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Abstract 

We consider the stochastic background of gravity waves produced by first- 
order cosmological phase transitions from two types of sources: colliding bub- 
bles and hydrodynamic turbulence. First we discuss the fluid mechanics of 
relativistic spherical combustion. We then numerically collide many bubbles 
expanding at a velocity v and calculate the resulting spectrum of gravitational 
radiation in the linearized gravity approximation. Our results are expressed 
as simple functions of the mean bubble separation, the bubble expansion ve- 
lociti, the latent heat, and the efficiency of converting latent heat to kinetic 
energy of the bubble walls. A first-order phase transition is also likely to 
excite a Kolmogoroff spectrum of turbulence. We estimate the gravity waves 
produced by such a spectrum of turbulence and find that the characteristic 
amplitude of gravity waves produced is comparable to that from bubble colli- 
sions. Finally, we apply these results to the electroweak transition. Using the 
one-loop effective potential for the minimal electroweak model, the character- 
istic amplitude of gravity waves produced is h Y 1.5 x 10ez7 at a characteristic 
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frequency of 4.1 x 10m3 Hz corresponding to n - lo-” in gravity waves, far 
too smaU for detection. Gravity waves from more strongly first-order phase 
transitions, including the electroweak transition in non-minimal models, have 
better prospects for detection, though probably not by LIGO. 
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I. INTRODUCTION 

First-order phase transitions in the early Universe can be potent sources of gravitational 
radiation [1,2]. In a recent series of papers we have calculated the radiation emitted by 
colliding vacuum bubbles and obtained useful approximations to the bubble dynamics, and 
applied these results to very strongly first-order phase transitions which occur through nu- 
cleation and percolation of vacuum bubbles [3-51. In this paper, we extend these results to 
more weakly first-order phase transitions which occur in a thermal environment, and apply 
our results to the electroweak phase transition. 

In a first-order phase transition, the Universe starts in a metastable high-temperature 
phase (the “symmetric” phase) and converts to a stable low-temperature (the “broken- 
symmetry”) phase. The transition proceeds via nucleation of bubbles of the low-temperature 
phase within the high-temperature phase; these bubbles then expand and merge, leaving the 
Universe in the broken-symmetry phase. 

Previously, we considered vacuum transitions, in which the only component of the Uni- 
verse is a scalar field. In this case true-vacuum bubbles are nucleated through quantum 
tunneling [6]. The dynamics of these bubbles is comparatively simple: once the bubbles are 
nucleated, the scalar field simply evolves according to the Klein-Gordon equation. Bubbles 
that are larger than a critical size begin to expand and rapidly approach velocities near 
the speed of light. All of the liberated vacuum energy goes into accelerating the bubble 
walls, which become progressively thinner and more energetic as the bubbles expand. These 
high velocities and large energy densities provide the necessary conditions for generating 
large amounts of gravitational radiation, and the resulting radiation spectrum depends very 
simply on the natural length and energy scales of the problem. 

For a thermal transition, the problem is more complex. Nucleation of bubbles of the 
low-temperature phase occurs through quantum tunneling and thermal fluctuations. How- 
ever, the evolution of these bubbles is not driven simply by scalar-field evolution. Instead, 
it depends on interactions of the bubble wall with the plasma and on the resulting fluid 
dynamics. Part of the latent heat released in the transition raises the plasma temperature, 
while another fraction of the latent heat is converted to bulk motions of the fluid. If the 
Reynolds number of the universe at the phase transition is large enough, then bubble motion 
produces turbulence in the plasma. 

In this paper, we perform detailed calculations of the gravitational radiation produced by 
the collision of spherical combustion bubbles expanding at a velocity V, using the linearized 
gravity approximation. The resulting spectra are simply expressed in terms of V, the log- 
arithmic derivative of the bubble-nucleation rate /3, the ratio of vacuum to thermal energy 
density a, and an efficiency factor n giving the fraction of vacuum energy which goes into 
kinetic energy of bulk motions of the fluid, as opposed to heating. As discussed below, the 
theory of relativistic combustion gives n and v as a function of a, which in effect, measures 
the degree of supercooling (i.e., how strongly first order the phase transition is). 

