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ABSTRACT 

Information about the physical processes that generate the primordial 
fluctuations in the early universe can be gained by testing the Gaussian 
nature of the fluctuations through cosmic microwave background radiation 
(CBR) temperature anisotropy experiments. One of the crucial aspects of 
density perturbations that are produced by the standard inflation scenario 
is that they are Gaussian, whereas seeds produced by topological defects left 
over from an early cosmic phase transition tend to be non-Gaussian. To 
carry out this test, sophisticated statistical tools are required. In this paper, 
we will discuss several such statistical tools, including multivariant skewness 
and kurtosis, Euler-Poincare characteristics, the three point temperature cor- 
relation function, and the Hotelling’s T* statistic defined through bispectral 
estimates of a one dimensional dataset. The effect of noise present in the cur- 
rent data is discussed in detail and the COBE 53 GHz dataset is analyzed. 
Our analysis shows that, on the large angular scale to which COBE is sensi- 
tive, the statistics are probably Gaussian. On the small angular scales, the 
importance of Hotelling’s TZ statistic is stressed, and the minimum sample 
size required to test Gaussianity is estimated. Although the current dataset 

‘Submitted to Phys. Rev. D. 

wmled by Unlversitles Research Asrocialion Inc. under contract with the United Staler Department of Energy 



available from various experiments at half-degree scales is still too small, im- 
provement of the dataset by roughly a factor of two will be enough to test 
the Gaussianity statistically. On the arcminute scales, we analyze the recent 
RING data through bispectral analysis, and the result indicates possible de- 
viation from Gaussianity. Effects of point sources are also discussed. It is 
pointed out that the Gaussianity problem can be resolved in near future by 
ground-based or balloon-borne experiments. 



1 Introduction 

The cosmic structure formation problem is essentially an initial value prob- 
lem: how did the universe generate the initial perturbations? In particular, 
one can divide the initial condition models into two clear classes: Gaussian 
or non-Gaussian? Cosmic inflation [l], on one hand, provides a natural way 
to generate Gaussian initial perturbations [2]; spontaneous symmetry break- 
ing, on the other hand, will lead to the formation of topological defects [4] 
via Kibble mechanism [3], and the perturbations generated by topological 
defects can be characterized as non-Gaussian. Non-Gaussian perturbations 
also arise in various non-standard inflationary models [5]. Thus, a test of the 
Gaussian nature of the primordial perturbations will not only be helpful in 
discriminating different models for structure formation, but could also shed 
light on new physics that yield topological defects or special non-standard 
inflations in the early universe. Such a test is, therefore, very important and 
timely in today’s cosmology. 

There are two ways to carry out the test. One is from the statistics of 
the galaxy counts in a redshift survey [6]. H owever, since the density field we 
observe today has already gone through the “black-box” of non-linear grav- 
itational evolution, one has to filter out this effect carefully to get a reliable 
estimate of primordial quantities [7]. In this paper, we will concentrate on 
the other approach, which is from the cosmic microwave background radia- 
tion (CBR) anisotropy experiments. The experiments measure the primeval 
density perturbations at redshift z N 1000. The density contrast is fairly 
small at this epoch. The Gaussian nature of the microwave background fluc- 
tuation directly reflects the nature of the primordial perturbations. This 
approach is promising, especially after COBE’s detection [8] of the temper- 
ature anisotropies at large angular scales, and the continuing accumulation 
of data on smaller angular scales[9]. 

Prior to COBE’s detection, studies on CBR were focused on determining 
the level of anisotropies. The Gaussianity test of the anisotropies was largely 
considered as a next-step problem and experimentally intractable. Few de- 
tailed studies [IO] [ll] on the statistics of the CBR anisotropies have been 
carried out except for the Gaussian case [12]. Now that the CBR anisotropies 
are detected [8][13], this next-step but important question should be brought 
into focus and we are optimistic that it can be resolved experimentally in 
near future. As we will show later, one doesn’t need a full-sky coverage at 
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high angular-resolution to study the Gaussianity problem statistically, 
There are several recent papers on statistical tests for Gaussianity [14][15][16]. 

To carry out the test through CBR experiments, two important feature have 
to be stressed. One is the instrumental noise which is present in all current 
experiments. One should have a clear understanding of the instruments and 
associated noise before attempting to decipher non-Gaussian signals from 
experiments. The other feature is the smoothing scale ed each experiment 
operates. Note that the angular size of the comoving horizon at decoupling 
epoch is ee N 2” by assuming standard recombination [17]. Put this charac- 
teristic scale in mind, one can divide all CBR experiments into three cate- 
gories: large scales (0, > e,), intermediate scales (0, N lo) and small scales 
(0, N arcminutes). For large scale experiments [8][13], each measurement is 
a sum of anisotropies in several independent horizons, and one would expect 
the statistic to be close to a Gaussian simply by the virtue of central limit 
theorem [18][19]. For small scale experiments [20], we will show later that the 
data fails the Gaussian statistical tests. However, on arcminute scales, fore- 
ground source contaminations are important. The statistics of the data may 
not reflect the statistics of the CBR anisotropies at these scales. Interme- 
diate scale experiments [21] are ideal for testing Gaussianity. Although the 
dataset available is still too small, as we will show in section 4, improvement 
of the dataset by roughly a factor ,of two will be able to test the Gaussinity 
of CBR statistically. 

Several statistical tools are discussed in this paper. In section 2, we dis- 
cuss the simplest tests of Gaussianity through the skewness and kurtosis of 
the one point distribution. Skewness and kurtosis are the normalized third 
and fourth moments of the distribution and they vanish for Gaussian distri- 
bution. Several physically motivated non-Gaussian probability distribution 
functions (PDFs) are considered, and effects of noise are discussed. To con- 
sider the possible correlation between the signal and noise, multi-variant 
skewness and kurtosis are introduced and their statistics are discussed. In 
section 3, one geometrical measure of the random field, the Euler-Poincare 
(EP) characteristic, is discussed and used to test Gaussianity. The statis- 
tics of the EP-characteristic and the effects of noise are discussed and we 
show that EP-characteristic is hardly ,a. good discriminator between Gaus- 
sian and non-Gaussian fields when the noise is comparable to the signal. 
In section 4, we discuss using the three point correlation to test Gaussian 
ity. Theoretical predictions in various models are discussed and we present 
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our analysis of COBE 53 Ghz data. The result is in good agreement with 
Gaussian assumption. In section 5, we discuss using Hotelling’s T* statistic 
to test Gaussianity on intermediate angular scales (8 - 1”). The minimum 
sample size to carry out the test is estimated and sampling technique are 
also discussed. Although the current dataset is still too small to carry out 
the Gaussianity test, improvement of the sample size by roughly a factor of 
two will be adequate. In section 6, we use the 2” statistic to test RING 
dataset from OVRO [20] on small angular scales (- arcminutes). It is found 
that the data is not consistent with Gaussian distribution. However, one 
cannot conclude that the CBR anisotropies are non-Gaussian on these scales 
because of the foreground source contaminations. In section 7, we discuss 
looking for a special non-Gaussian signal, the point-like CBR anisotropy, in 
small scale CBR experiments. The Gaussian nature of perturbations from 
inflation is shown in the appendix. 

2 Skewness and Kurtosis of Noisy Data 

The simplest tests of Gaussianity will be skewness 11s and kurtosis p4 [7] of 
the distribution of temperature anisotropies 6, 

113 = m3/u3, ~4 = m4/u’ - 3, (1) 

where ms and r& are the third and fourth moments of the distribution, adn 0 
is the variance of 6. For Gaussian distribution, both j~s and p4 vanish. In this 
section, we discuss several physically motivated non-Gaussian distributions: 
exponential/log-normal and x2. As we expect, noise will blur the effects of 
non-Gaussian distribution. The skewness and kurtosis for these distributions 
are calculated both with and without noise. We also discuss the use of 
multivariant skewness and kurtosis in cases of noisy data and show how to 
estimate them from experimental data. 

