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UNIVERSALITY OF PARTICLE MULTIPLICITIES

K. Goulianos
The Rockefeller University

Abstract
We discuss the scaling properties and universality aspects of the rapidity and
multiplicity distributions of particles produced in high energy hadronic and ete”
interactions. This paper is based on material presented ! in three lectures on
pomeron phenomenology, which included a review of traditional soft pomeron
physics and selected topics on hard diffraction processes probing the structure
function of the pomeron.

1 Introduction

In this paper we discuss the inclusive particle distributions and scaling properties in
the variables Feynman-z, rapidity—y, and scaled multiplicity z = n/A. These (x,y,z)-
distributions are related: Feynman-z scaling leads to a constant rapidity plateau,
which in turn results in KNO scaling, i.e. the scaling of the multiplicity by its mean
(distribution of z = n/#A independent of #). It is shown that the scaling violations
observed in all three distributions are also related. The (z,y, z)-relationship leads natu-
rally to a universal description of hadronic and e*e™ multiplicity distributions, which is
traced back to the partonic strucure of the hadrons and the random nature of particle
production in high energy collisions.

Below, we define some variables and relationships that we will be using throughout
this presentation:

T = :}’;17—2 = ?:% Feynman-z

y=In E:—ﬁ“ = %ln g—f—gﬁ- Rapidity

m2 = pk +m? Transverse mass squared
d*p/E = d*pp & = d’pr dy Phase space element

N = Ym=o = — In tan(6/2) Pseudorapidity

pr, = mp sinhy
E =mgz coshy
¢ = (2mr/+/s)sinhy = (2pr/+/s)sinh7n
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2 Feynman scaling

At high energies, the fields to be radiated in an inclusive process, A+ B —» C + X,
are Lorentz contracted in the longitudinal z-direction, so that the field energy eventu-
ally becomes a §-function in 2. By Fourier analysis, the field energy is then distributed
uniformly in longitudinal momentum space, so that there is equal average amount of en-
ergy in any element dpy, independent of py. If in addition the field energy is distributed
among the different kinds of particles in constant fractions at any given z-value indepen-
dent of /s, then the number of particles C of mass m and energy E = (m? + p% 4 p} )/?
within dpy, is

dofs _ ¢ d’pr dpy,
Crop pas(pr, ) E

The total number of particles, which is obtained by integration of this expression, is the
average multiplicity of C'. Assuming that the function p$g(pr, =) has a limit as s — oo

and z — 0 (no s-dependence), we obtain for large s

= p5p(pr, z)d’pr dy

d*prdz

1 oo s
g = 2/ _/ A : —— = ) =0) In— tant
7S5 o oo pas(PT,Z) e 3%5(2 = 0) In — + constan

The factor of two accounts for the fact that the physical region extends to z = —1. The
tilde in p denotes integration over p%, where we have assumed that the pr is limited
and that §(z) reaches a constant limit for small z. 2 Thus, under these assumptions,
Feynman scaling leads to multiplicities that rise logarithmically with s. For a process
to be exclusive, this multiplicity must be suppressed. Assuming Poisson statistics (al-
though not quite right, as will be discussed in Section 5), the probability for zero extra
multiplicity goes as e ~ 1/s, which explains why exclusive cross sections fall with
increasing energy [1].

3 Rapidity distributions

It was shown above that Feynman scaling leads to multiplicities that rise logarithmically
with s. Since dpy/E = dy, and In(s/m?) = 2 |ymaz| is the total rapidity space available
to particles of mass m, the value of §(z = 0) represents the height of the plateau of the
rapidity distribution (Fig. 1a), and the multiplicity grows with energy in proportion to
the phase space. The multiplicity is governed by the value of j(z) at z = 0, because
as s — 00, z — 0 for all finite longitudinal momenta p;. The new multiplicity comes
from the lower and lower z-values contributing around y = 0, as can be seen from the
expression (dz/dy)y=0 = 2mg/+/s. This is shown graphically in Fig. la, where the
expected rapidity distributions for two energies are shown assuming Feynman scaling.