Combustion occurs via two distinct modes: detonation and deflagration. Roughly, deto- 
nations occur when the phase boundary propagates faster than the speed of sound, while for 
deflagrations the phase boundary propagates slower than the sound speed. We show that 
the bubble collisions in phase transitions proceeding via detonation will produce substantial 
gravitational radiation. In contrast, production of gravitational radiation from collisions of 
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deflagration bubbles should be small, because the bubble velocities are small (subsonic). It 
has recently been argued that detonation is the only stable mode of combustion for a cosmo- 
logical phase transition, and that a transition which begins via deflagration rapidly becomes 
unstable and converts to detonation 171. For these reasons we mainly focus on gravity waves 
produced by detonation bubble collisions. 

Both modes of combustion can stir up turbulence on scales comparable to the bubble 
size. We estimate the gravity waves produced by a fully developed Kolmogoroff spectrum 
of turbulence through simple dimensional arguments, and find that the amplitude of the 
spectrum is comparable to that from bubble collisions. This source will generate gravity 
waves in addition to those produced by the actual bubble collisions. We note that our 
estimates are completely general, and apply to any injection of energy in the early Universe 
on a large length scale. 

Section II discusses the relevant results from relativistic combustion theory. We review 
the solutions to the hydrodynamic equations of motion for spherically symmetric detona- 
tion bubbles [8] and derive relationships between bubble-expansion velocity, bubble kinetic 
energy, latent heat, and temperature. We also discuss the solutions for spherical, relativis- 
tic deflagration bubbles, which have not been previously addressed, and briefly compare 
with the hydrodynamics associated with planar combustion [g-11]. In Section III, we re- 
view gravity-wave formalism used for our calculations. The calculation of the gravitational 
radiation produced by many colliding bubbles is made tractable through the envelope ap- 
proximation [5]; we discuss the applicability of this approximation to combustion bubbles. 
Then we numerically calculate the radiation spectra for the collision of many bubbles in 
terms of their expansion velocity and kinetic energy, which are related to parameters of 
the phase transition in Section II. Estimates of gravity waves from turbulence conclude the 
section. Section IV contains the necessary formulas to propagate the generated spectrum of 
gravity waves to the present time. As a sample application, we derive the gravitational ra- 
diation produced by the electroweak transition, using the one-loop effective potential of the 
minimal standard model. We conclude by briefly considering detection prospects, especially 
for more strongly first-order phase transitions. Appendix A analyzes spherical relativistic 
deflagration bubbles, and in Appendix B a model effective potential is analyzed and applied 
to the electroweak transition. 

II. FLUID FLOW IN SPHERICAL COMBUSTION 

In order to calculate the spectrum of gravitational radiation from colliding bubbles, we 
need to know the spatial components of the traceless part of the stress-energy tensor, Tij. 
For a relativistic fluid, this is simply Tij = Wr’UiVj, where zu = e + p is the enthalpy density, 
e and p are the energy density and pressure, Vi are the components of the fluid velocity, 
and 7 = (1 - [VI’)- 1/z is the Lorentz factor. For spherical bubbles, the only nonvanishing 
component of the stress tensor is T(r) = T’,, and the fluid velocity has only a radial 
component v E ZI,. The radial dependence of the enthalpy density w(r) and fluid velocity 
~(7) need to be determined. Gravitational radiation from thin-wall bubbles depends on the 
quantity 
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J qr)r2cir = J w(T) 1 ~(;;:)lr’dr. 

