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ABSTRACT 

This is a status report on low tg physics in deeply inelastic processes just 
after the first experimental data from HERA. The talk has two goals: i) to 
discuss what we have learned about physics from HERA data and ii) to give 
a brief review of the recent theoretical development in the region of small zg 
in deeply inelastic scattering. 

1 Introduction 

I am viewing this talk as a summary of what we have learned about physics in the region 
of low XB just after the first experimental data from HERA. I hope it will be an honest 
review of our hopes and attempts to understand what is going on in the region of low Xg, 
which we have started for the first time to study experimentally. 

The outline of my talk looks as follows: 
1. Strategy and hopes. 
2. Cold showTr of the experimental data. 
3. On the way to an analytic solution. 
The title of this subsection I stole from David Gross who in his Cornell Summary gave 

ten predictions for the year 2008, the second one of which was: 

u Analytic treatments in &CD will be developed to describe small xJ-3 physics, 
Regge behaviour and hadronic fragmentation junctions”. 

4. Tragedy of low zg, 
Thus the second title of my talk could be ‘from strategy to tragedy in low XB physics”. 
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2 Strategy and hopes. 

2.1 The map of QCD. 
. 

Fig. 1 shows the map of QCD as we understand it now. We can see three very distin- 
guished regions of QCD with quite different physics and different level of understanding. 
However before we discuss these three regions in more detail let us introduce notations 
and necessary definitions. 

In Fig.1 r is the distance that can be resolved by our microscope and due to uncer- 
tainty principle this distance is of the order of 4 where Q is the transverse momentum 
of recoiled electron in DIS. The second kinematical variable that we can introduce for 
such constituents is the fraction of energy (zg) that carries it with respect to the hadron 
(proton for our example). If N is the number of gluons ‘, the gluon structure function 
tells us what the number of gluons is with a definite value of y = In $, i.e. 

~BG(~B,Q~) = J$-. - 
28 

However it is more convenient to introduce the gluon density (p) in the transverse plane 
which we put on the vertical axis in fig.(??): 

P 
= wG(~B,Q~) 

nlP 

where R is the radius of hadron. 
In fig.(??) you can see three different regions: 
1. The region of small p at small distances r (low density (p&CD) region). 
This is the region where we can apply the powerful methods of perturbative QCD 

since the value of the running coupling constant os(r2) is small here ( o, ( r2) << 1 ). 
2. The region of large distances ( npQCD region ). 
Here we have to deal with the confinement problems of &CD, since cr,(r’) >> 1. Thus 

in this kinematical region we need to use the methods of nonperturbative QCD. 
3 The region of small distances but high density ojpartons ( hdQCD region) . 
This is our region of interest since here we have a unique situation where the cou- 

pling constant crd( r2) is still small but the density is so large that we cannot use in this 
kinematical region the usual methods of perturbation theory. So we have to conceive of 
something new to study this kinematical region. Already now I would like to stress that 
furtunately we can treat this region by approaching it from the low density QCD region. 
The description of methods developed to study this region on the border and new physical 
phenomena that we anticipate here is the main subject of this talk. 

‘I’ll show a little bit later that the number ofiluons increw in the region of small tg and that ail 
physics in this kinematical region is closely related to this fact. It is the reason why I am concentrating 
on discussion of the gluon density here 
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Figure 1: The map of &CD. p is the density of partons (gluons) in transverse plane (see 
es.(l) ) and r is the distances resolved in an experiment. 

2.2 The low density ( pQCD ) region. 

This is a region with small distances (very large value of transferred momentum Q2 in 
hard processes such as deep inelastic scattering) and moderately small values 5. The 
physical processes reveal here properties typical for hard processes. Namely: 

1. The cross section ( for example for virtual photon absorption in deep inelastic 
scattering) is very small, b(r*J7) << oeern. .nRi where nRz, is a typical area of the hadron. 
It decreases as inverse power of Q2 at large values of Q2 (a(y*N) cc &). 

2. We have the transparent physical language to discuss physics here , namely, the 
parton language, especially conceived for hard processes. 

3.In this region we can apply the leading log approximation (LLA) of perturbative 
&CD, which leads to a linear evolution equation for deep inelastic structure function ( so 
called the Gribov-Lipatov- Altarelli-Parisi evolution equation [l] ) and all properties of 
the GLAP equation are known quite well. 

All experiments exept at the Tevatron and HERA checked precisely this kinematical 
region. As a result I dare say that during the last twenty years the basics of QCD have 
been studied and confirmed experimentally . 
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2.3 Nonperturbative QCD region. 

In this kinematical region we also know a lot about &CD, mostly because a new kind 
of experiment has been contrived, namely so called lattice computer calculations. This 
is perhaps the cheapest way to study the main properties of confinement of quarks and 
gluons starting directly from QCD Lagraugian. The success of this approach is really 
remarkable and now lattice QCD is able to describe the spectrum of observed hadron 
whithin accuracy compatible with the experimental data (see review of A.S. Kronfeld 
and P.B.Mackenzie [2] for detail discussion of all relevant problems). However the main 
shortcoming of lattice QCD is the fact that we cannot apply it to scattering processes at 
the moment. Unfortunately, the same is true for another method which is not as general 
as lattice calculation but works for great variety of processes as a first approximation. We 
mean the sum rules of QCD [3]. The QCD sum rules are able to describe the property 
of confinement in average but this method uses the additional assumption that vacuum 
expectations of all operators are smaller in appropriate units than the typical scale in 
hadrons. In spite of all these difficulties the situation in this kinematical region is not so 
bad as in the high density region of QCD (see fig. (??)). 