*Integrate by parts, noting that dz/y/z? + 4m2./s = dIn(z + /2% + 4m?2/s), and that
T T

the integral fy 5(z) In z dz converges for finite 5(0).




In the real world, it is found that the rapidity plateau rises logarithmically with s, so
that the average multiplicity rises as ~ In® s (dashed line in Fig. la). This behavior vio-
lates Feynman scaling and consequently results in KNO scaling violation in multiplicity
distributions, as discussed below.

The shape of the pseudorapidity distribution is not expected to be flat for particles
with mass and a flat y-distribution. The n-distribution is depleted around 7 = 0 by

an amount depending on the ratio pr/m and the n-value. The exact shape of the 7
distribution is given by

dn (dn) { 1 +sinh®p 12
dn dy y=sinh~! (£L sinhn) 1 +sinh®p + (m/pr)?

where 7o = In(y/s/pr), corresponding to Ymez = In(y/s/mr). Fig. 1b shows the
n-distribution, resulting from a flat rapidity distribution, for pr/m=1.

Experimentally, it is found that the average pr increases with multiplicity. Thus,
the characteristic depletion at 7 = 0 of the n-distribution of particles above a given pr
threshold, which is usually the experimentally measured distribution, is expected to be
more pronounced at low multiplicities.

(b)

T
n=0

Fig. 1
(a) Rapidity distributions for two cms energies: (solid lines) assuming Feyman Scaling;

(dashed line) a more realistic situation at the higher energy.
(b) Pseudorapidity distribution for Pi=m (approximate shape).



4 KNO scaling

Koba, Nielsen and Olesen (KNO) showed [2] that Feynman scaling leads to scaling of
multiplicity distributions. Specifically, they showed that the distribution of the number
of particles n in the final state should be a function only of the variable z = n/7, where
7 is the average multiplicity at /s. Their result can be expressed as

2P (s) = 2 n(8) _ (2)
AP.(s) = no_m(s) P =
where ¢,(s) is the cross section for the multiplicity being 7.

Formally, this result was derived by proving that all scaled factorial moments, defined
as C? = ni/n%, are constant, i.e. independent of s (or @). In the special case of the
second moment, or scaled variance, which we denote by (D/#)?, KNO scaling predicts
that the width D of the multiplicity distribution increases in proportion to the average,
n, as 7 1ncreases.

KNO scaling is a direct consequence of the rapidity plateau remaining constant as
the energy increases. The increase of multiplicity comes from the stretching of the
available rapidity space. The field “emits” the particles uniformely in y, so that the
entire distribution fluctuates up and down with the total field energy, in a manner
independent of \/s. Therefore, the multiplicity distribution in general, and the ratio of
the width of the distribution to the mean in particular, stay the same.

Feynman scaling violations, which distort the rapidity distribution in the manner
illustrated in Fig. la (dashed curve), are expected to induce KNO scaling violations.
Experimentally, KNO scaling was found to hold at energies up to /s ~ 60 GeV (ISR),
which was a surprising result given the relatively low energies and the fact that Feynman
scaling was observed to be violated, as evidenced by the rise of the rapidity plateau with
increasing energy. Later, when data bacame available at energies up to /s ~ 900 GeV
(SPS), KNO scaling was found to be violated logarithmically with increasing Vs, and
the apparent scaling observed at the lower energies was interpreted as being accidental.
Below, we present a model that fits well the observed multiplicity distributions, and
provides some insight into KNO scaling and violations.

5 Multiplicity distributions

There has been an enormous amount of data on particle multiplicities, and a large
number of papers that offer interpretations. In this note, it is not our purpose to review
all the data and theoretical papers. Rather, we present the salient features of the data
in a pedagogical fashion, using approximations to make them more comprehensible and
accessible for further use, and easier to relate them to the underlying physics principles.
For more details, the reader may consult the references provided [3, 4]. This presentation
is based mainly on reference [4].