2.1 Skewness and Kurtosis of Non-Gaussian Signals 

Coles and Barrow [IO] have studied the statistics of~.a large class of non- 
Gaussian distributions. We choose the following distributions based on phys- 
ical considerations. To reflect the real experimental setup where the mean 
of the distribution is subtracted, we standardize the distribution so that all 
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of them have a zero mean. Furthermore, we normalize the variance of the 
distribution to be unity. Thus, distributions we study below correspond to 
the probability distribution functions (PDF) of z = 9 . A, where a0 is the 
observed rms temperature fluctuations. 

I. Exponential distribution. 
This distribution may describe the temperature fluctuation produced 

from the cosmic string network on arcminute scales [ll]. The PDF of this 
distribution is; 

P(z) = -$exp(-fi]z]). 

The skewness and kurtosis of the distribution are: 

p3 = 0; p4 = 1.5. (3) 

2. Log-normal distribution. 
This distribution is widely used in the statistical studies of galaxies and 

clusters. It is temping to suggest that it might describe the distribution 
of temperature anisotropy from Sunyaev-Zeldovich (SZ) effects [22]. Since 
the effect is produced by the hot-gas in the rich clusters, thus it should 
relate intrinsically to the distribution of rich clusters, which is log-normal. 
Simulation of SZ in the cold dark matter scenario 1231 seems to support this 
connection. A small reminder is that the SZ effect always produces cold spots 
on the sky; thus, the distribution of the temperature fluctuation is different 
from the usual log-normal distribution by a sign. The PDF is given by: 

p(z) = &-z) exp( -(Iog(-z))s/az), z < 0. 

where v is given by: 

Q= &l-tfi 
2 2’ 

The skewness and kurtosis of the distribution are: 

lb = - 
exp(3a) - 3 exp(a) + 2 

(exp(a) - 1)3/* 
exp(6a) - 4exp(3a) + 6exp(a) - 3 

P.4 = 
(w(a) - I)* ’ 

(6) 
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where a = u’. Thus, 

3. xz distribution. 

/i3 = -0.66, pq = 2.72. (7) 

This class of distributions provides a good fit to the statistics of tempera- 
ture fluctuation from global topological defects and non-topological defects in 
the framework of O(N) a-model [24]. In this model, a global symmetry O(N) 
is broken to O(N - 1) by a N-component real scalar field d = (di, . . . . 4~) in 
the early universe. The temperature anisotropy produced by the dynamics 
of the scalar fields is given by: 

6T -= 
T 

-yo, = -?q C[&’ + (V~;)‘], 

When N is small, the dynamics of the scalar fields are nonlinear, thus, the 
PDF for 4; is non-Gaussian. However, when N is larger, the dynamical equa- 
tions for 4; decoupled and become linear [24] and therefore ~i(i = l,...,n) 
become independent Gaussians. From Eq. (8), it is clear that in the large N 
limit, the temperature anisotropy is x2 distributed with n = 4N degrees of 
freedom. Because of our standardization process, the PDF is related to the 
usual x2 distribution by the following transformation: 

Thus, the PDF of the distribution is given by: 

p(z) = (2,n)&n,2) 
(Z+Jn/2)~exp(-Ji;;~z+n),~>-J;;7i. 

(10) . , 
This PDF is plotted in Fig. (1) f or n = 4,8,16. The distribution is very 
non-Gaussian for low n but approaching asymptotically toward Gaussian in 
the large n limit. The skewness and kurtosis of the distribution of this class 
of distribution is: 

pa = Js7;;, p, = 15/n. (11) 
With the presence of Gaussian noise, the skewness and kurtosis will reduce 

dramatically. While the third and fourth moments of the distribution are 
unchanged, the variance increases by (1 + os), when the signal to noise ratio 
is 1 : CY. Thus, the skewness will reduce by (1 + CY*)-~/* and the kurtosis 
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by (I+ cc*)*. For the log-normal distribution, the relations mentioned above 
are not true. The skewness and kurtosis can be calculated from Eq.(6). The 
skewness and kurtosis for various non-Gaussian distributions are listed in 
Table 1. In the noisy case, the signal to noise ratio is set to be 1:l. 

2.2 Estimate of Skewness and Kurtosis of Noisy Data 

In this section, we will address the following questions: how to estimate 
the skewness and kurtosis from noisy experimental data, and what are the 
statistics of these quantities when the signal and noise are both Gaussian? 

In the case where the experimental data is noisy, one has to deal with 
two random variables, the signal and the noise, which have a bivariant joint 
distribution. Thus, we have to generalize the usual skewness and kurt+ 
sis to bivariant distributions. Let us first consider the general multivariant 
distribution. For a p-dimensional ~random vector x = (21, ~2, . . . . zP) with 
zero mean and covariance matrix C, it is helpful to introduce the following 
multivariant measures of skewness and kurtosis [25]: For skewness, 

a, = f: f: =rr’g.dlOtf(II;;:~;l;ll), 

r,r,t=1 ,’ ,’ 3 * t’=l 
(12) 

where pi;: =< z,zszt >, u’j is the i, jth element of C-‘, the inverse of 
covariant matrix C. If the joint-distribution function for x is a multivariant 
Gaussian, then ,& = 0. plP can be estimated from a sample of size N, where 
we can replace the ensemble-averaged ~111 and covariance matrix elements 
with the sample-averaged ones’. If we denote the estimate of a, by blpr 
then under the Gaussian hypothesis, the statistic A = % is approximated 
distributed as a x2 with v de grees of freedom. For us, the interesting 
cases are for p = 1,2. When p = 1, p 11 = ~(3, the usual skewness. If one 
denote 4 as the estimate of skewness 11s from a sample of size N, then 

4= gal. (13) 
1-I 

‘Here, we explicitly assume that the temperature fluctuation is ergodic so that the 
ensemble average will be identical to the spatial average (in OUT case, it is the sample 
average) in the limit of large spatial coverage. The ergodicity is guaranteed if the power 
spectrum of the tluctuation is continuous. See Adler [Xi] and Bardeen, Bond, Kaiser & 
Szalay [271 for details. 
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and A = % is distributed as a x2 with 1 degree of freedom. For p = 2, 

/312 = (1 - ~“)-~{rio -I- 7:3 + 30 + 2$)(7:, t r:,) - 2~~7m7ox 

+6pKmwu - 721) + 7&Y21 - 712) - (2 t P2)712721]}, (14) 

where 
M2 

P= -,7r. = 
!-h - 

Ol,J2 uiol’ 
,/1,. =< 2;s; > . (15) 

In the case where signal and noise are both random Gaussian fields, the joint 
probability distribution function is a bi-variant Gaussian: 

P(ZlY 22) = (2a)21&M eXp(-l/2 C SiM,;‘Sj), (16) 

where the correlation matrix between the signal and noise is the following: 

M,, = u:, M22 = u;, M,2 = M2, =< 2,~ > (17) 

For COBE DMR, the correlation matrix can be estimated from (A+B)/2 and 
(A-B)/2 maps. The bi-variant measure of skewness PI2 = 0 if we assume that 
the signal and noise are both Gaussian. Let us denote brr as the estimate 
of prr from a sample of size N (say, COBE map). Under the Gaussian 
hypothesis, A = F is distributed as a x2 with 4 degrees of freedom. 