2.4 I High density QCD. 

In this kinematical region we are dealing with a system of partons which are still at small 
distances where the coupling constant of QCD cr, is still small but the density of partons 
becomes so large that we cannot apply here the usual methods of perturbative &CD. In 
fact the kernel of all theoretical problems here is also nonperturbative but the origin of 
nonperturbative effects here is quite different from that in the region of npQCD which we 
have discussed. Here we face the situation where we have to develop some new methods 
in order to deal with the dense relativistic system of gluons in a nonequalibrium state. 
Clearly we need to find new methods of quantum statistics that will allow us to describe 
theoretically such a system of partons. Unfortunately we are only at the beginning of this 
road. 

The good news is the fact that we can approach this region theoretically from the 
pQCD region and in some transition region on the border of pQCD and hdQCD regions 
we can study this remarkable system of partons in many details. To illustrate what new 
physics we can expect in this transition region let us compare the behaviour of deeply 
inelastic scattering in this region with the pQCD region. 

In the transition region the situation changes crucially: 
1. The total cross section a(r*N) becomes large and, near the border with the hdQCD 

domain, even compatible with the geometrical size of the hadron at small x . It means 
that b(r*N) + a,.,. . ?rRi. In this kinematical region it smoothly depends only on log Q2, 
i.e. a(r*N) o( F(logQ2). 

2. The parton language can be used to discuss the main properties of our process but 
the interactions between parton become important. This interaction induces substantial 
screening (shadowing) correct ions. 
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3. Fortunately, in this particular kinematical region the screening corrections are 
under theoretical control. We can go beyond the usual linear evolution equation and write 
the correct evolution equation, which becomes nonlinear. We will discuss this nonlinear 
equation a bit later. 

2.5 How to penetrate the high density QCD region. 

Now we would like to emphasize that this interesting kinematical region is easily reached 
in our scattering processes. In fact we know two ways to obtain a system of partons with 
a large value of density. 

1. The first is godgiven, since we have sufficiently large and heavy nucleii. In ion - ion 
collisions we can reach a sufficiently high density of partons already at not so very high 
energies because the partons from different nucleons in a nucleus get freed . 

2. Hard processes in hadron - hadron collisions or in deep inelastic scattering also give 
us an access to high density of partons because we expect a huge increase in the parton 
density or in other words the deep inelastic gluon structure function in the region of small 
Bjorken z. We will discuss all these expectations in the next section. However already 
at this point we would like to point out that the new experimental data from HERA (41 
show that we have about 30 -50 gluons in a proton at x = lo’*. This is a big number 
which we can compare with the number of nucleons in a nucleus of iron. 

3. Of course we can use the hard processes in ion - ion collisions to utilize the both 
effects: increase of gluon density and a large number of nucleons in a target. 

2.6 Nonlinear ( GLR ) evolution equation. 

As we have discussed before the main new processes that we have to take into account 
in the region of hdQCD are parton - parton interactions. To incorporate such processes 
in our consideration we have to think of some new small parameter that controls the 
accuracy of our calculations. It turns out that such new small parameter [6] is equal to 

w = qp. 
Q (2) 

The first factor in eq.(2) is the cross section for gluon absorption by a parton from the 
hadron. So it is clear that W has a very simple physical meaning, namely it is the 
probability of parton (gluon ) recombination in the parton cascade. We can rewrite the 
unitarity constraint (??) in the form 

w 5 1. (3) 

Thus W is the natural small parameter in our problem. It is worthwhile to note that W 
can be rewritten through the so called packing factor 

PF = ( emsliluent > * P * (4) 
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Indeed 
W = a, - PF . (5) 

Using this small parameter we can resum the whole perturbative series (see below 
about phylosophy and strategy of resummation). The result of the resummation which 
has been done in ref. [6] can be easily understood considering the structure of the QCD 
cascade in a fast hadron. Inside the cascade there are two processes that are responsible 
for the resulting number of partons: 

Emission (1 + 2); Probability CC cr,p ; (6) 

Annihilation (2 + 1); Probability CC Q: r2 p2 cc crf $ p2 , 

where r2 is the size of produced parton in the annihilation process. For deep inelastic 
scatterinq f2 oc +. 

It is obvious that at XB N 1 only the production of new partons (emission) is essential 
since p < 1, but at ZB + 0 the value of p becomes so large that the annihilation of 
partons that diminishes the total number of gluons enters into the game. 