The rest of this Section is devoted to evaluating this expression. 
To model a phase transition, we assume that the equation of state of the gas in the 

high-temperature (“symmetric” or “unburnt”) phase describes a relativistic gas plus a false- 
vacuum energy density: 

el= UT; + c, (2) 

PI= ;aT; - E, (3) 

where E is the false-vacuum energy density (or equivalently, l/4 of the latent heat). In 
the low-temperature (“broken” or “burnt”) phase the equation of state is simply that for a 
relativistic gas: 

ea= aT;, (4) 

pa= iaT;. (5) 

Note that w; = (4/3)aTi4. When a bubble forms in a first-order transition, its interior is 
described by the broken phase equation of state, while its exterior is in the symmetric phase. 
The phase boundary at the bubble wall, the “detonation front”, is assumed to be infinitely 
thin. The difference in free energy between the inside and the outside of the bubble creates 
an effective pressure driving the expansion of the bubble. We define the quantity 

a = c/aT;, (‘3) 

the ratio of vacuum energy to the thermal energy in the symmetric phase; a characterizes 
the strength of the phase transition. The limits a ---t 0 and a -+ 00 correspond to very weak 
and very strong first-order phase transitions, respectively. 

In spherical combustion there is no natural length scale, and the hydrodynamic equations 
can be written in terms of < = r/t where P is the distance from the center of the bubble and 
t is the time since nucleation. In other words, the velocity and enthalpy-density profiles, 
V(T, t) and W(T, t), are self-similar, being functions of only r/t. The variable t is then the 
outward velocity of a given point in the bubble profile. As shown by Steinhardt [8], Euler’s 
equation and the equations of continuity and conservation of entropy can be combined in the 
case of spherically symmetric flows to yield an equation for the radial velocity as a function 
of .$ 

rl(l- V() [(c)a - 112 = F, 

where p E ([ - v)/( 1 - v<) and 7’ = (1 - 2)--l. The enthalpy density satisfies 

1 dw 4+/J -- =- 
w dv 3c: ’ (8) 
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which can be integrated in terms of the velocity profile: 

w(t) = w-p [-&l;r, ?h] 

The stress-tensor T(T) can then be obtained from the solutions to these equations with the 
proper boundary conditions. 

Conservation of energy and momentum assure that in the rest frame of the bubble wall, 
pr, the velocity of fluid in the symmetric phase into the wall, is given by [8,9,12] 

p1 = 

1 

(Pa - n)(e2 t pl) "' 

(e2 - 4(el + pz) 1 ' 
and that pa, the velocity of fluid in the broken-symmetry phase away from the wall, is 

pa = 

1 

(P2 - m)(el + ~2) "' 

(e2 - el)(e2 t pl) 1 
The,enthalpy densities on each side of the wall are related by 

w& WA 
1 -p: - 1-p;. 

(10) 

01) 

If wl (i.e., the temperature outside) and CI are given, Plr pa and ws are still undetermined; 
however, once one of the three quantities is given, the other two are determined. 

It has been shown [9] that there are two qualitatively different kinds of combustion. If 
pi > a, the transition occurs via “detonation” and the wall propagates at a supersonic 
velocity, i.e., at a velocity larger than c,, the speed of sound; if pi < pr, the transition 
occurs via ‘Ldeflagration,” and the wall propagates at subsonic velocity. The sound velocity 
is given by dp/de at constant entropy; in general, it is a function of the state variables, but 
in the highly relativistic limit c, ---t l/A. In the remainder of this paper we always take 
this limiting value for the sound velocity. It has also been shown (81 (and will be discussed 
below) that if the transition occurs via detonation, ps = c, and so pi and ws are given simply 
in terms of a and ~1. However, for deflagrations, ps is, in general, still undetermined. 

In either case, the fluid velocities (in the rest frame of the wall) in and out of the wall 
are unequal, pi # Pz, so the fluid velocity v must be nonzero somewhere. Moreover, the 
fluid velocity is zero at the center of the bubble (by spherical symmetry) and far away 
from the bubble (in the “rest” frame of the Universe). Thus, deflagration or detonation 
is characterized by a radial fluid velocity profile, V(P), which satisfies the fluid Eqs. (7) 
and (8) with the appropriate boundary conditions. We now discuss the solution to this 
hydrodynamic problem. 

