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Abstract 

The analytic expression for masaless double-box diagram in the form of 
two-fold parametric integral on reduced three-point function is presented. The 
representation of this three-point function in the form of Feynman parameter 
integral permits to axmlyse the behaviour of on- shell double-box diagram. 
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I. 

It is well known, that calculation of radiative corrections to elementary processes 
is very important in applications of perturbative QCD. One of the problem of per- 
turbative QCD is the infrared divergences. The most convenient extraction of the 
divergences has been carried out through a dimensional tegularization procedure. 
The Feynman integrals that we faced with in perturbation theory can be decomposed 
in a sum of scalar integrals, among which also those appear which correspond to a 
4s theory. Double-box diagram in 4s theory is relevant to a number of important 
physical processes, but its evaluation presents a difficult technical problem. 

In [l] has been proposed an approach, which makes it possible to evaluate double- 
box diagram with massless internal particles and arbitrary external momenta. The 
consideration has been carried out in four-dimensional space-time and has been based 
on such remarkable property as the correspondence of the off-shell expressions for 
three- and four-point ladder massless diagrams in four-dimensional space. Besides 
that the use of the four-dimensional space has given us the possibility to apply the 
analytical regularization to the considered diagrams and “uniqueness method” of eval- 
uation [2][3] 141. This approach involves also the using the Mellin-Barnes expansions 
at the intermediate stages. 

For on-shell massless double-box diagram, when we need to use the dimensional 
regularization, the problem is far from trivial. We unfortunately cannot use the 
property of the correspondence between three- and four-point functions. We can only 
use the intermediate expansions and the “uniqueness method”, as in our approach 

111. 
One-loop massless on-shell box diagram in 4s theory has been considered in [5]. 

We’ll present here the analytic expression for on-shell double-box diagram D(r)(s, t, Ic,?), 
shown in Fig. 1, for two cases: when all kf = O(i = 1,2,3,4) and when at least one 
of these external invariants kf isn’t equal to zero. 

II. 

We use the standard notation (k, + kz)” = s, (kl + k,)’ = t. Let n = 4 + 2~ is the 
space-time dimension. Each line of a diagram (m = 0 ) carries a power-like factor 
l/(er - ic)= in coordinate space, that is pictured as a line with the mark a. We do 
the calculations either in momentum or in coordinate space. We mention also the 
formula for propagator transformation from momentum to coordinate space: 

r(P - a) 
& - l?(a) . (z&-’ 
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2~ = n being the space-time dimension.Not to complicate the formulae, we omit 
henceforth the factors, that are powers of 2,*,i. These factors can be easily restored 
in the final results. If kf = 0, k: = 0, D(l)(s,t,O, k:, ki,O) can be reduced to the 
three-point diagram l?(‘)(q:,q:, q:) (see Fig.2 ): 

D(‘)(s,t,O,k,Z,k:,O) = J J ‘dz ’ dyl+)(q’ 19 qs 1, q’) 3 1 
0 0 (2.2) 

where qf = (ks + klz,)*, qi = (ks + kryl)z, ql = tzlyz. In coordinate space the 
diagram of Fig.2 corresponds to the diagram of Fig.3. Using the Feynman parameter 
method for the diagram in Fig.4 we get 

q1 + 26) J lldaiS(l - CQ~)(~I~~QX)’ 
rs(1 + c) ((2 - Z)%t*Qs + (y - t)sczsUs + (z - y)%la~}‘+~~’ (2.3) 

This integral can also be presented in terms of a two-fold Mellin-Barnes integral 

ql _ $x(1 + Cl l: da 1: dbj(z _ *~~:‘,k”“li;;b~;~~~~l+3~-~-* (2*4) 

.qa - E)r(a - E)r(l + d - a - 61, 

where the integration contours are chosen so to separate the “right” and “left” series 
of poles of gamma functions in the integrand (see, e.g. ref. [6]). 