For kurtosis, we have the following measure: 

pzp = [< 2x-‘X >I2 - p(p + 2). (18) 

Given a random sample of size N on the random vector -7, we can replace 
the ensemble average with the sample average and estimate & by 

4p = k ?I(-% - P)S-'(Xi - /4)12 - &J + 2), (19) 
1 

where /I = + Cr Xi, and S, = * CF(Xi - p)(Xj - /L). For a multivariant 
Gaussian, bP = 0, and the following statistic I3 = [ -+I ‘I2 is approximately 

distributed as normal with zero mean and variance one. 
For p=l, & reduce to ~1, the usual kurtosis we defined before. An 

estimate of ,nLq from a given sample is 

b, = ;$z;. 
1-l 
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and the sample variance is @. 
For p =2, 

P22 = -8 t (740 t -ror + 4~h22 - nsndll(l - p2J2r (21) 

where p and r,, is the same as the ones defined in Eq. ( 15). Under Gaussian 
assumption, pss = 0, and the estimation of pZs, bss has zero mean and sample 
variance @. 

2.3 COBE data 

At present, the only existing complete dataset of temperature anisotropies 
is the COBE dataset. Thus, it is tempting to ultilize the statistics we dis- 
cussed before and put a constraint on the possible deviations from Gaus- 
sianity through COBE data. Unfortunately, the skewness and kurtosis of 
the distribution of y cannot be estimated directly from the COBE dataset 
because the signal in each pixel is not an independent measurement of $. 
Furthermore, in order to estimate skewness and kurtosis, we have to assume 
that the temperature anisotropies are ergodic so that the spatial average is 
equivalent to the ensemble average. But, even for Gaussian fluctuations, the 
ergodic hypothesis is true only if the power spectrum of the fluctuations is 
continuous [26][27]. The observed temperature anisotropies are 2D random 
fields on a 2-sphere. The power spectra Cl is discretized and asymptotically 
approaching continuity~ in the large I limit. For the COBE experiment, which 
is sensitive only to the low 1 moments, the ergodic hypothesis doesn’t hold. 
Thus, the statistics estimated from COBE directly will only be the estimates 
of the “local” values: they are the measure of deviation from Gaussiantiy in 
our horizon. To estimate the cosmic skewness and kurtosis, i.e., the skew- 
ness and kurtosis averaged over an ensemble of horizons, one has to treat 
the observed value as a N-dimensional random vector, where N is the sample 
size (the total number of pixels). Since we have only one measurement (we 
have only one universe), in order to calculate the ensemble average of the 
quantities equation, the only conceivable way is to use Monte-Carlo simula- 
tion. The COBE analysis along this line will soon appear [28] and won’t be 
repeated here. We note that by using the statistics of multivariant skewness, 
which is a x2 distribution with N(N t l)(N + 2)/6 degrees of freedom. The 
total number of simulated maps must exceed N,,,,,r 2 #, where ps is the 
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variance of the skewness of a distribution. To estimate a skewness with vari- 
ance smaller than 0.1, the number of simulated maps has to be larger than 
6 x 10s. 

3 Topological Measures of a Random Field 

In this section, we will discuss the topological measure of a random field and 
the application to the test of deviation from Gaussianity. This approach was 
studied in [29][30]. It is found that among all these quantities, the Euler- 
Poincare (EP) characteristic is the most effective topological measure with 
regard to testing Gaussianity. Adler [26] 1 a so d erived the mean for a special 
non-Gaussian field: the x2 field. Subsequently, Coles [29] applied the result 
to a number of non-Gaussian fields which are derived from Gaussian. Gott 
et al. [30] applied EP characteristic to simulated cosmic string maps. Both 
confirmed that the EP characteristic is effective in testing Gaussianity. We 
will briefly review the existing results obtained by previous investigators, 
then we will move on to study the statistics of the topological quantities. 
Special attention is paid to the real experimental situation where the noise 
level is high. We also derive some new results on topological measures in the 
presence of Gaussian noise. We will show that in the case where the signal 
to noise,ratio is around 1:1, the EP characteristic, unfortunately, fails to be 
effective in discriminating between Gaussian and non-Gaussian distributions. 

3.1 Mean 

The central concept on which all topological measures are based is the excer- 
sion set [26] which is the set of points where the field F(r) exceeds a global 
value u. If we take a map of a certain area of the CBR sky, the excersion set 
of the map above level u, denoted by S,, will in general consist of a number 
of disjoint regions, each having a boundary which is the contour of satisfying 
F(r) = u. Since the smoothness and the differentiability of the contours are 
guaranteed by the beam smoothing*, the Euler-Poincare (EP) characteristic 

lFor noise, without smoothing, the contour will be a fractal and it will not be dif- 
ferentiable. We illustrate this point in Fig. 2. For a detailed discussion, see citeadler, 
coles. 
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of S., T,, is given by: 

where k is the geodesic curvature of the contours and the intergal is taken 
over all contours in the map. 

For Gaussian random fields, the mean of the EP characteristic is exactly 
calculatable: 

< rv >= (2~~3,2(~)‘~exp(-~2/2), (23) 

where Co =< T2(i) >, Cs =< V T(i)VT(i) > is the variance of the 
temperature anisotropy gradient3, and v = u/a, Q is the rms temperature 
anisotropy. 

Among all possible non-Gaussian PDFs, we specifically choose the xz 
distribution because of its relevance to the O(N) u-model. For our stan- 
dardized PDF given in Eq. (lo), the mean number of the EP characteristic 
is given by: 

< rv ‘= 
(24) 

3.2 Statistics 

The Euler-Poincare characteristic is a discrete point process defined over the 
underlying random field. For any point process N(F) with mean < N >= iv, 
the variance of the process is given by [31]: 

where 

< N2 >= ]#I + f12(l + [), (25) 

F = $ / d%d~d(~n) (26) 

is the sample-area averaged two point correlation of the process N. The first 
term in Eq. (25) is due to the discreteness of the process. The variance of 
the process is given by: 

g2=<N2>-fi==fi++2<. (27) 

%~/CO is equal to fi~r/e~, where 7 and 8. is the spectral parameters defined by (121. 
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Thus, to find the variance of the EP characteristics, the central problem is 
to find the two point correlation. We approximate this correlation function 
< by the peak-peak correlation x of the same underlying random field. Since 
F(v) is defined through the v-peaks of the density field, the approximation 
should provide a reasonable fit to the true F correlation. We expect that this 
approximation will give poor results when F(v) N 0. 

1121 
The peak-peak correlation function is well studied in the literature [32] 
and is most easily understood as the following: Let PI(p) be the proba- 

bility of finding one Y-peak at i and Pr be the probability of finding a Y- 
peak at ir and is. Then, the two point correlation for the peaks will be: 

1+ C2(&,&) = PJP:. 

For a Gaussian random field, we have 

and 

(28) 

PI = & vz dzexp(-$h J 
pa= l ODoD JJ 2rdetM VS0 va0 

dzldzz exp(-:fM-lx), (30) 

where x = (x1,x2) and M(rl, rs) is the correlation matrix of the random 
field at q, r2, which is 

M= / $ie) $18’ 1.Q 

and G,(e) is the normalized two point function. Thus, in the limit where 
11 < 1, the peak-peak correlation function is given by: 

E pd = v’4J(i). (32) 

The beam-smoothed two point temperature correlation is well approximated 
by : 

C(O) = C(0) exp(-0’/0,2), (33) 
where the coherent angle 8, z 0., is a function of the beam width. The 
averaged correlation in an area A = x0: is .’ 



Thus, the variance of the Euler-Poincare characteristic is given by: 

u2 = INI + u~($)~N~,B = n(&). 

The mean and lo uncertainty of the EP characteristic F(u) for Gaussian 
random field is plotted in Fig. 3. Because of the approximations we used to 
derive the statistic, we expect the uncertainties of F(y) given by Eq. (35) 
are not exact when v - 0. 

