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SEARCH FOR THE TOP QUARK USING MULTI-VARIATE 
ANALYSIS TECHNIQUES 

PUSHPALATHA C. BHAT * 
Fermi National Accelerator Laboratory, 

Batavia, IL 60510, U.S.A. 

ABSTRACT 

The DO collaboration is developing top search strategies using multivariate 
analysis techniques. We report here on applications of the H-matrix method 
to the ep channel and neural networks to the efjets channel. 

1. Introduction 

Top quark events are being searched for in the di-lepton, lepton+jets and all-jets 

channels at the Collider detectors at Fermilab, in pp collisions at JT) s =1.8 TeV. The 
DO collaboration has been applying multivariate techniques such as the Covariance 
matrix (H-matrix) method, Probability Density Estimation (PDE) method and Neural 
Networks, in the search for the top quark. In this paper, we present a brief discussion 
of these techniques and report on some aspects of the on-going analyses. 

2. Multivariate Techniques 

Multivariate classifiers provide a discriminating boundary between the signal and 
background in multidimensional space that can yield discrimination close to the the- 
oretical maximum ( Bayes’ limitr). If P(s\z) (P(blz)) is the probability that a given 
event with feature vector z is a signal (background ) event, then the optimal way to 
partition the feature space is to cut on the ratio of these probabilities. This ratio is the 
Bayes discriminant function, 

Jqz) = po = www 
w4 wwJw - (1) 

w4 WI 1 z are also known as Bayesian probabilities. The quantities P(z Is), P(zlb) 
are the likelihood functions for signal and background, respectively (hereafter referred 
to as f(x)). Th e ratio of the prior probabilities s is the ratio of signal and background 
cross-sections. Different multivariate classifiers approximate the likelihood functions 
with different functional forms and attempt to arrive at the Bayes discriminant. The 
three classifiers being used at DO are briefly described below. 
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2.1. H-Matrix Method 

This is the familiar covariance matrix method which is also known as the Gaussian 
Classifier. The likelihood f unction is taken to be gaussian, 

f(x) = A.exp{-iF(xi - 5;)TM-‘(xj - 5j)) = A.~xP( -x2) (2) 
*>3 

where H = M -’ is the covariance matrix. We use Fisher’s formulation of the discrimi- 
nant, which is F = f(& --~a), where xi and xs are the x2 terms of a sample calculated 
using background and signal H-matrices respectively. The Bayes discriminant in terms 
of the Fisher variable F can be shown to be R(x) = esp(F), when P(s)=P(b). 

2.2. Probability Density Estimation (PDE) Method 

The likelihood function is approximated as, 

f(4 = N l events h Ne+fJta fr q xi 
a=1 j=l 

; ,“ij ) 
3 

(3) 

where K is a kernel which we take to be a multivariate gaussian centered at each data 
point zij with variance hj (for the jth variable). The Bayes discriminant is R(z) = $#. 

2.3. Neural Networks 

It has been shown2 that neural networks do not calculate the likelihood function 
for each class separately, but arrive at the Bayesian probability for the signal directly. 
The discriminant in this case is the output of the network 

o(X) = S(CWkjg(CWji";)) = P(Slz) (4) 

j i 

(assuming a three layer feed-forward neural network). The 2;‘s are the input variables, 
g represents a non-linear function (e.g., (,,,‘-e,,), Wkj and Wj; are the weights that are 

adjusted during the “learning” process. Descriptions of the neural network approach 
and details of the training algorithms are available in many articles and books. The 
Bayes discriminant in terms of the network output will be R(x) = a. 