For diagram of Fig.3 we have the expression corresponding to diagram of Fig.5, 
which in momentum space corresponds to diagram of Fig.6. Thus for three-point 
diagram l?(‘)(q:, ql, qi) we get the Feynman parameter integral 

r(2)(q:, q;, q;) = J ll daib(l- Cai)+,(~i)ai-‘4-e~~ {q:alaJ + q:czm + qja1ap2’ ’ 
where 

(2.5) 

Ilt(ai) = r(ly El ll da l: db r(a - ‘~!~~;Z!~i:~,,f, a - b, 

.ww ww 
r(a + c) qb + E) = J,l df (1 - W’ l1 Ialt “+‘~r-;~;t;l’-. 

(2.6) 

For the case of all kf = 0 (i=1,2,3,4) we have q: = .wl, qi = syl, qz = txlyl. 

The integral 

J, J Id+ l 4 
0 {9LL1a321+ NwY3y1+ tz,y2cYla2}3-2e 

(2.7) 
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can be calculated. The obtained expression contains the double pole at as = 0 
between other singularities in ai. From the representation for $(a;) we can see, 
that Na;)l,,=~ # 0. 

So this example shows that between the diagrams of the high order of perturbation 
theory such diagrams may be contained, which structure and high degree of singu- 
larities ( in our example four external invariants kf = O(i = 1,2,3,4)) don’t alIow 
to get the finite result for the diagram if we use only the dimensional regularization. 
The similar analysis of the representation for I’@)(q2 q’ q’) 13 19 3 9 when at least one of the 
external invariants kj isn’t equal to zero, shows that for such double-box diagram the 
coefficients for the expansion into the series with respect to regularization parameter 
.s are definite functions. 

III. 

For the case k: = X # 0 it is convenient to make a number of transformations. 
Using the uniqueness identity ( see references in [2][3][4) ) and the formula for convo- 
lution of lines in coordinate space ( see Fig.7 ) we can reduce the initial diagram in 
such a form as shown in Fig.8, where 

r(i +2~) 
"(') = r(&)r(i - E)r(i + c)' 

r(l +2c) 
a3(c)= ryi +E)r(i - c)' 

qi +2c)r(2 -E) 
a3(E) = 2cryl +rp(i -E) 

At the end of reducing we get two-loop diagram for which the internal vertex is 
semiunique and the left triangle is semiunique too. We can use ( see [3] ) such identity 
for semiunique triangle as depicted in Fig.9. 

In this way we reduce the initial triangle to the sum of three terms ( see Fig.10 ), 
where 

For the second term we used the uniqueness identity such as in Fig.11 to get the final 
result . 

The main idea of the representation of the initial diagram into such form consists 
in the possibility to reduce in the considered case the initial two-loop diagram to 
the sum of two one-loop diagrams and one two-loop diagram, but singularity of so 



-4- FERMILAB-Pub-93/241-T 

obtained two-loop diagram concerning to parameter c is weeker than the singularity 
of the initial diagram. 

Then we transform slightly the terms in Fig.10 ( with the help of uniqueness 
identity) . So the final expression for further analysis of the c-expansion is defined by 
the diagrams of the form of Fig.12, where 

'1 = 
r(i +2c)r(2 -2e) 

3'2rry~ +Epyl - 2c)r(1 - c)' 

'a = 
r(l+2e)r(2 -2c) 

3Eryl +E)r(~ - 2c)r(l -c)' 

c3 = 2&(1 +E). 

In momentum representation see Fig.13,where 

d 
1 

= 2ryi + E)r(i -c) 
E r(i +2r) ' 

,& = zr2c1 + +c2 - Cl 
c r(l+2E) 1 

da = 2~. 

Then 

W(q:,q:,q:) = dJG(q:,q,Z,q,2) -dA(d,qi,d) - d&(dydld) 

and q: = Xx1 + 8~1, q: = 3~1, qi = EaYat. 