3.3 The EP Characteristic of Noisy Data 

Our major concern over the applicability of the EP characteristic as a reliable 
statistic to discriminate between a Gaussian and a non-Gaussian random 
field is the noise term, which appears in all current CBR experiments and is 
comparable in amplitude to the signal. In this section, we will show first how 
the beam used in the experiments regulates the noise. Without smoothing, 
noise will be an obvious hazard to topological measures because the rms of 
the derivatives of noise is not well defined. We will then proceed to study 
the change of EP characteristic due to the beam-smoothed noise term. 

The spectral parameter of the noise is given by: 

~~=A~(2l+l)exp(-l(l+l)u~)-A($)~, (36) 

u: = Azl(I t 1)(21 t l)exp(-l(l t 1)~:) - ;A(;)’ (37) 
I=2 , 

u: = Ax(I - 1)1(1 t l)(l t 2)(21+ l)exp(-l(l+ 1)~:) 
I=2 

- ;A($)‘. (38) 
, 

Thus, 7 = * = 0.75 and 0. = m$ = &CT,. If we compare this value 
for noise wit .y that of a Harrison-Zeldovich primordial perturbation, where 

-7 - 0.5 and 0. - 1.8u, we can conclude that the noise term regulated fairly 
well by the beam. 

However, even with a beam-smoothing, the EP characteristic of the ob- 
served random temperature anisotropy pattern is still changed due the pres- 
ence of noise. We first consider a situation where the sky is dominated by 
a quadrupole only, as we showed Fig. (4a). The EP characteristic is very 
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simple for this map: I = 2 for v = -1,1,2. However, when one puts Gaus- 
sian noise of the same variance to the signal, the map is dominated by the 
feature of noise, which are shown in Fig. (4b). Even though we don’t expect 
the temperature anisotropies to be a pure quadrupole, this example makes 
us cautious when using the EP characteristic. In the realistic cases where 
the signal itself is also a random field which is non-Gaussian, the problem is 
harder. A full analysis of the EP characteristic for the sum of two general 
random fields is not tractable. Only one special case where both fields are 
Gaussian is solved [26]. In our problem, where one field is non-Gaussian, 
there is no ready-to-use result to apply. Thus, we solve this problem by the 
following strategy: the xi, n = 1, . . . is a class of distributions, ranging from 
very non-Gaussian (small n) to slightly deviating from Gaussian (large n), 
and the EP characteristic of this class of distribution is known. Thus, we 
first find the modified non-Gaussian PDF due to the presence of noise, then 
we find the best fit x2 distribution to this modified PDF. The EP charac- 
teristic of the noisy temperature map is thus approximated to be the EP 
characteristic of the best fit x2 distribution. The validity of this approach 
lies partly in the fact that if the difference between two PDFs goes to zero, 
the difference between the corresponding EP characteristic also goes to zero. 

We assume the noise is Gaussian and uncorrelated with the CBR anisotropy 
signals. The PDF for the noise is: 

p(f7) = & exp(-g2/2uz) 

where a,, is the variance of noise. In the following, we consider only the case 
where the signal to noise ratio is 1:1, thus u,,iSe = u,+.l = l/A. It is 
straightforward to generalize to the arbitrary noise case, and we will show it 
here. 

The PDF for the noisy map is given by: 

P(Z) = J ~s++‘)~n,~(z - z’)dz’ (40) 

It is convenient to use the cumulant function [33] K(u), which is the logarithm 
of the characteristic function 4(u), the Fourier transformation of the PDF: 

4(u) = J P(s)e’“dz. (41) 
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The cumulant function for P(z) is simply the sum of the cumulant function of 
the signal and the noise. For Gaussian noise, the cumulant function is simple: 
K.&,,(u) = -$. For the signal, the PDF is the modified x2 distribution. 
After some algebra, the cumulant is found to be: 

Ktigd(U) = zln(l - 5) + i&u/2. 

Thus, the cumulant function for the noisy signal is given by: 

K(U) = Kn&e(u) + Kaigwzl(u) a -U*/2 + &($3t nW1 (43) 

Thus, with noise, the cumulant is still that of a x2 distribution in the limit 
of large n, but with N degrees of freedom, where N = 2% - 1.7n. In Fig. 
5, we plot the EP characteristic for n = 12 with and without noise. Even for 
the global monopole where n z 12, the EP characteristic fails to be effective. 

4 Three Point Temperature Correlation Func- 
tion 

There are various examples where non-Gaussian processes possess Gaussian 
PDF [18]. One classic example is the smoothed Poisson point process. The 
process is non-Gaussian when the smoothing scale is small, and tends to be 
Gaussian when the smoothing scale becomes large by the virtue of the central 
limit theorem [19]. Thus, the test of Gaussianity should go beyond the mere 
one point PDF. The EP characteristic discussed in the previous section is 
one way to take into account the full properties of a random Gaussian field. 
But the noise present in the data prevents it from being effective. However, 
as we stressed before [15], the three point temperature correlation function 
is a good measure of deviations from Gaussianity for the noisy data, as long 
as the noise is mutually independent and not correlated with signals. In this 
section, we will first introduce statistics to test these aspects of noise. Then, 
we will discuss theoretical predictions of the three point function in different 
models [34]. The reduced three-point functions for COBE 53 GHz signal and 
noise maps are obtained and show no deviation from Gaussian. We conclude 
that at the COBE scale, the temperature anisotropies are probably Gaussian. 
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4.1 Properties of Noise 

A good understanding of noise in CBR experiments is crucial in testing the 
Gaussianity of the primordial density perturbation through the existing data. 
One has to make specific assumptions about the instrumental noise in order to 
test the Gaussianity: the instrumental noise must be mutually independent 
among pixels and Gaussian. The assumption has to be tested thoroughly 
before any attempt to decipher the non-Gaussian CBR signal from the data. 
The statistical tools of testing Gaussianity we introduced throughout this 
paper should also apply to the noise and we wouldn’t repeat them here. In 
this section, we will address the following aspects related to the noise in the 
experimental data: (1) is the noise mutually independent? (2) does noise 
correlate with the CBR signals? 

In testing the mutual independence of the noise, we use the following 
results from statistics [25]: Let yi, (i = 1, . . . . N) be a measurement of a zero 
mean random process. The mean 
can be estimated ss the following: 

, N-l4 

and two point correlation of the process 

!I= i$Yij (44) 
r-l 

G(s) = $ & (Y; - V)(yi+lsl - ~)Ps = 0, *I; . ..t f(N - I), (45) 
6-1 

P(S) = G(s)/G(:,(o). (46) 

Then, if y, are mutually independent, then p(s) is asymptotically Gaussian. 
In particular, p(l) is asymptotically Gaussian with zero mean and variance 
k. With a suitable redefinition of yi, this result can be applied to answer 
questions (1) and (2). 

(l)Testing for the Independence of the Noise 
Let t)i,i = l,..., N, be the noise in ith pixel. The mutual independence 

of noise can be tested through a second covariance of analysis of the square 
of the noise. Let yi = rl,?, i = 1, . . . . N. If ni are not correlated, then y; will 
not be either. Thus, we can define the following statistic: 
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where 

C4(0,1,1) = $ Nc(Yi - g)‘(Yi+l - V)‘. (48) 
1-l 

Under the hypothesis that the noise are independent, W,, is distributed as a 
standard Gaussian (zero mean and unity variance). We can define W,, the 
same statistic as W, by using the signal in each pixel, to teat the independence 
of the signal. 

(2) Testing the Correlation among Signal and Noise 
Noise should not only be uncorrelated, but should also be independent of 

the signal. We assume that the noise is additive, i.e., 6&, = 6csn + T). Once 
the noise is found to be independent, the variable 

yi = l)TSp = ?)f(Si + vi), (49) 

should also be mutually independent. Following the previous section, the 
following set of statistics 

(50) 

with 

C4(07 1~1) = + Nc(Yi - !T)‘(Yi+l - Y)‘, 
1-l 

is a standard Gaussian. 

