gaussian is also not appropriate 
for describing multiplicities because it is symmetric in z while multiplicities have a lower 
bound of zero. A function closely representing a bounded Gaussian is the Gamma 
distribution, which can be written as 

i-iP,G 
kk = -pe-J= 

w 

z = n/ii, k-’ = (D/ii)” 

An example of a Gamma distribution is shown in Fig. 2. For constant k, the Gamma 
obeys KNO scaling. As we will see below, it describes well the total multiplicity. How- 
ever, it is not appropriate for describing &urged multiplicity distributions, since it is 
identically zero at n = 0 and there is a finite probability for observing no charged 
particles in the final state. 

ii I?,, 

0.9 

0.8 

0.7 

0.G 

0.5 

0.4 

0.3 

0.2 

0. I 

z=n/ii 

Fig. 2 
Gamma (solid line) and Negative Binomial (dashed line) distribution for 

1?=8 and k=4. 
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A function that was used successfully to describe charged multiplicity distributions is 
the Negative Binomial (NB): 

P, = ( n+;-ypkqn 

where P, is the probability of observing n failures while waiting for k successes, when the 
probability for success is p and q z 1 -p. It can also be interpreted as the distribution of 
successes in a unit of time, when the rate of success is a random variable with a Gamma 
distribution (rather than constant as for Poisson). The NB can be expressed in terms 
of k and fi as follows: 

It is interesting to note that for ii > k > 1, NB --f Gamma, while for k -+ 00 
NB --f Poisson. The NB is compared to a Gamma in Fig. 2. 

The NB also describes well charged multiplicities in restricted pseudorapidity ranges. 
Fits to data in different pseudorapidity ranges with the NB are shown in Fig. 3 [3]. 

At high enough ?i the NB is a KNO scaling function if k is constant with energy. By 
fitting distributions at various energies up to fi = 900 GeV, the UA5 collaboration [3] 
found that the parameter k decreases with energy, in violation of KNO scaling. The UA5 
result was expressed as k-’ = a+bln&, where a = -0.104f0.004 and b = 0.05810.001. 

While adequate for describing charged multiplicity distributions, the NB lacks simple 
physical interpretation. Also, it does not address the question of correlations between 
charged and neutral multiplicities, which must be fitted independently. A distribution 
that fits simultaneously the entire multiplicity distribution (charged+neutral) includ- 
ing the charged to neutral correlations was proposed in 1987 by this author [4]. The 
main idea was simple: in a hadronic reaction, fictitious particles n* are produced with 
a Gamma distribution, and upon production they “decay” to a charged doublet (charge 
conservation!) or a single neutral particle with a binomial distribution. Setting the 
‘Ldecay” probability to l/2, the total multiplicity distribution remains Gamma, but 
the distribution obtained for the charged multiplicity is found to be practically iden- 
tical to a NB with the same fiich. This is not surprising, since the scaled width of the 
folded GammaeBinomial or Modified Gamma (MG), which can be obtained by adding 
in quadrature the scaled widths of the Gamma and of the Binomial, turns out to be 
(D/fi)” = k-l+fi-‘, th e same as for the NB! Thus, the negative binomial behavior of the 
charged multiplicity arises from a parent Gamma distribution by the binomial interplay 
between the charged and neutraZ particles. Fig. 4 shows fits to data with the MG. 
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By fitting data at energies all the way down to include diffractive “masses” of a 
few GeV, it was found that the k parameter used in the Gamma function of the MG 
distribution varies as 

k-’ = a+ bln(Al+c) 

where a and b are the same as thbse obtained by UA5 and c = 6 GeV (A4 here is 
the avaiZuble mass in GeV, which for a pp collision is 4 - 1.88 GeV). The increase of 
k-’ with energy represents an explicit KNO scaling violation in the totaE multiplicity. 
The fact that KNO scaling was found to hold for charged multiplicities in the ISR and 
lower enery range (below 60 GeV) is explained by an accidental “conspiracy” of the 
k-’ and fi- 1 terms to give a constant (D/C)” = k-’ + 5-l over this energy range. At 
higher energies (larger c), where the contribution of the fi-l term decreases, the charged 
multiplicities were found to violate KNO scaling [3]. 