Finally this simple parton picture allows to write an equation for the density of partons 
that takes these processes properly into account. Indeed, the number of parton in a cell 
of the phase space ( Ay = A In &, A lnQ2 ) increases due to emission and decreases as 
result of annihilation. As an outcome the particle balance for this cell looks as follows: 

02P %NC a2 

dIn$hQ2 =Rp - Q2 ’ ’ 

or in terms of the gluon structure function x~G(xe, Q') 

~2x~G(x~, &“I = ff*Nc xBG(xB Q2) _ af 7 
aln-&dlnQ2 9 A Q2 (xsG(xe, Q2N2 - 

(7) 

(8) 
Eq. ( 8) is the socalled GLR equation [6]. Unfortunately even now we need some com- 
plicated technique of summation of Feynman diagramms in W”‘th order of perturbation 
theory to calculate the value of 7 [7] and to understand the kinematical region where we 
can trust the equation (8). The value of 7 calculated in ref.[7] reads 

7 = $ for NC = 3. 

2.7 Our expectations. 

Now we can summarize what new phenomena we anticipated in the region of small zB 
just before HERA started to operate. 

1. Increase of the parton density. 



. 

Both evolution equations ( GLAP 
density: 

and BFKL ) predict an increase of the parton 

\I h In 

GLAP : XBG(XB,Q~) + e * 
&pg . * 

12 $ 

BFKL :xgG(x~, Q”) + xewoe -G where wQ 4Nc = -1n2a,(Qi) . 
7r 

2. Growth of the typical transverse momentum ojpartons. 
This property changes crucially the physics of deeply inelastic scattering at low Xg 

since the typical “hard” process occurs only at Q2 larger than the mean value of the 
transverse momentum of partons. If Q2 ’ IS smaller we face the very unusual situation 
where processes with the typical properties of “soft” interactions occur at small distances 
and can be treated by pQCD. 

The growth of the typical parton transverse momentum is a common feature of the 
BFKL eqution as well as the GLR one. Indeed: 

BFKL:lny = is; 
0 XB 

GLR : ln (lPt21> 1 
-= 

J 
aln-. 

XB 

The constant a has been calculated in ref. (61. 
3. Saturation of the gluon density. 
Directly from the GLR equation we can see that the parton (gluon) density reaches 

a limiting due at low 58. Inspite of the fact that we cannot trust the GLR equation 
at very small values of zB we believe that the saturation of the gluon density is a new 
phenomena which reflects the basic property of the parton cascade in hdQCD. 

Fig.2 shows all our expectations in terms of the gluon structure function. 

3 Cold shower of the experimental data. 

3.1 25 nb-l experimental data. 

Let us first summarize the first experimental result at small zCg from both collaborations 
at HERA (refs. [4]): 

1. The increase of the value of the deep inelastic structure function F2 at zB + lo-* 
shows that the gluon density reaches a sufficiently large value, namely 

XBG(XB, Q2) + 40 - 50 at XB = lo’* and Q2 = 20GeV2 . 
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Figure 2: The behaviour of z~G(zB, Q2) versus Q2 at fixed zB. 

2. The ZEUS collaboration measured a very important value, namely the diffraction 
dissociation cross section and the result is 

ODD 5.2nb -=- 
Qt 80nb 

= 6 10m2 at zg = 10B4 and Q2 > 10GeV2 . 

3. F2 experimental data can be described by the GLAP evolution equation assuming 
that at the initial virtuality &i N 5GeV2 the gluon structure function rapidly-increases 
at XB + 0 as XBG(XB, Q$ a xi” and wo 2 0.3 - 0.5. 

4. Both collaborations measured the total cross section for photoproduction in the 
region of very small virtualities of the incoming photon and for a real photon. The result 
is that this cross section reveals the main property of “soft” processes, namely CT~ + s-* 
where A N 0.08. 



3.2 The value of SC from HERA data. 

Let me write the deep inelastic structure function in the form: 

F2(xB,Q2) = F'~LAP(~~,Q2) - AF~(xB,Q~) y (9) 
where FFLAP is the solution of the usual (GLAP) evolution equation and AF2 is the SC. 
The ZEUS data on diffraction dissociation give us the possibility to estimate the value of 
SC . Indeed, it was shown in ref. [8] that we have a relationship betweeen SC and DD 
cross section directly from AGK cutting rules [9]: 

(10) 

Therefore directly from ZEUS data we can conclude: 

IAF21 

F2 
> 6 - 1O-2 . 

We would like to emphasize that after such an estimate we can start to discuss not just 
the question whether there is SC or not, but even whether we could describe the value of 
SC in our theory. 

We would like also to note,that the details of the evolution equation for FzDD were 
discussed in ref.[8] and it was suggested to measure the sum 

F2 + F,DD = F2(x~,Q2)( 1 + $1 

in which all contributions of SC are cancelled.. Thus for this sum we can use the GLAP 
equation even in the region of very small zg. 

Using the explicit formula for q + q+ G production for DD processes in ref. [8] we are 
able to estimate the value of r in the GLR equation directly from the ZEUS data. Indeed 

uDD 1 1 - > 481 In2 P. (4x, Q2>)lz=2tB . g -- 
ut 16 R2Q;4 22wfJ 2 

; 
(11) 

where the last term is the estimate for qqG production assuming that xG(x,Q2) N 
z--,wo M 0.3,yc + l . ?. For simplicity I also integrated over the quark loop assum- 
iln6y Prytz’s simplification [lo] as well as on; suggested by EKL [ll]. Using xG(x, Q2 = 

= 15 from HERA data and Qi = 5GeV we can conclude from the above simple es- 
timates that if the ZEUS collaboration really measured the value of the DD cross section 
in DIS R2 > 12GeV2. 