A. Detonations 

The case of detonations has been discussed in detail by Steinhardt [8], and we review 
the relevant results here. If the transition proceeds via detonation, the unburnt fluid enters 
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the wall at a supersonic velocity. For this reason, there can be no shock preceding the wall, 
so the fluid is at rest outside the bubbl e wall; i.e., u(t) = 0 for t > & where & = pi is 
the propagation velocity of the wall. Since pi > pr, the fluid just behind the detonation 
front is accelerated outward to a velocity (& - ps)/(l - &dps) (this is just the relativistic 
transformation of the velocity from the wall frame to the rest frame of the bubble). As 
shown by Steinhardt, the detonation front is then followed by a rarefaction wave in which 
the velocity profile u(E) falls smoothly to zero at E = c,, and remains zero for 4 5 c,. 

Steinhardt also showed that detonation solutions to Eq. (7) exist only if Pa = c,. This is 
the relativistic generalization of the Chapman-Jouget condition for spherical detonations (see 
Ref. [12]). For a general planar detonation [g-11], th e value of & is not constrained to be c,. 
Therefore, the detonations in a phase transition in the early Universe, restricted to satisfy 
the Chapman-Jouget condition, are not as general as those considered in some previous 
work [g-11]. We should also point out that the functional form of the velocity and enthalpy- 
density profiles are different in a spherical detonation from those in a planar detonation 
(even with the Chapman-Jouget condition), although they are similar qualitatively. 

Given pr = c,, one finds that the velocity of the detonation front, &, for a given a is 
simply [8] 

Id = l/A + (a’ + 2a/3)“’ 
1ta . (13) 

In Fig. 1 we plot the velocity of propagation of the detonation front, Ed, as a function of a, 
the parameter describing the strength of the transition. The velocity profile is then given 
by integrating Eq. (7) with the boundary condition u(&) z ud = (& - c,)/(l - &c,), from 
[ = (d to ( = c,. 

As t + &, dv/q + co, so Eq. (7) cannot be easily integrated numerically from [ = &. 
Instead, we write 6 as a function of V, use the relation t(u) Eli Ed $ (1/2)r(ud) for v -+ Q, 
and integrate from some v very close to u,+ Here, 

r(vd) = 

-k&td~. - 1)’ 
(Id _ c,)c, (14) 

is the second derivative of [ with respect to v at the detonation front. The velocity profiles 
for several values of a are displayed in Fig. 2. As shown, v(t) is zero for t < c,; there is a 
weak discontinuity at 6 = c,, and v increases until E = (4 where dvfd( -+ co. Also, as a is 
increased, both & and z)d increase. 

Once the velocity profile has been determined, the enthalpy-density profile can be cal- 
culated using Eq. (9). The enthalpy density at the detonation front, Wd = us, can be deter- 
mined in terms of wr and a from Eq. (12). N umerically integrating Eq. (9) is straightforward, 
but as the detonation becomes strong, (o 2 l), w(t) varies rapidly near the detonation front. 
The quantity ~(0 equals c, at t = c,, increases until some t which becomes closer to [d as 
a is increased, and then rapidly decreases to c, at the front. One finds that the region near 
& where ~1 is decreasing loosely defines a width-which decreases as a is increased-for the 
detonation front, and that w(t) varies quite rapidly in this region. The enthalpy-density 
profile, w(t), divided by wr, the enthalpy density outside the bubble, is plotted in Fig 3. 
The enthalpy density jumps at the detonation front, then decreases smoothly until [ = c, 
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and maintains a constant value wc < wi at the center of the bubble, [ < c,. For larger a, 
w(t) becomes increasingly concentrated near the detonation front. 

In Fig. 4, we plot the stress-energy density T(E) = wu2-r2. Note that as o ---t 0, all the 
stress-energy becomes concentrated near a thin shell near [ = c,, while as a is increased, the 
stress-energy becomes dramatically concentrated near the detonation front. The thickness 
of this shell tends to zero in both the strong- and weak-detonation limits and always remains 
negligible compared with the bubble radius; thus a thin-wall approximation to the stress- 
energy tensor of a detonation bubble is valid. 