3. H-matrix Analysis of ep data 

From the conventional analysis, 3 DO has one top candidate event in the ep chan- 
nel. The dominant backgrounds are 2 -+ rr, WW and instrumental fake events. We 
have applied the H-matrix method to enhance the signal to background particular1 
w.r.t. 2 -+ rr. We have built H-matrices using the variables E$, PG, EFtl, EFt 9 , 
$y’(& in the calorimeter), HT(XET of jets), Mep, A+,, for tf, 2 + rr Monte Carlo 
(MC) and data events, after applying loose electron identification (ID) criteria and 
requiring <+ > 11 GeV and P$ > 11 GeV. We use data to represent one set of back- 
grounds (bb -+ ep and fakes -bkgl) and 2 + TT as the other background (bkg2). These 
H-matrices are then applied to data, tf (top mass 140, 160 and 180 GeV), 2 -+ rr and 
WW samples and x2 values calculated. The lego plots of x+,,~ vs X&l are shown in 
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Fig.1. It can be seen that the data and 2 + rr events have small x2 values with both 
signal and background H-matrices whereas top events have small x$,,, but large x&i. 
We define two Fisher discriminants Fr = i ($&i - &,) and F2 = :(x&2 - J&,). 
In Fig. 2, are shown F1 for various event samples. We search for a combination of Fl 
and F2 to keep the same efficiency as in the conventional analysis for 140 GeV top 
events and to maximize background rejection. By applying F’ > 15 and F2 > 3 we 
have 16%, 22% and 25% efficiency for top events with top mass of 140, 160 and 180 
GeV respectively. The signal to background ratio (S/B) is about 18 w.r.t. to 2 + TT 
and 10 w.r.t. WW events for 180 GeV top mass. For lower masses the S/B is higher. 

Fig. 1. X$,, VS X&l for DO data, 2 -+ rr, 
WW and tt160 samples 
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Fig. 2. Fisher variable distributions 

4. Neural Networks Analysis of e + jets data 

Details of our conventional analyses in the e + jets channel can be found elsewhere 
in these proceedings.4,5 Here, we have analysed e + 4jets events using neural networks 
after applying the following kinematic cuts: E+ _ > 20 GeV (+tight electron ID), J&> 20 
GeV and ET(jet4) > 15 GeV. We use two separate neural networks to handle the 
dominant backgrounds to this channel viz., W + jets and .&-CD events where one of 
the jets gives a false electron ID (&CD fake). 

Figure 3 shows a schematic of using networks in parallel. Their outputs can be 
fed into another network to make higher level decisions. We train the first network with 
tfl60 and W + jets samples and the second network with ttl60 and QCD fake data 
sample (obtained from multi-jet triggers at DS). We have carried out analyses with 
different sets of input variables. In a 2-variable analysis we use network with 2 input 
nodes, 3 hidden nodes (one hidden layer) and 1 output node. We use the HT (sum of 
ET of jets with qjet 5 1.7) and the aplanarity (A) of the event as input variables. In 
Fig. 4, we show the distributions of the output for tEl60 and W + jets from network 1. 
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INPUTS 

Fig. 3. Processing with many Neural Net- 
works 
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Fig. 4. Distributions of output from network- 
1 trained on tt160 and W + jets events 
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Fig. 5. Ht vs Aplanarity plots from the 2-variable analysis for (a)tti60, (b)W+Lijets (VECBOS 
MC), (c)QCD fakes, (d)tti60 after cut onnetwork 1 (NN1>.8), (e)tfl60 after cuts onnetworks 
1 & 2 (NN1>.8, NN2>.6) and (f)DO data with contour from the cuts NN1>.8,NN2>.6. 

From the plots shown in Fig. 5, it can be seen that a combination of neural net- 
works can provide good rejection to individual backgrounds in different parts of the 
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multi-dimensional phase space. The DO data with the decision boundary generated 
by the neural networks (NNl> 08,NN2>.6) is shown in Fig. 5(f). Figure 6 shows the 
compound probability (signal probability surface) for the two networks together as a 
function of HT and A. When the analysis is extended to many dimensions, it is still 
possible to examine the distributions of the variables and their correlations before and 
after the network selection to understand the decision boundary. Figure 7 shows such 
distributions for a 6 variable analysis done using HT,A,&, $T, E~(jet4), O(e) (6 
inputs, 6 hidden nodes and 1 output node used). 

L 

E, 014th Jet Electron nleto 

Fig. 6. Signal probability surface for the two Fig. 7. Distributions of variables in 6-variable 

networks together as a function of HT and A analysis before (open histograms) and af- 
ter(hatched histograms) neural network cuts 

5. Summary 

A discussion of the multivariate techniques being used in the top search at DO 
and some preliminary results have been presented. For example, the H-matrix applied 
to the ep channel yields a S/B=18 for top(180 GeV) to 2 + TT. This is a significant 
improvement over conventional analyses. 3 Preliminary results from the neural networks 
analysis of the lepton+jets channels show promise for better background rejection and 
higher efficiency than conventional analysis techniques. 

This work is supported in part by the U.S. Department of Energy. 
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