The same conclusion we can get from the AKMS [12] estimates for SC (AF2) in the 
GLR equation, namely the typical value for the ratio AFJFZ turns to be equal 10% for 
R = IZproton while it is of the order of 30% for R = $Rprolon. 
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To evaluate the importance of the result let me to recall you that there are two 
theoretical estimates for the value of R: from QCD sum rules [13] R M $Rproton and 
dymamical correlations of gluons that I’ll discuss later give R M 0.32Fm [14]. Let me 
also to recall that Rgvotm = 25GeVw2. 

Thus we can state that if ZEUS really measured the value of the total cross section of 
DD process this data means the physical pucture with two radii : Etproton for constituent 
quarks and R < Rpt Oton for gluons is inconsistent. This is certainly the first signal for the 
death of the quark constituent model which for two decades has provided us sufficiently 
simple and accirate estimate for hadron - hadron collisions at high energy. 

3.3 Saturation of the parton density or different physics for 
%oft” and “hard” processes? 

The HERA data allow us to raise the question that in the title of this subsection. Indeed, 
we can separate two distinguished regions in Q2 with quite different energy behaviour of 
the photoproduction cross section. 

1. Q2 < 1GeV’ 
1. T,h,e total cross section is basically constant here ( or increases slightly with energy). 
2. d % 30%. 
Thuzin this kinematic region the photoproduction process with small photon virtuality 

looks like a typical “soft” process, as in hadron - hadron collision. 
2. Q2 > 5GeV2 
1. The total cross section increases rapidly with energy (XB) bt a xi”. 
2. G - 10%. 
Here we have of course the typical process of deeply inelastic scattering. Thus both 

experimental facts we can interpret as the contribution of the so-called “hard” Pomeron 
which is a solution to the BFKL equation [5] and gives CT~ a xi” with wc > 0.4 while 
the smallness of the ratio G has a natural explanation in small values of SC. 

The question arises what is going on for intermediate value of photon virtualities 
1GeV’ < Q” < 5GeV2. We have two different scenarios for this kinematic region: 

Landshoff picture: At Q2 < 1GeV’ all experimental data for photopropduction as 
well as for other “soft” processes can be described by the exchange of a “soft” Pomeron 
which is the usual Regge pole with intercept ap = 1 + c (c N 0.08 < wo) (see ref.[15] 
for details). The small value of the ratio $ can be interpreted as an indication that the 
SC are small and can be treated in a perturbation way in this approach. In particular 
Donnachie and Landshoff considered only two Pomeron exchange. In this picture the 
region of deeply inelastic scattering has different underlying physics related to a “hard” 
Pomeron and the transition between “hard” and “soft” regions look quite arbitrary at the 
moment. However this approach is very simple and provides an elegant description of all 
available experimental data on “soft” processes. 

I would like to draw your attention to the fact that DD is a bigger fraction of the 
total inelastic cross section in DIS process than in typical hadron - hadron collisions ( 
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note: this is one the most striking news of this conference !). This fact is very difficult to 
describe in the Donnachie - Landshoff approach. 

Saturation of the parton density: The second scenario is intimately related to 
the hypothesis of the parton density saturation. In this scenario the “hard” Pomeron is 
responsible for the behaviour of the total gross section in both kinematic regions, but 
the small value of the ratio g we interpret differently for large and small virtualities: 
for large ones it supports the small value of SC while at small ones we interpret it as an 
indication that the SC becomes very large and leads to a black hadron (constituent quark) 
disc. The greatest advantage of this scenario is the unique description of the diffractive 
and inclusive processes based on solid theoretical background: properties of the “hard” 
Pomeron and the shadowing correction in perturbative &CD. 

It is worthwhile to mention that strong SC gives rise simultaneously to the saturation 
of the parton density, the smooth behaviour of the total cross section at high energy, a 
natural explanation of the transition from steep energy behaviour of the “hard” Pomeron 
to smooth energy dependance of the ‘soft” total cross section and small value of the 
diffraction dissociation cross section in both kinematic regions (see ref. [16] for more 
information ). However we have to note that the description of the data has not been done 
within this hypothesis in spite of the fact that these two scenarios give sufficiently different 
behaviour in the region of intermediate virtualities of photon. In the second scenario we 
expect some transition region with smooth behaviour of at versus Q2. The first try to 
extract this behaviour from available experimental data shows that such transition region 
does not contradict them [17] but it is too early to draw a deffinite conclusion from the 
data. 

3 i The EKL approach. 

As a smooth transition to the purely theoretical section of my talk let me discuss here 
the EKL approach which is the first attempt to give a theoretical selfconsistent use of 
the HERA experimental fact that the data could be described only if we assume that 
F2 a xi” at Q” = 5GeV2. 

The fact of such behaviour of the structure function in the region of small XB has 
been predicted by the BFKL equation but the BFKL equation suffers from two major 
difficulties: 1) the next order corrections are big and 2) this equation is sensitive to the 
hypothesis that we made about the confinement. The first problem is technical in nature 
but the second is of principal importance, the worst thing that we even have not learned 
enough what kind of assumption about the confinement has been made in the BFKL 
equation. 

