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Abstract 

The dimensionally reduced effective action of t,llc bosonic sector of the het- 
erotic string in critical dimensions is employed to dcrivc a Whcclcr-Dewitt 
equation for the Bianchi-IX cosmology. An exact solution is found that becomes 
strongly peaked around the isotropic limit as t,he voluu~ of t.llc three-geometry 
increases. In principle the global O(G, G) y s mmctry of the cffcctive Cactiotl can 
be employed to generate new solutions from the one prcsont,cd 11cre. 
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The heterotic string is a candidate for a consistent theory of qusntum gravity [l], 
but a complete quantum field theory of the string does not, yet, exist. One can gain 
insight into the full theory, however, by considering the quantum cosmology of the 
point-like effective action [2]. This field theory limit is most naturally formulated in 
a higher-dimensional space-time and the question arises as to why only three large 
spati& dimensions are observed at the present epoch. This has been addressed by 
Pollock, who claims that physical space-time must be four-dimensional if the complete 
universe is ten-dimensional [3]. A second problem is why physical space appears highly 
isotropic and homogeneous on sufficiently large scales [4]. P resumably, if st.ring theory 
provides a complete description of nature, this observed isotropy should arise naturally 
within the formalism. Perhaps the quantum cosmology of the field theory can provide 
some insight? 

Motivated by this qucst,ion we examine the Wheeler-DeWitt (WD) equation [5] 
derived from the bosonic sect,or of the heterotic string in critical (ten) dimensions 
to lowest order in the string tension. Our sbarting point is the four-dimensional 
effective action recently derived from this theory by Maharana and Schwarz [G], who 
employed the Scherk-Schwarz [7] 1’ ( unensional reduction techuique. In rhis paper the 
physical universe is assumed to be a Bianchi type LX cosmology. The spatially closed 
Friedmann-Robert,son-Walker (FRW) universe is recovered in the isotropic limit of 
this model. If a number of reasonable assumptions are made, an exact solution can 
be found after a suitable conformal transformation on the metric. The wavefunction 
becomes increasingly peaked around the isotropic FRW cosmology as the volume of 
the physical space increases. 

We briefly review t,he derivation bf the dimensionally reduced effective action 
presented in Ref. [S]. As a first approximation to a Calabi-Yau space, it is consistent 
to treat the internal space as a six-torus if the background fields are independent of 
its coordinates y”, o = 1,2.. ,6. The ten-dimensional metric can then be written: 

@;; = gpv + A(“‘At’,) 
A$ 

where G-0 is the internal metric and gpy(xP) is the four-dimensional space-time 
metric.’ The effective Euclidean action in four dimensions is 

s = /&$je-+[-~-(v4)*+ +H,,~~II~~~ - :Tr (v,M-~v~M)] , (2) 

where A$ = l?,,,, + BmDAF)o, &,p = B,p, 4 = $J - $ In det G is the shifted dilaton, 
H PUP = VbB,,l, and all vector fields Ah are set to zero. The 6 x 6 matrix M is 
defined: 

-G-'B 
BG-' G-BG-'B M-' = qMq, (3) 

‘A hat _ deaotes quantities in the ten-dimensional space-time. The reader is referred to [G] and 
[S] for a full treatment. 



This action is invariant under a global O(6,G) t.ransformation and a special case of this 
symmetry is the target space duality transformation associated with an int,rrchange 
of M and M-‘. 

Assuming the spherically symmetric ansatz allows the G and B matrices to be 
written in block form: 

G + B = diag (C,, C2, C,) , CjS ( Tzj $j). 

The action (2) simplifies to 

S = 
I 

&z&e-+ 
( 

-R - (Vd)2 + ~H,,,H~VP + i $ [(V$j)2 + e-*+j (VO~)~] 
j=1 

(5) 
and the duality transformed fields are (81 

,-A = ,*i + e-“?o? I’ aj = - (,% + &$’ e-&oj. (6) 

The decomposition (4) implies that the action (5) is also invaria,nt under the SL(2,R) 
transformation [8]. 

The time-dependence of the effective gravitational constant in this theory, as mea- 
sured by the evolution of the resealed dilaton field, may be removed after a suitable 
conformal transformation on the metric Q,,” [9]: 

!ip = f12L7,“, f12 = e-“. (7) 

In the conformal (Einstein-Hilbert) frame, the Pla,nck mass is constant but the gauge 
and Yukawa couplings are dynamical variables [lo]. The conformally transformed 
action is 

s = /d%&j (--R + ; (q2 + +?-2+Ej~“pH~up 

+iJ$ [(QQj)' + eM2*j (Qgj)2]] t 

where tildes denote quantities in the conformal frame and units are chosen in that 
frame such that the Planck mass is defined by h = c = 16~77~;~ z 1. 