We begin with a discussion of hadronic multiplicities, followed by some comments on

*e~ annihilation.
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5.1 Hadronic multiplicities

Hadronic multiplicities have the following general features:

o Universality: Both 7 and the shape of the multiplicity distribution depend only
on the hadronic energy M and not on the nature of the hadrons involved in the
process. The energy M is /s for colliding hadrons and My for diffractive or other
subprocesses leading to a distinct hadronic mass (e.g. deep inelastic scattering).

e Charged/neutral ratio, R = fi,/fo: The ratio of charged to neutral multi-
plicities (7%s, not ¥’s from 7%s) is approximately two, as expected from 1sospin
conservation.

* Average multiplicity: The average total multiplicity (charged+neutral) in-
creases with M as
Aot 4+ 1n* M at high M (GeV)
ot = 3V M for M <~ 60 GeV

e Charged multiplicity distribution: Negative binomial.
e Charged-neutral correlations: Binomial.
e Total multiplicity distribution: Gamma.

¢ Scaled width: The scaled width of hadronic multiplicities is D/7 ~ 1/2 indepen-
dent of the energy, except for a logarithmic broadening observed at high energies
due to KNO scaling violations.

e KNO scaling: Approximately observed, violated logarithmically as M increases.

The 7 ~ In* M dependence shows that the average multiplicity grows by a factor lIn M
beyond the one power of In M expected from the increse of the rapidity phase space.
This extra factor is due to the rising rapidity plateau, which is in turn connected to the
rising cross sections with energy, and is also responsible for the observed KNO scaling
violations. As we have seen, in Regge theory the total cross section grows as s¢. For
€ = 0.1, s ~ Ins in the ISR to Tevatron collider energy range, i.e 60 < /s < 1800
GeV. Thus, it appears that the deviation of the pomeron intecept at ¢t = 0 from unity
governs not only the rising total cross section, but also the rise of the rapidity plateau,
the corresponding rise of the average multiplicity, and KNO scaling violations.

In the parton model, the function §(z) we introduced in Section 2.1 corresponds to
the F3(z) structure function measured in deep inelastic scattering. A constant Fy(z) as
z — 0 leads to constant cross sections (see “Quarks & Leptons” by Halzen & Martin,
p.199). For the cross section to rise as s%, it is required that Fy(z) be ~ 1/z¢. This results
in more partons being concentrated at lower z-values, producing a higher cross section
as they become energetically available to create particles (Zmin = m?/s for creating a
particle of mass m).



KNO scaling restricts the statistical functions that can be used to describe multiplicity
distributions. For example, the Poisson distribution, for which the scaled variance is
given by (D/f)? = a7! is excluded, since @ is a function of \/s. The well known
Gaussian or Normal distribution can be written in terms of the KNO scaling variable
z =n/f, and (D/7)? could be set to a constant, but a Gaussian is also not appropriate
for describing multiplicities because it is symmetric in z while multiplicities have a lower
bound of zero. A function closely representing a bounded Gaussian is the Gamma
distribution, which can be written as

A G — kk k—1_—kz
" T(k)

z=n/a, k' = (D/a)?

An example of a Gamma distribution is shown in Fig. 2. For constant k, the Gamma
obeys KNO scaling. As we will see below, it describes well the total multiplicity. How-
ever, 1t is not appropriate for describing charged multiplicity distributions, since it is
identically zero at n = 0 and there is a finite probability for observing no charged
particles in the final state.

n Pn
z=n/i
Fig. 2
Gamma (solid line) and Negative Binomial (dashed line) distribution for
=8 and k=4.
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A function that was used successfully to describe charged multiplicity distributions is
the Negative Binomial (NB):

+k-1 n
-Pnz(n n )pkq

where P, is the probability of observing n failures while waiting for & successes, when the
probability for success is p and ¢ = 1 —p. It can also be interpreted as the distribution of
successes 1n a unit of time, when the rate of success is a random variable with a Gamma
distribution (rather than constant as for Poisson). The NB can be expressed in terms
of k£ and 7 as follows:

_, [ n+k-1 1 n/k i
“P"“”( n )(l—l-ﬁ/k)k(l—}—ﬁ/k)

(2 -4
an)  k

It is interesting to note that for # > k > 1, NB — Gamma, while for k — oo
NB — Poisson. The NB is compared to a Gamma in Fig. 2.