The idea of the EKL paper is to understand better what we can get from the traditional 
approach for the low XB behaviour of the strpcture functions and in what kinematic region 
we can trust this approach. 

Let me start by recalling the main steps of our theoretical approach to deeply inelastic 
scattering: 
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1. We introduce the moments of the deep inelastic structure function,namely 

M(w,r) = / 0 
l x~-‘dxg X&(XB, Q2) =I 

/ Om e“'%&&'(xB, Q2)1 , (12) 

where w = N - 1, y = ln(l/XB) and r = ln(Q2/QX). 
2. Each moment is given as Wilson Operator Product Expansion in the form: 

M(w,r) = Czb, r)(Plo(2)IP) + 34@, ~)bw(‘)IP) + . ..$-$i(w. r)(plO(i)Ip) . . . (13) 

where Ci is the coefficient function and (p]O(‘)]p) is the matrix element of the twist i 
operator . In such approach we absorbed all our unknowledge about confinement in the 
matrix element, in particular the power like behaviour of F2 means that 

(p10(2)Ip) = M(w, Q2 = Qi) a ‘(‘) 
w - Wl-J * (14 

3. It is well known from the renormalization group approach that a coefficient function 
Ci behaves as 

Ci a eTitwlr (15) 
where +yi is the anomalous dimension of the twist i operator 2. 
4. Now we neglected all high twist contributions ( all terms in eq. (1) except the first one 
) assuming that they are small at large value of Q2 due to the factor & in front. 
5. The anomalous dimension of the leading twist contribution can be calculated using 
GLAP evolution equation [l] and it is equal to 

72(w) = J$ at w+O 

6. The BFKL equation can be rewritten as a prediction for anomalous dimension of 
leading twist operator in the form: 

7G = CCn@” = 2 + C(3)(%)4 + . . . . 

The main property of 7gFKL is the fact that 7gFKL + f when w + WL a Q, and the 
expression for WL is given in section 2.7. 

7. In the EKL paper - 

7 = 70 + 71 + . ..+ 7n + ... 

has been calculated assuming 

taking into account the following orders of c: 

*For simplicity we consider here the case of fixed a,. 
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7 c c2 fz3 8 
“lo 2 cY# Q,W a,w2 

71 52 a2 w 

73 5 

74 3 

It should be stressed that the whole approach can be justified only if wo > WL. 
The XJZJ behaviour of the structure function can be obtained by performing the inverse 

Mellin transform; 

fi(xg, Q2) = & /, &&(")'+"y~M(w, Q2 = 9:) 7 (19) 

where y = -hxB and t = In g and the contour is to the right of all singularities in M 
as well as to the right of the saddle point ( ws ) which can be found from the equation: 

-&WY + 7(w)t)l,=,, = 0 * 

We have two very different cases: 1) ws > we and 2) ws < wo. In the first case we can 
evaluate the integral using the steepest decent method which gives a result equivalent 
the so-called Double Log Approximation of pQCD. In the second case we can close the 
contour on the pole w = wo and we get the simple result that 

F2(% Q2) = &(X&Q2 = Qi)er(wa)t * (21) 
Fig. 3 shows that if ws 

Of eq. ( 21 ) for Xg < 10”. 
x 0.5 in HERA kinematic region we have the simple answer 

The r(w) calculated by EKL in ref. [ll] is given in Fig. 4. From this picture one can 
see how well the ELK approach could work. It is very important to realize that only if 
the value of wc that incorporates the unknown confinement dynamic in the EKL approach 
is large enough, namely we > WL = 0.35 we can trust this approach. If this is not the 
case we have to be reconciled with the fact that the confinement forces are important 
even in typical “hard” process such as DIS at low zg. Fortunately we have the BFKL 
equation that descibes the main qualitative features of low XB interaction in DIS but we 
certainly need more transparent and more formal understanding of what hypothesis about 
confinement has been incorporated in this equation. 

The second possible solution of the problem is the different scenario for what could 
happen at low Xg. Indeed, if the screening corrections described by the GLR equation 
(8) enter into the game before the difference between the BFKL and the GLAP equation 
becomes visible, the situation turns out to be very attractive from a theoretical point of 
view since in the GLR equation the unknown confinement forces has been included only 
in one nonperturbative (phenomenological ? ) parameter R, which has very transparent 
physical meaning of the correlation length of gluons inside a hadron at XB - 1. 
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Figure 3: Contour plot showing fixed values of ws in Q2, XB plane [ll]. 

4 On the way to an analytic solution. 

In this theoretical section of my talk I am going to discuss only three selected topics 
which I hope will be able to clear up our typical difficulties and achievements in this field, 
namely : i) a new understanding of the BFKL equation, ii) dynamic gluon correlations 
and iii) “hard” diffraction dissociation processes. 
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Figure 4: The GG anomalous dimension in various approximations. 

