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SEARCH FOR THE TOP QUARK USING MULTIVARIATE
ANALYSIS TECHNIQUES
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Batavia, IL 60510, U.S.A.

ABSTRACT

The D@ collaboration is developing top search strategies using multivariate
analysis techniques. We report here on applications of the H-matrix method
to the ey channel and neural networks to the e+jets channel.

1. Introduction

Top quark events are being searched for in the di-lepton, lepton+jets and all-jets
channels at the Collider detectors at Fermilab, in pp collisions at \/Zs) =1.8 TeV. The
D@ collaboration has been applying multivariate techniques such as the Covariance
matrix (H-matrix) method, Probability Density Estimation (PDE) method and Neural
Networks, in the search for the top quark. In this paper, we present a brief discussion
of these techniques and report on some aspects of the on-going analyses.

2. Multivariate Techniques

Multivariate classifiers provide a discriminating boundary between the signal and
background in multidimensional space that can yield discrimination close to the the-
oretical maximum ( Bayes’ limit'). If P(s|z) (P(b|z)) is the probability that a given
event with feature vector z is a signal (background ) event, then the optimal way to
partition the feature space is to cut on the ratio of these probabilities. This ratio is the
Bayes discriminant function,

_ P(slz)  P(z|s)P(s)
(=) = B(bla) = P(alb)P(b) )

P(s|z), P(blz) are also known as Bayesian probabilities. The quantities P(z|s), P(x|b)
are the likelihood functions for signal and background, respectively (hereafter referred

to as f(x)). The ratio of the prior probabilities iﬁ;g is the ratio of signal and background
cross-sections. Different multivariate classifiers approximate the likelihood functions
with different functional forms and attempt to arrive at the Bayes discriminant. The

three classifiers being used at D@ are briefly described below.
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2.1. H-Matriz Method

This is the familiar covariance matrix method which is also known as the Gaussian
Classifier. The likelihood function is taken to be gaussian,
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where H — M~! is the covariance matrix. We use Fisher’s formulation of the discrimi-
nant, which is F' = %(X% —x?), where xZ and x? are the x? terms of a sample calculated
using background and signal H-matrices respectively. The Bayes discriminant in terms

of the Fisher variable F can be shown to be R(z) = ezp(F), when P(s)=P(b).
2.2. Probability Density Estimation (PDE) Method
The likelihood function is approximated as,

1 Nevents d

f(“’)=m Z HK(:B—";TJJQ) (3)

where K is a kernel which we take to be a multivariate gaussian centered at each data
point z,; with variance A% (for the jth variable). The Bayes discriminant is R(z) = falz)

 felx)”
2.8. Neural Networks

It has been shown? that neural networks do not calculate the likelihood function
for each class separately, but arrive at the Bayesian probability for the signal directly.
The discriminant in this case is the output of the network

O(z) = Q(Z’wkjg(z:wjimi)) = P(s|z) (4)

(assuming a three layer feed-forward neural network). The z,’s are the input variables,
g represents a non-linear function (e.g. —L ), wy,; and w;; are the weights that are
P ' (T+e-22) J J g

adjusted during the “learning” process. Descriptions of the neural network approach
and details of the training algorithms are available in many articles and books. The

Bayes discriminant in terms of the network output will be R(z) = (1?01(I)).

3. H-matrix Analysis of ex data

From the conventional analysis,®> D@ has one top candidate event in the ey chan-
nel. The dominant backgrounds are Z — 77, WW and instrumental fake events. We
have applied the H-matrix method to enhance the signal to background pa,rticula,rléy
wrt. 7 — 7. We have built H-matrices using the variables ES., P#, EF", EFY,
E$*(Er in the calorimeter), Hr(ZEr of jets), M., A, for tt, Z — 77 Monte Carlo
(MC) and data events, after applying loose electron identification (ID) criteria and
requiring P§ > 11 GeV and Py > 11 GeV. We use data to represent one set of back-
grounds (bb — ep and fakes -bkgl) and Z — 77 as the other background (bkg2). These
H-matrices are then applied to data, tf (top mass 140, 160 and 180 GeV), Z — 77 and

WW samples and x? values calculated. The lego plots of x%,, Vs Xii, are shown in
p X g Top bkgl