(51) 

(3) Analysis of COBE GHz DMR Map 
For COBE DMR, the (A+B)/2 is the signal+noise map and the (A-B)/2 

is the noise map. The properties of signal and noise are tested through the 
statistics defined aboved and shown in Table 2. 

The analysis shows that at the 1.6% confidence level, the noise is uncorre- 
lated. At the 19% confidence level, the noise is not correlated with the signal. 
Thus, we can conclude that the noise in COBE 53 GHz map is not correlated 
with the signal and marginally uncorrelated. The W, in the last row is the 
statistic to test the independence of the signal. The statistic shows that the 
hypothesis that the data is not correlated failed badly. This is expected if 
the signal is primordial CBR fluctuations. 
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4.2 Three Point Function 

It is convenient to use the normalized two point 1c, and three point function 
7, where 

+(I+1 - +2I) = C2(6,WC*(O), d,(O) = 1 (52) 

r)hfi2,+3) =< ~(i*)~(i*)~(i3) > /C*(O)‘.~, r)(O) = p3, (53) 

where ~3 is the skewness. The theoretical predictions for three point function 
are mainly the following: 

(1) Inflation 
Various non-standard inflation models [5] will generate a non-zero three 

point correlation function. The generic form of the three point function in 
most inflationary models is: 

r)(~l,k~3) = $‘y(li, - hl)$(lil -f3l) + 
fml - mw - +3311+ m - ~3lhw2 - +3111, (54) 

where X is a dimensionless constant. As we will show in the Appendix, for one 
field slow-roll inflation models, X N lo-‘. In non-standard inflation models 
[5], (T can be much larger (up to order unity). 

(2) x2 fields. 
Consider the X2 field Y = cy=, X,Z. As we discussed before, the X2 field 

describes the global topological defects in the large .V limit. By extrapolating 
to low N, one can also gain insights into the possible temperature anisotropy 
patterns generated by domain walls, strings, monopoles or textures. The two 
point correlation is given by: 

C2(C,h) = 2n++2(il,i2), (55) 

where qi is the common covariance function of the Xi. We choose d so that 
the two point function of Y matchs the observation, 

qq?l, ?*) = C*(&, ?s)/2n. (56) 

The three point function is found to be: 

r)(kh,~3,) = I/G(Wl - ~2lhql~1 - i31)11(li2 - i31))3’2 (57) 
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(3) Late-time Phase Transition 
In this model [35], due to the conformal invariance of the system at the 

critical point [36], the three point function result from this class of cosmo 
logical phase transitions has the following simple form: 

rl(c,h,+3) = Q(Wl - +21)4o(l~l - ~3l)~(li* - i-31))3, (58) 

where a is a dimensionless constant of order unity. 
The full structure of n is complicated. We consider the reduced three 

point function[37] where 

I)~.duccd(+l,&) =< ($z(;l)$) > /C,(O)“/z. 

The theoretical predictions in various models are given by: 

t),&ced(%,%!) = 13(1 + 2$(]& - es])) for inflationary models 3 (60) 

nreduced = @+3( ]ii - is]) for 0( N)u - models 
1 

flr&& = a@(lrl - +s]) for LTPT models 

(61) 

(62) 

The three point functions from the previous three different categories are 
plotted in Fig. 6, the skewness is chosen to be the same for all cases. 

4.3 Analysis of COBE data 

The 53 GHz COBE DMR data is analyzed ultilizing the statistics we dis- 
cussed above. This frequency (53 GHz) is chosen because it has the best 
data quality [8]. Before subtracting the dipole and beginning further analy- 
sis, the signal is weighted by the estimated pixel uncertainty. The dipole is 
subtracted by using the most recent COBE result (381. For 53 GHz (A+B)/2 
map, the subtracted dipole signal is: 

T(I, b)(mK) = -0.198.cos(I) cos(b)-2.075.sin(l) cos(b)+2.333.sin(b), (63) 

where 1 and b are the galactic longitude and latitude. In our analysis, we 
consider only the 2019 pixels whose galactic latitude is 20 degrees or above. 
The COBE 53 GHz (A+B)/2 and (A-B)/2 are analyzed and the reduced 
three-point functions are shown in Fig. 7a, 7b. The result is consistent 
with Gaussian fluctuations and there is no deviation above the statistical 
uncertainty. We conclude that the current analysis shows that the statistics 
of CBR at the COBE scale are probably Gaussian. 

20 



5 Statistical Tests on Intermediate Angular 
Scales (0 N 1”) 

The Gaussianity question is hard to resolve on the COBE scale (0 N 7”) even 
if there is no noise in the experimental data. One should expect the CBR on 
the large angular scale to be Gaussian simply by virtue of the central limit 
theorem [19]. Furthermore, there is intrinsic uncertainty in the statistical 
quantities measured in our local universe due to the cosmic variance [39], 
which makes it harder to discriminate between Gaussian and non-Gaussian 
fluctuations on the COBE scale alone. On intermediate angular scales (0 N 
lo), the cosmic variance is small and the chance to detect a non-Gaussian 
signal is higher. As the data on these scales is accumulating, it is timely 
to consider seriously testing Gaussianity on these scales, since data in some 
experiments [40][41] show clear non-Gaussian features. Although the current 
experiments are inclusive, due to the possible foreground contamination, it 
gives us hope that the Gaussianity problem will be resolved experimentally 
in the near future. The EP characteristic and the three point correlation 
will apply equally onboth large and smalI angular scales if the sky coverage 
of the experiment is substantial. However, as the current state-of-the-art 
intermediate scale CBR experiments cover a tiny fraction of the sky, more 
sophisticated statistical tools [14] are required to carry out the tests. In 
this section, we will introduce and discuss the bispectral analysis and the 
Hotelling’s 7” statistic. We will show that the T* statistic is a powerful 
statistical quantity to use on these scales and we also estimate the minimun 
data sample size to carry out the Gaussian test through TZ statistic. 

In most current intermediate scale experiments, the data is sampled either 
in thin long strips or an annulus around an axis. In both cases, the data is 
one dimensional. The three-point function and bispectral analysis of l-d 
data are well studied by statisticians and much of the specific techniques and 
mathematical details of this section are contained in monographs by [25][42] 
which interested readers should consult. One can arrange the dataset as 
a time series, X,, where in the present case, “time” t refer to successive 
positions in the sky. The data is usually edited so that the mean is removed. .., 
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In this case, the three-point function is simply 

&,s =< xtxt+,,x*+,, >r= - j!~ $X,X.+t,Xi+t,, (64) 
r--l 

where the expression on the left-hand side is an estimate of three point func- 
tion from a data sample and N is the size of the sample. Since the temper- 
ature anisotropies are always real-valued and assumed to be homogeneous 
and isotropic, the three point function has the following symmetry: 

I t1.12 = Ls = L,,B--t, = &l-l2,-t, (65) 

The bispectral density f(wi,~s) is the Fourier transformation of Etll12, where 

~(LJ,,w~) = & 
/ 

dtldtle-“‘~-i*aY~t,,l*; --xIw*,w2<7r. (66) 

In general, f(wi, ws) is a complex function, following the symmetry of t, one 
obtains the following symmetry relation for f: 

f(W,W2) = f(w,w--2) = f(-w-w2,W2) = f'(-a,-WZ) (67) 

Because of the symmetry, one just has to estimate the bispectral density in 
a small portion of (WI, ws) parameter space. 