4.1 New understanding of the BFKL equation. 

I hope that I have convinced you how important it bis to understand better the physical 
meaning and the formal grounds of the BFKL equation. I firmly believe that during this 
year A. Mueller [18] (and N.N. Nikolaev with collaborators but six months later [19] ) 
has achieved the considerable progress in both understanding and formal derivation of 
the BFKL equation and its generalization. Mueller’s main idea is to construct the small 
x infinite momentum partonic wavefunction of a hadron in QCD while BFKL calculated 
the amplitude for n - gluon production in so called multireggeon kinematic region. The 
wavefunction gives us much richer information on the hadron interaction, has very trans- 
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parent physical meaning and makes the bridge between our parton approach to “hard” 
processes and new phenomena that we anticipate in the region of high density QCD. 

1. 
The technical trick that has been used is also very instructive, namely it turns out that 

the wavefunction looks much simpler in the mixed representation in which each parton is 
labeled by its fraction of the total hadron momentum xi and the transverse coordinate rti. 
The transverse coordinate is especially useful since in the low x; region the i*” gluon can 
be considered as being emitted from the system of i - 1 partons with spatial transverse 
coordinates of these “sources” being frozen during the emission of i - th gluon. Thus we 
can consider these of i - 1 partons as a system of (i - 1) qq dipoles since each gluon can 
be viewed as quark - antiquark pair if number of colours N, is big enough. So the only 
thing that one needs to write down is the emission of the i - th gluon by such a system 
of dipoles. This problem has been solved in ref.[lS]. For example for emission of gluon 
(52, rtc = r2) from one dipole which is the quark (xq = 1 - XI, rtq = ro = 0) and antiquark 
(54 = Xl, rtg = fl) is equal to 

P(Xl, x2; n, t-2) = -~p(xl;pl){~ - %A}. c,” , (22) 

2. 
Mueller made one very important step in our understanding of our parton system, 

namely he found what sum rule plays the role of the momentum sum rules in the GLAP 
approach for low xc; partons. This sum rules is the normalization of the partonic wave- 
function: 

/ fi f$ fi&pqxl, . ..x.; rtl, . ..rtn)12 = 1 . (23) 

Using this equation one can easily take into account so called virtual corrections, which 
in this case are mostly known as gluon reggeization or non -Sudakov form factor. The 
importance of this step can be compared only with the transition from Gribov - Lipatov 
form of usual evolution equation with Sudakov form factor in the kernel to well known 
Lipatov - Altarelli - Parisi elegant form based on direct use of the momentum sum rules 
in &CD. 

3. 
The physical application of this new approach has not been considered but Mueller 

noted at his Durham talk [20] that his approach will be able to resolve the old problem 
with the BFLK equation. Indeed, the physical meaning of the growth of the structure 
function at zB + 0 is the increase of the number of “wee” partons ( N ) that can interact 
with the target ( N a xiwo )( see, for example, review [21]). However the multiplicity of 
gluons calculated as the ratio J ,:t;yJ~ t t urns out to be small ( of the order of Q, In & 
). It means that partons are in a very coherent state in a typical inelastic event. However 
the behaviour of the parton cascade at large multiplicity should be quite different from 
Poisson distribution since at large multiplicity all N parton can be freed in the interaction. 
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4.2 Dynamic gluon correlations. 

In refs. [22] [23] was shown that we oversimplified the problem when we assumed that 
probability of annihilation is proportional to p2 (see eq. (6) ) in the derivation of the 
GLR equation ( see section 2.6 ). Strictly speaking this probability is proportional to P2, 
the probability to find two parton in one cell of the parton cascade. It turns out that the 
ratio 

p2 Tae &q/ * In g In & 

P 
(24) 

increases with x8. It means that we have to take into account such sort of dynamic 
correlations which can crucially change the GLR equation. In a. more formal approach 
the dynamic correlations originate from high twist contributions in the Wilson Operator 
Product Expansion ( see eq. (13)) which can be rewritten as follows: 

XB+B, Q2) = xgG(1J(xg,Q2) + &x;G(f)( xB.Q2) . . . + . . . Q2:"~1~@")(se&?2) --a 

where Pin) = ~~f~~~ and P(l) 
(25) 

= p. A The value of the anomalous dimension of the 
high twist operators has been found in ref. [24] by E.Laenen, E.Levin and A.Shuvaev. 
The main idea was to reduce the complicated problem of the gluon - gluon interaction to 
interaction of colourless gluon - U ladders” ( Pomerons) in the t-channel. It was shown 
in refs. [22] [23] that this idea works for the case of the anomalous dimension of the 
twist four operator. The fact that we can consider the rescattering of n - pomerons 
to find the anomalous dimension ~z,, really means that we are dealing with a quantum 
mechanical problem: the calculation of ground state energy for an n - particle system 
where the interactions are attractive and given by a four particle contact term ( X ). We 
can calculate the value of X in &CD. It turns out that 

x = 4&d. (26) 

This observation considerably simplifies the problem and will enable us to reduce it 
to solving the Nonlinear Schrodinger Equation for n-Pomerons in t - channel. It is very 
important to mention that the effective theory is a two dimendsional one or in other words 
the Schrodinger equation can be written for n - particles moving only in one dimension. 
It is well known ( see refs. [25] for details) that, this problem can be solved exactly. 