To gauge the accuracy of our numerical integration, we checked that the energy contained 
in a volume of equivalent size before the bubble was nucleated, EiGtia = 4x(1 t a)[j/3, was 

equal to the total energy of the bubble: 

E 
47r (d 

bubble = 7 o J &‘(3 + +C 

In all cases, we obtained EELid = &,,bbre to within about a percent. 
Although we cannot write analytic expressions for ~(0 and w(t), analytic expressions 

are easily obtained in the weak-detonation limit, a -+ 0. If a < 1, then the fluid velocity 
v < 1 everywhere, and [,j - c, < 1. In this case, the small v and < - c, expression of 
Steinhardt [8] can be used to describe the entire velocity profile: 

In this limit, l)d = m, & = c, + m, and t&j = wi(l + 36). As o + 0, 7s t 1, 
and p --f c,, so Eq. (9) can be integrated to give 

w0 N wd exp( -&vd) N wd( 1 - 26). (17) 

The enthalpy densities inside and outside the bubble are equal to lowest order in (I, wo 2 ~1. 
The stress-energy integral, Eq. (I), can be also be integrated analytically. Using d[/dv = 
(2/3)ln(vd/v), we find 

/ ‘d =, T(<)(‘d< - w,cf J” v?q =, 
= w1c; J o”d v’(&/dv)dv = (2/27)w1+: 

31 
= J 

J/Z 
Zz;i”‘” WI 

Since t = r/t, the integral over P, Eq. (l), is Eq. (18) t imes P. This should be compared 
with the analogous result for the case of a pure vacuum bubble, Eq. (13) in Ref. [5], which 
in our notation is J T(r)r’dr = wlatJ/4. 

In the strong-detonation limit, cx + co, both & and Vd go to unity. Simple analytic 
expressions for w(t) and ~(0 cannot be found in this limit; however, we can find a simple 
form for the stress-tensor integral, Eq. (l), using conservation of energy. Equating Ekti,,~ 
a-d Ebubbler 
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ui(l t o)t: = 1’” zu([)E’(3 + v’)dE. 

In a strong detonation, w(E) and ys are both strongly peaked at the detonation front, so the 
dominant contribution to the integral comes from values of < near <d; furthermore, near &, 
v(e) N 1, so for a > 1, 

J 0 ‘d T(tK’4 - w1&4 - aw1/4, 

which smoothly matches the pure-vacuum result, Eq. (13) in Ref. [5]. 
For arbitrary values of a, we can write 

J o’d WX24 = n(a)w1u/4, 

Here, ~(a) is an efficiency factor quantifying the fraction of the available vacuum energy, 
or latent heat, that goes into kinetic (rather than thermal) energy of the fluid. Given the 
weak- and strong-detonation limits for the stress-energy integral, Eq. (18) and Eq. (20), and 
the values at some intermediate points that we calculate numerically, we find that K(CY) can 
be given approximately by 

n(a) = l:Aa~~+z-~ 
where A = 0.715. The function n(a), along with the numerically calculated value, is plotted 
in Fig. 5. 

No signal precedes a detonation front. Therefore, except for the regions in which the 
bubbles have collided, the dynamics of collision of two (or more) bubbles is simply that of the 
sum of the individual bubbles. This is directly analogous to the case of collision of vacuum 
bubbles, and justifies the use of the envelope approximation for colliding detonation bubbles 
as explained in the following Section. We also mention that the detonation front is stable to 
non-spherical perturbations and therefore remains spherical as it expands [7,12]. It has also 
been recently postulated that although the detonation front is spherical, the fluid behind it 
may undergo a transition to turbulence [13]. We discuss the gravity waves that could result 
from the excitation of a fully developed spectrum of turbulence in the next Section. 

B. Deflagrations 

In Appendix A we present a detailed discussion of the fluid dynamics of spherical de- 
flagration. In contrast to detonations, deflagration fronts propagate at subsonic velocities 
and, as shown in Appendix A, are preceded by a pre-compression shock. However, unlike 
in the detonation case, here T(r) is not concentrated in a thin region (unless the transition 
is weak and Ed happens to be near c., which we consider unlikely), and the thin-wall ap- 
proximation does not accurately describe the bubble. This makes calculating gravity waves 
from deflagration bubble collisions difficult. However, there are several reasons to believe 
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that the collision of deflagration bubbles is actually a very weak source of gravity waves. 
Most importantly, the smaller velocities will make deflagrations a much weaker source than 
detonations (the fraction of vacuum energy liberated in gravity waves is proportional to 2). 
In addition, the propagation velocity of the deflagration front is subsonic; therefore, once the 
pre-compression shocks collide, signals can be sent back through the bubble, and there is no 
reason to expect the evolution of two (or more) bubbles to resemble the sum of individual 
bubbles. The spherical shape of the bubble walls is likely to be disrupted shortly after the 
pre-compression shocks collide. Thus, in a deflagration, there will be no large concentration 
of kinetic energy near the bubble walls, so gravity-wave production from the collisions should 
be suppressed. However, we note that deflagration bubbles may be equally as effective as 
detonations at stirring up turbulence, which also leads to generation of gravity waves, as 
discussed in the next Section. 