The NB also describes well charged multiplicities in restricted pseudorapidity ranges.
Fits to data in different pseudorapidity ranges with the NB are shown in Fig. 3 [3].

At high enough 7 the NB is a KNO scaling function if k is constant with energy. By
fitting distributions at various energies up to /s = 900 GeV, the UA5 collaboration (3]
found that the parameter k decreases with energy, in violation of KNO scaling. The UA5
result was expressed as k™! = a+bln /s, where a = —0.10440.004 and b = 0.058+0.001.

While adequate for describing charged multiplicity distributions, the NB lacks simple
physical interpretation. Also, it does not address the question of correlations between
charged and neutral multiplicities, which must be fitted independently. A distribution
that fits simultaneously the entire multiplicity distribution (charged+neutral) includ-
ing the charged to neutral correlations was proposed in 1987 by this author [4]. The
main idea was simple: in a hadronic reaction, ficticious particles n* are produced with
a Gamma distribution, and upon production they “decay” to a charged doublet (charge
conservation!) or a single neutral particle with a binomial distribution. Setting the
“decay” probability to 1/2, the total multiplicity distribution remains Gamma, but
the distribution obtained for the charged multiplicity is found to be practically iden-
tical to a NB with the same ;. This is not surprising, since the scaled width of the
folded Gamma@Binomial or Modified Gamma (MG), which can be obtained by adding
In quadrature the scaled widths of the Gamma and of the Binomial, turns out to be
(D/A)? = k7' +77", the same as for the NB! Thus, the negative binomial behavior of the
charged multiplicity arises from a parent Gamma distribution by the binomial interplay
between the charged and neutral particles. Fig. 4 shows fits to data with the MG.

3|~
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Charged multiplicity distributions for limited pseudorapidity intervals for proton-antiproton

Fig. 3

collisionsd at cms energy 540 GeV[3].

1 1 T ]
o-! =
C ] 100 T ) T T T T T T T
10-2 - -
A 4 E (0) ISR /5 :52.6 Gev E
.3 J [ > 128 1
10 R | ¢ > 701219 )
§ «n*> /D"s2.85 ]
10-4 -: 10! :—/ X " o
] - D) ,,,..“) 3
10-3 Pael0"2 - z E T, (b)" $ppS /A+540 Gev
+30 E B L «n»*28.)
10-6 e ~ § A - «n» 704179
C : o 10-2 :_/ ‘ﬁ <n*>/0" 4109 .
107 . a | h\w\{ 3
C Pavios® ] 2 o :
10-8 netlS é‘ [ HT ]
B ] g ool i
10-9 - Pori0-6] s O7F m 3
- G5 z ‘f ]
10-10 1. -1 [ b
2L 3 & W" :
101 [ P 1074 |-
| (R T U W W S B | c 1 1 1 1 1 | 1 1 1
0 234 56 78910 [o] 10 20 30 40 S50 60 70 80 90 100
I=n/<n> n (chorged mulliplicity )
Fig.4

Charged multiplicity distributions

: Data fitted with the MG.



By fitting data at energies all the way down to include diffractive “masses” of a
few GeV, it was found that the k parameter used in the Gamma function of the MG
distribution varies as

k™' = a+ bln(M + ¢)

where a and b are the same as those obtained by UAS5 and ¢ = 6 GeV (M here is
the available mass in GeV, which for a pp collision is /s — 1.88 GeV). The increase of
k~! with energy represents an explicit KNO scaling violation in the total multiplicity.
The fact that KNO scaling was found to hold for charged multiplicities in the ISR and
lower enery range (below 60 GeV) is explained by an accidental “conspiracy” of the
k™' and A~? terms to give a constant (D/7)? = k™ + A~! over this energy range. At
higher energies (larger 7i), where the contribution of the 7~} term decreases, the charged
multiplicities were found to violate KNO scaling [3).