The answer for the energy of the ground state translated into the value of the anoma- 
lous dimension of the twist 2n operator is the following: 

72n = w %{l + $n2 - 1)) , 

where S = (N: - l)- ‘. We can trust the answer only when $ << 1. So we first need 
to find the generalization of the GLR equation (eq. (6)) to clear up what value of n 
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really is important for the deep inelastic structure function using the above result for the 
anomalous dimension and only after the solution we have to go back to the calculation of 
the value of the anomalous dimension. 

The point is that our all perturbation series are asymptotic ones, so I know only one 
practical way how we can operate with such series, namely to we find ( if possible ) 
the analytical function with the same series and treat this function as a solution to our 
problem. Expanding this function we are able to study what value of typical n works in 
the series and to consider the question whether we can trust our answer. If the value of 
the typical n will be of the order of 1 we can claim that we have solved our problem, if 
not we have to go back and try to find a more general expression for the value of the 
anomalous dimension of high twist operators that is valid for any large n. 

E.Laenen and E.Levin ( the paper is still in preparation ) have obtained the gener- 
alization of the GLR evolution equation, taking into account both the arbitrary initial 
condition and the exact value of the anomalous dimension (see eq. ( 27)). 

The first step in such generalization was to write down the equation for P(“) using 
the idea of competition of two processes in our parton cascade: emission and annihilation 
that has been used for derivation of the GLR equation and has been discussed in section 
2.6. It is easy to understand that the equation for P(“) looks as follows: 

9 p(n) 

aln;I;;dlnQ2 
= UT, p(“) - n . S&l ptn+l) , (28) 

Since the contribution of the high twist operators become essential in the region of 
small zB we have to consider the whole series ( 25) and using the above infinite set 
equations we can try to get the equation for the deep inelasatic structure function. 

To get the equation we introduce the generating function 

~J(xB,Q~, 77) = 2 en%(“) , 
n=l 

(29) 

where g(“) = z$G(“)(z~, Q2). Comparing g with eq. ( 25) we see that the deep inelastic 
function is equal to 

x&(% Q2) = Q2g(xB,Q2,q = -lnQ2) . (30) 

Using the generalized GLR equation ( 28) we can easily get the equation for generating 
function g that sums the infinite set of equations ( 28 ): 

d29(XB.Q2, rl) - 
din $dln Q2 = aag:9 + - g&) - ye--J2 e-yg; - g) ) (31) 

where gh = $$ and y is the same as in the GLR equation (6). 
To solve the above equation we need to impose some initial and boundary conditions 

which are the price we must pay for the relative simplicity of the equation. The boundary 
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condition looks very simple : 

7j = fixed; In1 
Xl3 

= fixed; InQ2 + 00 g(xe, Q’,v) + e”gLLA(xB, Q") , (32) 

where gLL.4 is the solution of usual GLAP evolution equation. 
However the initial condition is a much more complicated problem since we need to 

know the fuction g(zB = x8,-,, Q2, q), while experimentally we are only able to measure the 
structure function. So we need more detail information about the structure of a hadron 
in the region XB - 1. To start, we suggest the initial condition in the form: 

g(ao, Q’,v) = 2 en9 9 * [ $-hm(XBo, &‘) 1” = 1 - ~~p(-e'gLLA(~Z30~Q2)) . (33) 
nrl . 

In favour of the above formula we can say that it is simple, has a very transparent 
physical meaning, namely,it reflects the assumption that there is no correlation between 
gluons with zB - 1 except the fact that they are distributed in the hadron disc of the 
radius R. In the case of the nucleus such an approach can be proved and corresponds to 
the so-called Glauber Theory of shadowing correction. In the case of the deeply inelastic 
scattering the formula of this type was discussed by A.Mueller in ref. [26] and we use 
formulas from his paper to establish the exact relationship with gLL,J in eq. (15). 

We are only in the begining of finding of the solution to eq. (31). At the moment we 
can claim that we found how eq. (31) transforms to nonlinear GLR equation if we neglect 
the second term in r.h.s. of eq. (31) and assume the eikonal initial condition of eq. (33). 
We also solve eq. (31) with eq. (33) in the oversimplified case only remaining the second 
term in r. h. s. of eqi(31). The result looks very encouraging since the effective n that 
works in the series of eq.(25) turns out to be of order 1. However we certainly have to 
consider this result as very preliminary since we need to,understand the general solution 
of eq. (31) better. 

4.3 “Hard” DD. 

Here I am going to discuss one particular process, namely “hard” DD in which a jet with 
large transverse momentum p, >> Q >> m is produced in the diffraction dissociation. I 
chose this process not because it is extremely interesting but rather because this process 
can illustrate all problems in QCD in the most direct way. 

FirstJet me remind you how the calculation of this process looked in the good old 
Reggeon Approach. The key idea of the theoretical approach was Mueller’s technique [27] 
in which the DD can be described by two Reggeon diagrams (see Figs. 5.1 and 5.2): the 
first gives the contribution which is similar to inclusive production in the typical inelastic 
process while the second is a new contribu$on in comparison with inclusive production: 
the emission from a vertex. However about twenty years ago in refs. [28] it was shown that 
unfortunately we have to take into account the third contribution of Fig. 5.3 type. This 
new diagram meant that there were no AGK cutting rules for DD, we had no so-called 
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5.1 5.2 5.3 

Figure 5: The DD in “good old” Reggeon Approach. 