The MG was also used successfully in fitting data in limited pseudorapidity ranges 
[4]. In fact, by incorporating it in a minimum bias h’lonte Carlo simulation, it was 
found that only two parameters were needed to describe the data in aZZ pseudorapidity 
ranges, namely the 5 and k of the total event multiplicity. Thus, the broadening of the 
distributions with decreasing pseudorapidity width (Fig. 3) appears to be the result of 
increased charged to neutral fluctuations, due to the lower number of particles, combined 
with Poisson-type fluctuations along the rapidity coordinate. The latter are expected 
in the Feynman model discussed in Section 2.1, in which the field energy is distributed 
along y with equal a priori probability and therefore the number of particles per unit 
rapidity obeys Poisson statistics. 

When the hlG proposal was made, there were no data on charged to neutral mul- 
tiplicity correlations at high energies. Recently, such data have become available [5], 
confirming the binomial hypothesis used in the h{G (Fig. 5). 

10; - 

Fig. 5 

Charged to neutral multiplicity correlations 
for pp collisions at ems energy of 1.8 TeV 
[SJ: Number of events vs the deviation 
from the mean measured in standard 
deviations assuming a binomial distribution. 
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The MG result has a remarkably simple interpretation: the Gamma distribution arises 
from a truely random source. In fact, the idea of using the Gamma probability function 
to describe the total multiplicity came from a study of the distribution of finishing times 
of the runners of the New York City Marathon. Fig. 6 shows two such distributions, 
fitted by Gamma functions. The fits are excellent, except for the region of short finishing 
times, populated by the elite runners. This is a good example of a distribution arising 
from a random source, represented by the different age groups, training amounts etc. The 
elite runner pack breaks away visibly from the Gamma distribution. Another feature of 
these distributions is scaling: the ratio (D/c) = l/A (k=P3 in the figure) is the same 
for the two distributions to within 3.5010, although the mean values (parameter P2) differ 
by 20% (the d’ff 1 erent average finishing times are due to the temperature difference in 
the days of the two runs). Thus, the finishing time distributions obey KNO scaling! 

ID 
Lkwics 

Alcurr 
h’h4S 
x’/ndf 

so 
12.547 
21.16 
7.612 

293.9 / 50 
5 7s. 0 

I I I I I I 1 I I I I I 1 I I 1 
0 10 20 30 40 so 60 

i~c.w11.s of i PSO h’cw York Adurur/lort 

25.71 

10 

x=0.2(minutes-120)+ L 

1 I I 1 1 I I I I I I I I I I I I I I , I I I . . _ . - . (I 10 20 30 40 3u 60 

licsrills of I985 NW York R4ararlm 

Fig. 6 
Finishing time distributions of runners in two New York City Marathons fitted with a 

Gamma probability function. 
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5.2 e+e- multiplicities 

The e+e- charged multiplicities differ from the hadronic ones in two ways: they have a 
more symmetrical shape and they are narrower. This is illustrated in Fig. 7a, in which 
e+e- data are compared with a curve representing the hadronic distribution expected 
for the same 5. The ese’ width is narrower than the hadronic by a factor of - a. 
Realizing that in e+e- annihilation the final state consists mostly of two jets, single-jet 
distributions were also measured. It was found that the distributions of the two jets 
are almost entirely uncorrelated, and that the width of the single-jet distribution is 
approximately the same as that of a hadronic distribution at the same iE as that of the 
jet, which is one half of ?L of t.he total event sample (Fig. 7b). The folding of the two 
single-jet distributions results in a distribution with a D/C ratio smaller by a factor of 
4. Thus, e+e- multiplicity distributions are explained in terms of hadronic, extending 
the universality concept first introduced in reference [6]. 

l 29 GeV HX 0 29 GeV HX 

I I 
I I 

0.01 0.01 tIltI IItlIllrl~l,,lt,,~,. 
0 

tIltI 0.; Iltllllrl~ll,lt,,~,. 
0 1.0 1.5 2.0 0.; 1.0 1.5 2.0 2.5 2.5 

z=n/cn> z=n/cn> 
Fig. 7 Fig. 7 

‘e+e- charged multiplicity distributions with curves representing. hadronic ‘e+e- charged multiplicity distributions with curves representing. hadronic 
at the same value of ii at the same value of ii (a) Inclusive sample (b) Single jet distribution. (a) Inclusive sample (b) Single jet distribution. 
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