The MG was also used successfully in fitting data in limited pseudorapidity ranges
[4). In fact, by incorporating it in a minimum bias Monte Carlo simulation, it was
found that only two parameters were needed to describe the data in all pseudorapidity
ranges, namely the 4 and k of the total event multiplicity. Thus, the broadening of the
distributions with decreasing pseudorapidity width (Fig. 3) appears to be the result of
increased charged to neutral fluctuations, due to the lower number of particles, combined
with Poisson-type fluctuations along the rapidity coordinate. The latter are expected
in the Feynman model discussed in Section 2.1, in which the field energy is distributed
along y with equal a priori probability and therefore the number of particles per unit
rapidity obeys Poisson statistics.

When the MG proposal was made, there were no data on charged to neutral mul-

tiplicity correlations at high energies. Recently, such data have become available (5],
confirming the binomial hypotkesis used in the MG (Fig. 5).

Fig. 5

Charged to neutral multiplicity correlations
for pp collisions at cms energy of 1.8 TeV
[5]: Number of events vs the deviation

from the mean measured in standard
tx, deviations assuming a binomial distribution.




The MG result has a remarkably simple interpretation: the Gamma distribution arises
from a truely random source. In fact, the idea of using the Gamma probability function
to describe the total multiplicity came from a study of the distribution of finishing times
of the runners of the New York City Marathon. Fig. 6 shows two such distributions,
fitted by Gamma functions. The fits are excellent, except for the region of short finishing
times, populated by the elite runners. This is a good example of a distribution arising
from a random source, represented by the different age groups, training amounts etc. The
elite runner pack breaks away visibly from the Gamma distribution. Another feature of
these distributions is scaling: the ratio (D/A) = 1/vk (k=P3 in the figure) is the same
for the two distributions to within 3.5%, although the mean values (parameter P2) differ
by 20% (the different average finishing times are due to the temperature difference in

the days

of the two runs). Thus, the finishing time distributions obey KNO scaling!

107 = D 80
E Entries 12547
- Mean 21.16
N RMS 7.612
107 X'/ ndf 293.9 7 50
- ~R 578.0
i ) 21.21
0 P3 7.854
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Results of 1980 New York Marathon
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10 k-
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l [ 1 il l 1 A 1 1
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Results of 1985 New York Marathon

Fig. 6

Finishing time distributions of runners in two New York City Marathons fitted with a

Gamma probability function.
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5.2 e*e” multiplicities

The ete™ charged multiplicities differ from the hadronic ones in two ways: they have a
more symmetrical shape and they are narrower. This is illustrated in Fig. 7a, in which
ete™ data are compared with a curve representing the hadronic distribution expected
for the same fi. The e*e™ width is narrower than the hadronic by a factor of ~ /2.
Realizing that in eTe™ annihilation the final state consists mostly of two jets, single-jet
distributions were also measured. It was found that the distributions of the two jets
are almost entirely uncorrelated, and that the width of the single-jet distribution is
approximately the same as that of a hadronic distribution at the same 7 as that of the ,
jet, which is one half of 7 of the total event sample (Fig. 7b). The folding of the two
single-jet distributions results in a distribution with a D /# ratio smaller by a factor of
V2. Thus, e*e™ multiplicity distributions are explained in terms of hadronic, extending
the universality concept first introduced in reference [6].

SR L B A L B S O A A Y I e

T T
el

T
1

N Olfb -
> 1 .
" ]:‘ \
(=4 E ]
a. - -
A =
A C A
V =
o1 s g
A * 22 Gev HRS NI
s 4 14 GeV I p
) © 22 GeV r TASSO 7
d o 34 GeV ¢\
6 -
' ‘ ¢
0.01 IR NN SR EEEEE BN R
0 0.5 1.0 1.5 2.0 2.5
z=n/<n>
Fig. 7

Comparison of e*e- charged multiplicity distributions with curves representing hadronic
distributions at the same value of fi (a) Inclusive sample (b) Single jet distribution.
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