Reggeon Field Theory and no way to construct a selfconsistent theoretical approach based 
on the reggeons and their interactions. Thus the result of refs. [28] led to the demise of 
the Reggeon Approach as a way to built a theory for high energy interaction. 

Now I can formulate the question what, is happening with the DD dissociation in 
QCD and for simplicity let us consider the “hard” diffraction in DIS because we can 
apply perturbative QCD to this process and use the factorization theorem [30], that plays 
the role of AGK cutting rules in &CD. It is easy to guess what we want,namely we hoped 
that in QCD only the first two diagrams of Fig.5 contribute. The answer for QCD has 
been obtained by Bartels, Levin and Wuesthoff ( BLW ) recently (the paper is still in 
preparation ) and it is shown in Fig.6. Unfortunately it turns out that we have all three 
contributions: the first one corresponds to the Ingelman - Schlein mechanism [29] and gives 
us a tool to study so called Pomeron structure function, the second one is the emission 
from a vertex and as far as I know was firstly suggested by Ryskin [31] and the third 
is the most dangerous and unpleasant contribution that was suggested by Frankfurt and 
Strikman [31] and called coherent diffraction ( CD ) by them. Thus QCD does not help 
and we have all the old problems in QCD too. However, we have two pieces of good news 
in QCD: the contribution is small for DIS (a 
is proportional to 

$ ) and the high energy asymptotic of CD 
& << 1. BLW also understood how the factorization theorem works 

for inclusive hard processes and why it fails in DD (see also the paper of Collins,Frankfurt 
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= Pomeron 

Vem CD 

Figure 6: The DD in DIS in QCD. 

and Strikman [31] where this problem has been discussed on general ground). 

5 Tragedy, of IOW xl+ 

Now let me share with you the elements of a tragedy that I see in the present status of 
low zB physics: 

l QCD has not cured any difficulty that we had in Reggeon Approach. The only 
profit that we have had from QCD is the fact that the interaction between four “ladders” 
( Pomerons ) is small ( a & < 1 ). 

l The field becomes too complicated even for guys whom have had 20 years daily 
experience in the manipulation of Feyman diagrams. 
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l The demise of the SSC essentially diminishes our hope for direct measurement of the 
low zg ( high density QCD ) phenomena. The only information can come from HERA, 
Fermilab and perhaps LHC (?). The first data from HERA are rather in favour of the 
sufficiently small SC or in other word they could be interpreted as the indication that we 
started only to touch the interesting kinematical region at HERA. 

I do not want that you interpret my above remarks as too pessimistic. The conclusion 
that I want to draw is that we need to search for some new approach to theoretical solution 
of low xg problem less based on Feynman diagrams that is suited for perturbative calcu- 
lation and more related to nonperturbative methods and physical intuition. Fortunately 
I can already say something on possible way out of the perturbative approach. 

Effective Lagrangian for high energy QCD. The first attempt to develop non- 
perturbative approach to low x8 problems was to write down the effective Lagrangian for 
the region of small zg. Intrinsically we assume that such a Lagrangian should be simpler 
that the QCD one and allows one to apply some direct numerical procedure (lattice calcu- 
lation for example) to calculate the scattering amplitude with this Lagrangian. It should 
be stressed the attempts to calculate the amplitude with full QCD Lagrangian have failed 
by now. At the moment we have two effective theories on the market: one was proposed 
by Lipatov [32] which looks not much simpler that full QCD but it certainly incorporates 
all results of perturbative calculations, and the second was suggested by Verlinde-and Ver- 
linde [33], which is much simpler and is suited for lattice -like calculation but it has not 
been checked how well this effective theory describes the perturbative results. Moreover 
there is some indication [34] that this theory cannot describe the virtual correction in the 
BFKL Pomeron. 

Thermodynamics of high density QCD. I firmly believe that we need to write 
down the correct kinetic equation for high density &CD. Such an approach has certainly 
at least one big advantage: the smooth matching with the GLR equation. Unfortunately 
we have not yet understood how to write such an equation in our nonequilibrium situation. 
However we have understood better the physical meaning of the new typical momentum 
in our parton cascade (( ]pt 1) in section 2.7 ). It turns out that this momentum is the 
Landau - Pomeranchuk momentum for our parton medium [21]. Thus the gluon emission 
with transverse momentum less that ( ]pt I) is small due to destructive interference between 
emission before and after collision of the parton with other partons in the medium. The 
experience with the calculation of the anomalous dimension of high twist gluonic operators 
also give us understanding why for bosonic degrees of freedom such as a gluon there could 
be saturatioon of gluon density. Indeed, our cascade is rather a one dimensional one and 
for such a system the direction of motion plays the role of spin for fermions. 

Let me finish my talk with the very optimistic statement that certainly we have learned 
more about low zB parton system both theoretically and experimentally during this year 
after the Durham workshop. Unfortunately we have learned so many things that we had 
no time to swim and have fun in Eilat. 
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