We now assume that the contribution to the action of the tot,ally antisymmetric 
three-index field H,,vp may be ignored. It is shown at the end of the ca,lculation that 
this is a consistent assumption. At the classical level the remaining matter sector of 
the theory behaves as a stiff perfect fluid in which the speed of sound is unity. 

Our main interest in this work is the quantum behaviour of the spatially homoge- 
neous, diagonal Bianchi-IX universe. This is an example of a class A Bianchi space 
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Ill]. It admits a group G of isometrics transitive on space-like three-dimensional 
orbits. The Euclidean metric is: 

ds2 = dt2 + e20(L) (e20(r))ij &ej, (9) 

where e60 is the determinant of the metric on the surfaces t = constant, /Yij is a 
3 x 3 symmetric, traceless matrix, ci are three one-forms in t,he orbits and obey 
de’ = Cij& A ek, and the structure constants Cijr; define the Lie algebra of G. G 
does not depend on time t and the conformal transformation is only a function of t 

if the dilaton is constant on the spaces of homogeneity. Hence (7) does not alter the 
structure of G and this implies that a given Bianchi type is invariant under (7). In 
particular, if gPy is taken to be the diagonal Bianchi-IX, t,hen the conformal metric 
& will also be a diagonal Bianchi-IX wit,h world-interval: 

dS2 = dq2 + e*’ (e2P)ij kcj, (10) 
where 

11 z I an(t), e6 = Re”. (11) 
Without loss of generality p may be diagonalized and parametrized in terms of 

two independent components [12]: 

Pij = diag [P+(t) + hA(t),P+(t) - d&-(t), -33+(t)] (12) 
Therefore the quantum cosmology of theory (5) may be investigated in the conformal 
frame. This allows us to apply the well known results from Einstein gravity. 

There are ten degrees of freedom qi = (~,&,~,IJJ~,u~) in this model where 
i = (1,2 ,... ,lO). The conjugate momenta are pi = as/@, where a dot denotes 
differentiation with respect t,o conformal time n. The \VD equation is derived by 
employing the canonical quantization procedure (51. The classical Hamiltonian con- 
straint 1-I = piQ’ - L(q’) = 0 is identified as a wave equation acting on the state vector 
\k(q’) for the universe and the conjugate momenta are identified with the operators 

pi = -e-*&e-.& 

a* 
PT = -@I if1 

and no summation is implied in this equation. The constant p accounts for ambiguities 
in the operator ordering. 

After some algebra the WD equation is found to be 

[ 

,-*$&A _ a2 a2 a2 --- 
a& a& a/3: apz 

+ V(&Pi) - 12345 

-126 
a2 

j=l ~ ( 
+ pig 

ff: )I 

Q = 0, 05) 
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where the ‘superpotential’ U is determined by t,he isometry group G. For Bianchi-IX 
it is given by [12] 

3u = e4G [,-SO+ _ 4e-28+ cash 2v$3- + 2e4,‘+ (cash 4&/L?- - l)] w 

The Bianchi-IX cosmology includes a number of interesting cases. The WD equation 
for the spatially closed FRW universe is given by Eqs. (15) and (16) when P+ = J- = 
0 and the momentum opemtors a’Q/a@ are removed. On the other hand the Taub 
universe [14] is recovered when 3’ = 0 and a*C!/a@ is removed. 

An exact separable solution to Eq. (15) may be found. We assume the ansatz 
@=XY,whereX=X(&,P*)andY=Y(r$,$j, j), 0. and separate the WD equation: 

1 
a* a a2 - - - 862 +pzs- $3: a2+(ymz* y-0 apz 1 2 - 
a* [ .( a2 a* - 842 +k - *=, “*j + e2”v ) 1 -6 y=o, 

(17) 

(18) 

where z is an a,rbitra,ry (possibly imaginary) separation constant. Recently it was 
shown that the pot,ential (IG) satisfies the Hamilton-Jacobi equation [15,16] 

(19) 

where 
’ 

Xz’e 
” [ee4@+ + 2e*@+ cash 2&p-] . WJ) 

This property leads to a very simple analytical solution to Eq. (17). We search for 
solutions of the form: 

x’ = e-ch, c = constant. (21) 

Substitution of Eq. (21) into Eq. (17) leads to the condition 

c? - pc - z* + 2(p - 2c - G)x = 0, (22) 

where Eq. (20) has been employed. This is satisfied when p = 2(c + 3) and 

-3f&-T$Gj. (23) 

The constants c and p are real for 121 5 3. The special case z = 0 is equivalent 
to vacuum Bianchi-IX and the c = 0 solution for factor ordering p = 6 was found 
previously in Ref. [lG]. We find a new vacuum solution c = p = -6. An exact 
solution for p = 0 also exists when c = fr = -3. 