For d,F,(q:, qi, qi) we have 

v + 3+x1 + 2E)(q:)Tq:)l-= {q:ala3 + q;ala3 + q&a3}~+e = 
(3.1) 

2 -3. ryi + c) J 
3r-1 n dai6( 1 - c a~)ala;‘(+3 

= 2 ryi+6)r(l -2c) J- 4-c’-’ +A 
Er(l + ze)q:(qjy 0 (q: +q:c)(i + cp ' 

where A leads to term proportional to l/e in the final result. 

For daF2(q:, qi, qi) we have similarly 

2 ryl +E)r(~-2c) 
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Then 
1 

J J dz 
0 0 

1 dy(d& - d&) = 

3 fl dzx=‘-’ 1 1 fa dxxzc-’ 
=- J 1 -_ 

63 t~-l‘~I-‘ 0 (Xx1 + ml)l+* c3 tl-3‘J1-le J’ 2 +o+, 
0 (Alp + aZ#+- 

where 
fi = r’(l+ e)r(l - e)r(l - 2~) 

r(l+3c) 9 

f2 = r*(l + 2s)rr(l+ s)rr(l - 2s) 
r(1 + 4~) 

1 

J 
1 dx$-’ 0 (AZ1 + dz#+* = r(l + ww - 4 _ d 

2sr(l + c)~rasr-e 

= r(1 + 2r)r(l - e) _ s i- dorr(e)rs(l - o) = 
2er(l + C)~r=St-* J -ia aA”d-~ 

= r(l + w-v - 4 _ f(Lil(l) _ Lil(x -J 
2er(l + e),v=sr-= s ---+I 

J 
1 d+r2’-’ 1 1 

0 (AZ1 + 351)*+~’ =2Esx1’. 

To calculate j,’ dc J,’ dyFx(q:, qi, qi) we first make such transformation of diagram 
at Fig.12(3) as depicted at Fig.14, where 9t = 1+0(1/c), CJ~ = 1 +O( l/c). It is con- 
venient to make such transformation since the integration of the resulting expression 
for such diagram over y is carried out immediatly. 

The Feynman parameter representation for resulting two-loop diagram in momen- 
tum space has the form ( the proof is similarly to that for diagram of Fig.3) 

ldz /, 
1 
& dA(q:, nl’, 9:) = 

= 6e J J ‘dz Id 
0 o y(q&~ J ll h6(1 - C ~i)~~~~-‘~~fzc+(~;J + o(~) 

tq:ma3 + qgw3 + q$zlal}2 
~ , (3.2) 

where 

drr3=-* 
+(Q;) = /,- (1 +dtt)l-c J,- (1+ T)l’(Qlt + a*r + l}l+l’ = -$Yuq; + W). 

(3.3) . , 
Then because qi = BYI, qi = aayat, we have 

1 
J J dx 0 o1 &M’dq:, d,q:) = 



so 
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(1 - w)(da* + m)(q:a3 + tz*crl) 

1 i- = J Za=s=-“’ 400 
dar”(a)rs(l - o) + $) = 

aX~t’-~ E 

= 2EIJ-2et(Lil(l) - Liz(q)) + O(i). 

D(2)(a,t,o,X,o,o) = Jo’dr~ldyr(‘)(q:,q:,q:) = 

ei,2-~tl-ls(Wl) - -M+)) - 2e38Let(Wl) - WY)) + O(k), (3.5) 

where polylogarithms &N(z) are defined as ( see[7]): 

N 1 InN-‘(I) 
LiN(z) = $-l)l)! o 4 t _ *-I . J (3.6) 

IV. 

It is well known that the calculation of the next to the leading order contribution 
in different physical processes is rather intricate. In the present paper the approach 
has been presented which makes it possible to evaluate on-shell double-box diagram 
in the case when one of the external invariants kf isn’t equal to zero. The use of the 
“uniqueness method” and such intermediate expansions as Mellin-Barnes expansions 
essentially simplified the procedure of calculating the double-box diagram and allowed 
to solve this problem up to the next to the leading order. 
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Fig. 1 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 8 

Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 

Fig. 14 