The unique feature of the Gaussian process is that the bispectral density 
vanishes for all w, i.e., f(wi,~s) = 0 for all wi,ws. To test this hypothesis, 
one can use the Hotelling’s T2 statistics[25], which is constructed from the 
bispectral estimates defined on a “coarse-grained” frequency grid, (wi,wj), 
where 

Wi = $,Uj = ‘$,i = 1,2,...,L; j = i + 1, . ...7(i), (6s) 

where L = [%I, 7(i) = K - [!J - 1. Th e p ammeter K is chosen to be much 
smaller than the sample size so that the frequency grid is “coarse-grained”. 
Let nij = f(wi,wj) and rearrange qij into a vector 7 = (xi,...,~~), where 
P = ,&(7(i) - i) SO that for each I, 1 5 I 5 P, XI = vii. 

To estimate the bispectral density at each “coarse” grid point, one can 
construct a %ne” frequency grid around each (wi,wj) point. Specifically, 

PDT W& = w; + - N >P= -r, --1‘ t 1, . . . . r 

Ld&=Ui+$,~= -T, --r + 1, . . . . P) (q # 0) (69) 

22 



where the distance D is chosen so that the bispectral estimates at neighboring 
points on this fine grid are approximately uncorrelated. To insure that points 
in different ‘fine” grids don’t overlap, it is required that D 5 &. Since 
the total number of points in each “fine” grid is (4r + 1) and there are K2/3 
“coarse-grained” grids, thus the constraint on parameter P is: (4r+l)K2/3 < 
N. 

Let j(Wi,,w<,) denote the estimated bispectral density function at the 
points (wi,,wi,). Due to the careful choice of grid point, one may regard 
the set of estimators {f(wi,,wi,)) as n = 4r t 1 uncorrelated and unbiased 
estimates of f(wi,wj). Forming the bispectral estimates i(wi,,wip) into a n 
column vector, denoted by < = ((1, &, . . . . &,), then, at each “coarse-grained” 
grid point xi, there will be an estimated bispectral density $’ from the “fine- 
grid”. When the sample size N is large, [j”(; = 1,2, . . ..n). is distributed as 
complex normal with mean 7 and covariance matrix Ct. The maximum 
likelihood estimates of n and Cc are: 

4 = e((Eik - q)(&jt - T)‘). (70) 
‘Cl 

The Hotelling’s T? statistics are defined as: 

T2 = +A-‘+ (71) 

Under the Gaussian assumption, the mean vector n = 0 and the statistic 

F = 2(n - ‘IT2 
2P 

is distributed as a central F-distribution with (2P, 2(n-P)) degrees of freedom. 
To test Gaussianity through degree scale experiments, the sample size 

should be large enough to avoid “sample variance” [43]. The minimal sample 
size that could be used to carry out the Gaussian statistical tests can be 
estimated as follows: to carry out the bispectral analysis and Hotelling’s T2 
statistics, one should use at least two “coarse” grids, and because the cor- 
relation angle of the beam-smoothed CBR anisotropies is around Bi, where 
0, N 1.86, for Harrison-Zeldovich primordial spectrum [12]. Thus, we need 
at least two %ne” grids on either side of the ‘%oarsen grid. The minimum 
parameters to test Gaussianity is L 2 2 and r 2 2, which in turn gives 
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K 2 4. Thus, the minimum sample size is: N 2 (4r t 1)K2/3 = 48. This 
is about twice the current largest sample at the half degree scale [44]. This 
result is encouraging: it suggests that we don’t need a full sky coverage with 
half-degree resolution to carry out the Gaussianity test, and the Gaussian- 
ity question can be resolved by ground-based experiments or balloon Slights. 
With regard to sampling in the sky, the data should sample as sparsely as 
possible to avoid possible correlation between different data points, and it 
will be better to sample in thin long stripes or annuli to take advantage 
of the simplicity of one dimensional datsset. Currently, most degree scale 
experiments have fewer data points and are thus inadequate to perform bis- 
pectral analysis. However, we expect the situation will change dramatically 
soon, and the results we discuss here will be helpful for designing future 
experiments. 

6 Gaussianity of CBR on Small Scales 

In this section, We will show how to use the T2 statistic by analyzing the 
recent 96 point RING data from OVRO [20]. A special class of non-Gaussian 
signal, point sources, which are interesting in their own right, is separated 
out and discussed in detail in the next section. The data sample is weighted 
according to the error in each pixel. The sample size N = 96. The esti- 
mate of the three-point function is shown is Fig. Sa and the the real and 
imaginary part the bispectrum is shown in Fig. Sb, SC. We have used an 
optimum window function (see [25] for details) to smooth the discrete data. 
For Gaussian distributed data, both the three-point function and bispec- 
trum should vanish. The results shown in Fig. Sa, Sb, 8c already suggest 
that the data might be non-Gaussianly distributed. To show how statisti- 
cally significant the deviation from Gaussian distribution, we can use the 
Hotelling’s T* statistics. The parameters we choose for RING data are: 
K = 4, r = 2,n = 9,d = 4, P = 2, L = 2. With this choice of parameters, 
the statistical distribution for F is shown in Fig. 9. The 95% confidence 
level (C.L.) upper limit of F is F, = 3.15 if the data are Gaussian dis- 
tributed. Hotelling’s T* statistic estimated from RING data is 2’s = 5.76, or 
F = 7T2/2 = 20.1 which is much larger than the 95% C.L. upper limits for 
Gaussian distributions. Thus, we conclude that the data are probably not 
consistent with Gaussian statistics. 
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Even though the data failed the statistical tests we proposed, one can- 
not conclude that the non-Gaussianity is due to non-trivial interactions in 
the inflationary cosmology or the topological defects produced in the early 
universe. The non-linear gravitational evolution will produce non-Gaussian 
signals which have to be carefully studied and subtracted to gain some knowl- 
edge about the Gaussianity of primordial perturbations. Part of the answer 
to this important issue is contained in the next section and we will not discuss 
here. 

7 Point Sources 

On intermediate angular scales (- l”), th e current datasets are too small to 
carry out the three-point correlation and the angular bispectrum analyses 
we developed in the previous sections. To test Gaussianity based on the 
small dataset available (usually about 10 data points), the statistics have to 
be very custom-designed to be useful [14]. However, a clear non-Gaussian 
signature will be the point-like CBR anisotropies. In fact, two candidates of 
such sources are detected in the MSAM experiment [40]. One source, located 
in a dust-free region, has a flux of 3.7f0.9Jy at 5.6cm-‘. Another candidate, 
has a flux of 2.9 f 0.7Jy, is located 4.3’ away from the first sources. Both 
sources are compact and have angular size less than the beam width o = 
0.4256’~~~ = 12’. Assuming that the angular size of the sources are half 
the beam width, one can find the the flux intensities are (3.SrtO.S) x IO’JySr-’ 
and (3 f 0.6) x IO’JySr-‘. As a comparison, the flux of a 6T temperature 
fluctuation will produce a tlux 

L = Bv(To) ex$vy/L! 1 (g))$ 

where To = 2.73K is the CBR temperature and B, is the CBR flux at fre- 
quency V. At 5.6 cm-i, the CBR flux is B. = 1.5 x 10gJySr-‘. Thus, for a 
temperature anisotropy of 40,uK, which is the theoretically estimated tem- 
perature anisotropy at the half degree angular scales for CDM with standard 
recombination [45], the expected flux is 

Z” = 6.8 x lO’( -&)JySr-‘. 
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Thus, the first sources correspond to a 5~ and the second sources correspond 
to a 40 peak. 