Eq. (18) is solved assuming the ansatz: 
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where Aj (+j) a,re arbitrary functions and {y,wj} are arbitra,ry constants. Eq. (18) 
simplifies to t.hree ordinary differential equations: 

3 - [w;e2”’ +~zcos28j] Aj = 0, j = 1,2,x, 

where X2 = y2+s2/12 and the set of constants {8,} satisfy the integrabilitycondition: 

cos* 8, + co? 82 + co2 03 = 1. (2’5) 

Eq. (25) reduces to a Bessel equation after the substitution @j = ln5j, whose general 
solution is a linear combination of modified Bessel functions Z,,,,,(wj<j) of order 
Xcosej. 

Finally, the equivalent solution in the original frame is deduced by substitut,ing for 
o with Eq. (11). The full solution, module a constant of proportionality, is therefore 

\Ir = exp -i (em40+ + 2e20+ cash 2&p-) e’*-+] e 
[ 

-C(o-Q/2)e+iy~*i(w,a,+Y?~Z+W,~3) 

xZX~~~B, (wleQ1) ZA,,O, (w”) ZA~M (wd3) (27) 

The O(G, 6) global symmetry generates, from a given solution to the WD equation, 
a generally inequivalent class of solution. As an example we may employ the duality 
transformed fields (G) to generate the class of solution: 

Q = emc’-~eii~+$ ( ZAeosej [q (e4j + e+uj)-‘1 

Xexp FiWj e’j +e 
[ ( 

-hu?)-l e-q}. , (28) 

The X component of the wave function is invariant under this duality transformation. 
It was first noticed in [lG] that the function e-r with $I = 0 is strongly peaked 

around /J+ = /3- = 0 in the (/3-,,fI+) pl ane for large values of ea. When the spatial 
metric degenerates, however, --cy diverges and X becomes vanishingly small. Solu- 
tions (27) and (28) exhibit similar features for given values of {&,&,Uj}. If one 
adopts the proposal of Hartle and Hawking 1131 and interprets I@]* as an unnor- 
malized probability density, it follows that all values of p* are equally likely near 
the singularity. However, the probability density becomes progressively more peaked 
around the isotropic FRW solution as (Y increases [lG]. This implies that there is a 
progressively higher probability of finding this universe in the isotropic state as its 
three-volume increases. 

A number of assumptions were made in this calculation however. Firstly we ig- 
nored the contribution from the HP+, field. When c 2 0 we find from Eq. (27) 
that IQ!’ is maximized in the 4 direction as the dilaton diverges. Hence the con- 
formal weighting e-*4 on the fi2 term of the action (8) suggests this is a consistent 
assumpt,ion if the interpretation of ]Q12 as a probabilistic measure is valid. 
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A further assumption implicit in the calculation was that the fermions and gauge 
supermnlt,iplct could be treated as const~ant background fields. This is not necessarily 
consistent since fernlions should be included due to supersymmetry. The effects of 
including the fermionic degrees of freedom can be significant in certain circumstances 
(171. hforeover, for vacuum Bianchi-IS the form (19) of the potential implies that 
the Hamiltonian leading to the WD equation is t,he bosonic part of a supersymmetric 
Hamiltonian [IS,lS]. Since it is reasona~ble to suppose that this symmetry should also 
be preserved at the quantum level, the supersymmetric partners should be included. 

Finally, it is not clear that these solutions a,re directly relevant to the universe 
in which we live. They are Euclidean for all values of the scale factor and can not 
therefore be interpreted as Lorentzian four-geometries [19]. However it is possible 
that they may be viewed as quantum wormholes, since they are regular when the 
three-surface degenerates and decay exponentially fast at infinity [ZO]. 

The symmetry leading to Eq. (19) a.ppears to hold for all Bianchi class A spaces 
[21]. Thus solutions similar to the ones presented here may be found in other Bia,nchi 
types. It will also be interesting to further esplore the consequences of the O(G, 6) 
and SL(2,R) symmetries of the action. 

In conclusion we have found a solution to the WD equation based on the dimen- 
sionally reduced string effectke action when the four-dimensional physical space-time 
is viewed as the anisotropic Bianchi-IX model. This solut,ion is peaked around the 
isotropic limit at large three-geometries. 
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