Fig.1. It can be seen that the data and Z — 77 events have small x? values with both
signal and background H-matrices whereas top events have small x7,, but large Xkt -
We define two Fisher discriminants Fy = 1(x&,1 — X5op) a0d F2 = 3(XZgo — XFop)-
In Fig. 2, are shown F, for various event samples. We search for a combination of F,
and F, to keep the same efficiency as in the conventional analysis for 140 GeV top
events and to maximize background rejection. By applying Fy > 15 and F; > 3 we
have 16%, 22% and 25% efficiency for top events with top mass of 140, 160 and 180
GeV respectively. The signal to background ratio (S/B) is about 18 w.r.t. to 2 — 77
and 10 w.r.t. WW events for 180 GeV top mass. For lower masses the S/B is higher.
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4. Neural Networks Analysis of e + jets data

Details of our conventional analyses in the e + jets channel can be found elsewhere
in these proceedings.®® Here, we have analysed e + 4jets events using neural networks
after applying the following kinematic cuts: ES > 20 GeV (+tight electron ID), Br> 20
GeV and Er(jet4) > 15 GeV. We use two separate neural networks to handle the
dominant backgrounds to this channel viz., W + jets and .QCD events where one of
the jets gives a false electron ID (QCD fake).

Figure 3 shows a schematic of using networks in parallel. Their outputs can be
fed into another network to make higher level decisions. We train the first network with
¢£160 and W + jets samples and the second network with ¢£160 and QCD fake data
sample (obtained from multi-jet triggers at D@). We have carried out analyses with
different sets of input variables. In a 2-variable analysis we use network with 2 input
nodes, 3 hidden nodes (one hidden layer) and 1 output node. We use the Hr (sum of
Er of jets with 7 < 1.7) and the aplanarity* (A) of the event as input variables. In
Fig. 4, we show the distributions of the output for t£160 and W + jets from network 1.



INPUTS

? @ ? ?

ouT

- Neural o

. Network 1 ‘

* NN1
ouT

Neural @
Network 2 NN2

LI T ot |

Ila1ly iveulal

Fig. 3. Processing with

works

Aplanarity
Aplanarity

0 250 500
H,
1160 (L=3658 pb™)
_2\ 0.5 ENTRIES 782 b
= =
o (@)
c C
o o
(0N Q.
< <<
0 250 500
H

t
11160 thru W+jets filter

t
t1160 thru W+ ]ets and foke filters

1749
0.7163

Entries
Mean

3 3

o
S

|

66 07 0B 08 1
NN output (11160)
1605

0.2238

8

Number aof Events
s

o Entries
© Mean

Aplanarity

0 250 500 0 250 500
H, H,
W+4jets (L=580 pb™") QCD Foke (L=900 pb™")
ENTRIES 669 | >
-
o
[
o
Q
<
ol 1 1 l | S T | I 1
0 250 500 0 250 500

H H,
DO Runic Data (L=13.5 pb™)

Fig. 5. H, vs Aplanarity plots from the 2-variable analysis for (a)tf160, (b)W+4jets (VECBOS
MC), (¢)QCD fakes, (d)t£160 after cut on network 1 (NN1>.8), (e)t£160 after cuts on networks
1 & 2 (NN1>.8, NN2>.6) and (f)D0 data with contour from the cuts NN1>.8,NN2>.6.

From the plots shown in Fig. 5, it can be seen that a combination of neural net-
works can provide good rejection to individual backgrounds in different parts of the



multi-dimensional phase space. The D@ data with the decision boundary generated
by the neural networks (NN1> 0.8,NN2>.6) is shown in Fig. 5(f). Figure 6 shows the
compound probability (signal probability surface) for the two networks together as a
function of Hy and A. When the analysis is extended to many dimensions, it is still
possible to examine the distributions of the variables and their correlations before and
after the network selection to understand the decision boundary. Figure 7 shows such

dlstnbutlons for a 6 variable analysis done using Hr, A, Ef, ET, ET(]et4), 8(e) (6
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A discussion of the multivariate techniques being used in the top search at DO
and some preliminary results have been presented. For example, the H-matrix applied
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improvement over conventional analyses.> Preliminary results from the neural networks
analysis of the lepton+jets channels show promise for better background rejection and
higher efficiency than conventional analysis techniques.
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