In the Gaussian picture, for a v-peak, the mean size e and the average 
distance between peaks dare given by [12]: 

e 
6-fi2 

J 
1 

v 
l-7, for ~>l, (75) 

d = 2/3(nn,)-I’*, (76) 

where 0. = 1.20, and n, is the number density of Y peaks. For large v, n, is 
given by: 

-y*( v* - 1) 
nu = (2T)3,2 ew(-v*/V (77) 

Thus, for 4g peaks, the mean size will be 0.718., which is marginally consis- 
tent with observation, but the the mean distance between rare peaks will be: 
- 508, N 20”, which is much larger than the angular separation between the 
sources. One may try to explain both point sources by Gaussian statistics, 
assuming that they are just 3 u peaks and fit the low limit of the observed 
flux. Then the average distance between peaks is 118,, which is roughly the 
same as the observed value. However, in this case, the averaged angular sizes 
of the peaks are 1.26., which is larger than the beam width. We conclude 
that if these sources are of CBR origin, they are not consistent with Gaussian 
statistics. 

Various topological defects, notably soft domain wall bubbles [46], the 
global monopoles [47] or textures [24], are capable of producing spot-like 
CBR anisotropies of any size by appropriately choosing model parameters. 
However, before one relies on topological defects as an answer, one has to 
filter out the foreground contaminations carefully. Several types of radiation 
may contribute the point-like sources observed in the experiments. One of 
them is the Sunyaev-Zeldovich (SZ) effect from rich clusters. The scattering 
of microwave photons by hot electrons in the intracluster gas will make a 
cluster a powerful source of submillimeter radiation. The typical angular 
size of the core of the hot gas is of order arcminutes, and the flux density is 
given by [22]: 
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where z = & and y = J$&a,dl. For a typical rich cluster, Z’, - 
lO’K, n. - 10%mW3 and 1 - IMpc, the estimated y parameter is around 
IO-’ - lo-“, The flux density is around 3 x lOsJy!W’ which is exactly what 
the MSAM experiment observed. Thus, it is very likely that the observed 
sources are due to SZ effects of unresolved rich clusters in the field. 

The multifrequency channel methods is widely used to separate the local 
contamination from true CBR signals. The method may not be effective to 
single out the SZ effect. As we showed in Fig, 10, the spectral index of the 
SZ effect is very close to that of primordial temperature fluctuations at low 
frequencies (V < 100 GHz). When the frequency gets higher (V > 200 GHz), 
there is a small deviation, but at this frequency range, the dust emission 
will dominate. A possible way to discriminate the SZ effect is through po- 
larization of the radiation from candidate point sources. Due to the peculiar 
velocity of the rich clusters, the radiation will be polarized in SZ effect [22]. 
However, the point-like CBR anisotropies from topological defects will not. 
But since it is currently hard to measure the polarization of the radiation 
down to required accuracy, we won’t discuss this approach in detail here. 

Apart from the SZ effect, primeval dust [48] or a population of IRAS- 
like galaxies at high redshift [49] may have substantial contributions at the 
submillimeter range. For dust grains, if one assumes the emissivity of the 
dust is - no, o z 1.5, the flux spectrum of dust emission is given by: 

/” - ‘&+$&l- 1. (79) 

The peak of the distribution is located at 

Vpr, = 4.5kTd/h = 3750GHz(Td/401~). w 

Thus, in order for the peak of a hot dust spectrum (Td = 4010 to be red- 
shifted into the 300 GHz range which the MSAM experiments operates, the 
redshift of the epoch of formation of primeval galaxies should be around 
z - 10. The angular size of the dust envelope is 

e= V+z) 

D ’ 
D = 2H;‘( 1 - A), 

where 1 is the proper size of the dust envelope, which is about 10 - 100 kpc. 
Thus the typical angular size of the possible point sources produced by the 
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primeval galaxies is 

The observed flux density is 

S” = L(h) 
4*Dz(1 + z) 

, y = (1 + Z)V. (83) 

Assuming that, in the rest frame of the sources, the intrinsic flux is peaked 
around 3000 GHz and the luminosity is L, then the flux density is 

S, = 10-3JySr-‘( lolfL )( 0 034) 

Both the angular size and the flux density are too small to account for the 
observed flux in the MSAM experiment [40]. Thus we can conclude that 
primeval dust or the distant infrared galaxies do not account for the point- 
like sources observed. 

As we showed in Fig. 11, which is plotted according to Eq. (79), it is clear 
that if there is a population of cold dust (Td N 410, then the flux density 
will pe+ near where the experiment operates. A uniform background of 
such cold dust is impossible unless the density the low enough so that the 
optical light from distant quasars will not be absorbed. However, clumpy 
cold dust is helpful to explain the experimentally observed point-like sources. 
A possible scenario to explain the spot-sources based on cold dust is the 
following: there is a population of very quiet galaxies where most of the star 
formation activities are shut down, so that there will be very low intensity 
radiation in the far-infrared regime. Thus, this population of galaxies is 
not observed by the IRAS flux limited survey. However, as the hot dust 
cools down to around 4K, they become powerful submillimeteremitters. The 
spectrum of cold dust emission is shown Fig. 11. Multi-spectral analyses can 
shed light on the possible spectral parameter of the sources. The problem 
with the cold dust scenario is that as one look back in time, these sources 
used to be very powerful infrared sources because the radiated flux cx Tj+O. 
Due to the abundance one observes today, we can estimate the luminosity 
at high redshift, which is much brighter. However, the new&t result from 
the COBE FIRAS [50] has already put a stringent limit on the possible 
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evolution of infrared galaxy luminosity function. Detailed modelling is in 
progress. But we are pessimistic about explaining the point-sources based 
on cold dust scenarios. 

In conclusion, the point-like CBR anisotropy is a clear non-Gaussian sig- 
nature. If the future studies confirm that the point sources candidates are 
truly CBR fluctuations, it will be an exciting new chapter. It will provide 
direct evidence that topological remnants left over from the early universe 
do exist. 

8 Conclusion 

In summary, the following points which are related to the test of the Gaussian 
nature of the primordial fluctuations are discussed in this paper: 
(1) We listed the skewness and kurtosis in various physically motivated mod- 
els, with and without noise. We also discussed the use of the multivariant 
skewness and kurtosis to quantify the deviation of a distribution from Gaus- 
sian. 
(2) We discussed in detail the Euler-Poincare characteristic of random fields. 
We showed that the Euler-Poincare characteristic will not be a good discrim- 
inator between Gaussian and non-Gaussian random field when the noise is 
comparable to the signal. 
(3) We stress the use of the three-point temperature correlation function to 
test Gaussianity. The predictions from various models n,re discussed and the 
COBE 53 Ghz data is analyzed. The analysis shows that the fluctuations 
are probably Gaussian on the COBE scale. 
(4) We discussed the detailed statistical tests ou intermediate angular scales. 
The bispectral analysis and Hotelling’s T* statistics are emphasized. We also 
discussed briefly the sampling technique and minimum sample size to test 
Gaussianity statistically on half degree scales. 
(5) We discussed testing Gaussianity on small angular scales (arcminute 
scales). The RING data from OVRO is analyzed and shown to be propably 
non-Gaussian. 
(6) We discussed looking for,point-like sources as a way to test Gaussianity 
and hunt for topological defects in small scale CBR experiments. The SZ 
effects and the effects of primeval dusts are discussed. 
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The current status of testing Gaussian nature of CBR anisotropies are 
summarized in Table 3. 
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Appendix 

A Gaussian Nature of Perturbations from 
Inflat ion 

In this appendix, we will discuss the Gaussianity of the primordial fluctu- 
ations produced in inflation. We pick one simple model, Linde’s chaotic 
inflation model [51] to analyze. The approach is rather heuristic but brings 
into focus the Gaussianity problem. For more rigorous treatment, see [52]. 

The basics of the inflationary dynamics are the following: there exists an 
epoch where the universe is dominated by the vacuum energy of a scalar field 
$. The Friedman equation which describes the evolution of the background 
metric is: 

HZ = y p, p = l/2@ + V(d), W 

and the dynamical evolution of # field is: 

(86) 

where the infiaton potential for chaotic inflation is simply 

V(4) = A#4. (37) 

The model is easy to analyze in the slow-roll regions where 4 < H& which 
is sastified for 4 > m,J&. By using the gauge-invariant parameter ( 
introduced by [53], where 

(;t= 
w 

4 I 093) 

A$ is the zero-point quantum fluctuation of the field # along its classical 
trajectory. The probability density function for Ad is a Gaussian with zero 
mean and variance given by (Ad)2 = (2)‘. Let us denote 9 by z, then I 
is a random variable with standard normal distribution. 

Expressed in terms of I, C is given by: 
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In the slow approximation, the quantum fluctuation of 4 is negligible. Thus, 
if the Hubble parameter is a constant during inflation (which is the case for 
original exponential inflation), one can conclude that the primordial den- 
sity fluatuation is Gaussian. However, since H is related to 4 locally, the 
fluatuation in + will give rise to a fluctuation in H. Taking this into account, 

(k = J$[z + l- ~~~‘1~ (90) 

where H, is the classical value and mpr = & is the Planck mass. The 
usefulness of the C parameter lies in the fact that it is a constant throughout 
the inflationary, radiation and matter dominated epoch, and the Sachs-Wolfe 
contribution to the CBR temperature fluctuation is given by [52]: 

Thus, the large angular temperature anisotropy is given by: 

$ N $[z i- p&2] 

The statistics of CBR fluctuations are non-Gaussian because of the z* term. 
This expression for the deviation from Gaussianity is rather generic in in- 
Rationary models and will lead to the functional form of the three point 
correlation we will give in section 4. The difference is that various models 
will produce different skewness. In the one-field chaotic inflation model we 
treat now, the skewness is given by: 

During the slow roll [17], 

where N, N 60 is the number of e-folds the scale factor inflates during 
inflation. In order for the amplitude of the 5uctuation to be of the same order 
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of magnitude as the COBE observation [8], the self-coupling constant X of 
the inflaton field is given by X N 10-r5. For such a weakly coupled field, the 
deviation from Gaussian is estimated to be: ~3 N lo-’ with 4 N 4; N 5m,~, 
which is negligibly small. 

In conclusion, we have shown that the primordial fluctuation from slow 
roll inflation is very close to a Gaussian. The deviation from Gaussianity is 
of order 10-r in the chaotic inflation model, and the result is general to other 
one-field inflation models. The root cause is the small coupling constant 
of the inflaton potential, which is required to give the right amplitude for 
primordial fluctuations. Thus, Gaussian-distributed CBR anisotropies are a 
nature result of lots of inflation models. 
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Table Captions 

Table 1: The skewness and kurtosis of the temperature anisotropies in various 
non-Gaussian models. 
Table 2: Testing the properites of signal and noise in COBE 53 GHz map. 
W,, is the statistic for testing mutual independence of noise. Under the null 
hypothesis that the noise is uncorrelated, W,, will distribute as a standard 
normal. W, is for testing correlation between signal and noise, and IV, is 
for testing the correlation between signals. Under the null hypothesis (signal 
and noise are not correlated; signals are not correlated), both W, and W’, are 
distributed as standard normals. 
Table 3: A summary of current status on testing Gaussian nature of CBR 
temperature anisotropies on different angular scales. 
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Table 1 

‘Extrapolated from O(N) model 
zon Scales of several arcminutes 
3COBE sensitive scale, no beam-smoothing 
‘On Scales of several areseconds to arcminutes 
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Table 2 

estimate Confidence Level 
W, 2.54 1.58 x 1O-2 
W 1.21 0.19 
W, 8.73 1.1 x 10-17 
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Table 3 

Angular scale SmaU Intermediate Large 
8. (N arcminutes) (- 19 (w 2”) 

South Pole, 
Current MAX, MSAM, COBE 

Experiments OVRO SK93, PATHON, MIT balloon 
White Dish,... 

Inflation: 
Theoretical Gaussian; 

expectations Non-Gaussian Defects: Gaussian 
non-Gaussian. 

Analysis Sky coverage 
from Non-Gaussian is still Gaussian 

experiments too small 
Source Eventually Central limit theorem; 

Comments contaminations Decisive Cosmic variance 
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Figure Captions 
Fig. 1: The probability distribution functions of the modified x2 distribution 
with n degrees of freedom. The dotted line is for n=4, the short dash line is 
for n=8, the lone dash line is for n = 16 and the solid line is the standard 
normal distribution. The values for n are chosen because the corresponding 
distributions describe the domain wall, global string and texture, respectively. 
Fig. 2: The simulated unsmoothed Gaussian noise 6 in a 10” x 10” patch. 
The solid line is for the contour 6 = 0, the dotted line is for the contour 6 = 0 
and the short-dashed line is for S = 20, where 0 is the standard deviation of 
the noise. 
Fig. 3: The statistic of EP characteristic for a Gaussian random field. The 
soild line is the mean EP characteristic and the dotted line is the la uncer- 
tainty estimated from Eq. (35). The unit of the vertical axis is arbitary. 
Fig. 4a: The contour plot of the sky signals 6 if they are dominated by a 
quadrupole. The solid line is for the contour S = 0, the dotted line is for the 
contour 6 = fo and the short-dashed line is for S = f2a, where 0 is the 
standard deviation of the observed sky signals. 
Fig. 4b: The contour plot of the sky signal 6 when the signal to noise ratio is 
1:1, where the signal is a quadrupole. The solid line is for the contour S = 0, 
the dotted line is for the contour 6 = &u and the short-dashed line is for 
6 = f2c7, where Q is the standard deviation of the observed sky signals. 
Fig. 5: The genus curve for x2 distributions with n degrees of freedom. The 
solid line is for the random Gaussian field, the dotted line is for n = 12 and 
the dashed line is for n = 21, which describes the noisy case. 
Fig. 6: The theoretical prediction of reduced three-point function in three 
different models: The dotted line is for inflation, the short dash line is for 
O(N) 0 model and the long dash line is for LTPT. The reduced two point 
function, which~is the solid line, is modeled as exp(-tV/0:), where 9, = 13.5”. 
Fig. 7a: The reduced three point-functions estimated from COBE DMR 53 
GHz (A+B)/2 map and (A-B)/2 map. The solid line is for the (A+B)/2 
map and the dotted line is for the (A-B)/2 map. 
Fig. 7b: The estimate and error of the three point function for COBE 53 
GHz (A+B)/2 map. The result is consistent with prediction from a Gaussian 
field (which is zero). 
Fig. 8a: The reduced three-point function estimated from RING data. We 
place 96 RING data points on a one dimensional lattice and the horizontal 
axis is the number of lattice spacing between the points used for estimating 
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the reduced three point function. 
Fig. 8b: The plot of the real part of the estimated bispectrum f(wi,~r) 
estimated from the RING data. In this plot, we choose wi = w2 = w. The 
frequencies w is plotted in unit of r/20. 
Fig. 8c: The imaginary part of the estimated bispectrum f(~r,wz) from the 
RING data. In this plot, we choose wi = wr = w. The frequency w is plotted 
in units of r/20. 
Fig. 9: The statistical distribution of F = wT*. We choose P = 2 and 
n = 9 for the RING data. 
Fig. 10: The frequency dependence of the antenna temperature for CBR and 
for SZ effect. The soild line is for CBR and the dotted line is for SZ. The 
antenna temperature is normalized so that it is unity at low frequencies. 
Fig. 11: The flux density of the 4K cold dust. The emissivity of the dust is 
chosen to be z @. The unit of the vertical axis is arbitary. 
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