Actually, the existence of deflagration as a possible mode for a phase transition in the 
early Universe has recently been questioned. It has been argued that a cosmological phase 
transition cannot occur via deflagration because a bubble that begins expanding via defla- 
gration rapidly becomes unstable to detonation due to the existence of hydrodynamic insta- 
bilities [7]. On the other hand, it has also been pointed out that temperature-dependence 
of the,propagation velocity of the bubble wall could stabilize a deflagration [ll], although it 
seems that this conclusion applies only to very weak transitions. For all of the above reasons, 
and especially the fact that little gravitational radiation is expected from deflagrations, we 
consider only detonations in the following analysis. 

III. GRAVITATIONAL RADIATION 

A. Radiation From Colliding Bubbles 

As in previous work [4,5], we use the linearized-gravity approximation in Minkowski space 
to compute gravity-wave production. In the phase transition considered here, we expect this 
approximation always to be valid; see [4] f or a detailed discussion. The fundamental quantity 
for calculating the radiation spectrum is the Fourier transform of the stress-energy tensor: 

Tij(i(,w) = & /,- dt eiWt J d3~T;;(x)e-iwL.x ; 

we adopt Weinberg’s unusual normalization convention [14]. We consistently ignore any pure 
trace pieces of the stress tensor, such as a spatially constant thermal-energy term, as they 
cannot contribute to the production of gravitational radiation. The source here is a number 
of spherical bubbles within a sample volume, each expanding at a given velocity from a 
given nucleation site and time. As a detonation bubble expands, its dynamics until it meets 
another expanding bubble are simple, described by the combustion formalism elaborated in 
the previous Section. Due to its spherical symmetry, a single expanding bubble produces 
no gravity waves. Only after bubble collisions destroy the spherical symmetry of individual 
bubbles is gravitational radiation emitted. In principle, the calculation of gravity waves is 
straightforward: once bubbles are nucleated, simply use the appropriate equations to evolve 
them until the phase transition is complete. For vacuum bubbles, the Klein-Gordon equation 
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is the necessary evolution equation, while thermal bubbles require hydrodynamic equations. 
The stumbling block is the complexity of the bubble configurations once collisions begin. The 
field or fluid equations in three spatial dimensions require intensive computational resources 
to solve, especially considering the dynamical range in the problem: from the thickness of 
the bubble wall to the Hubble radius. This difficulty prompted the development of the 
envelope approximation [5]. 

In Ref. [4], the full numerical evolution for a pair of vacuum bubbles was performed 
and the resulting gravity-wave emission calculated. The results scale in a simple manner 
with the natural length and energy scales of the problem. In particular, the peak frequency 
of radiation is determined by the size of the bubbles at the end of their evolution, and 
the radiation spectrum varies with the fifth power of this length scale. The results do not 

depend on the smaller-scale structure of the scalar field which develops in the region where 
two bubbles collide. This scaling result suggests that the fine details of the collision region 
are not important to gravity-wave production, but rather that the radiation is dominated 
by the gross features of the evolving bubbles, namely the uncollided bubble walls. These 
observations prompted the envelope approximation in [5], which consists of treating the 
uncollided bubble walls as infinitesimally thin energy concentrations and ignoring completely 
the collision regions, in effect considering only the uncollided “envelope” of the expanding 
bubbles. This approximation turns out to be surprisingly good. In the case of two vacuum 
bubbles, the envelope approximation reproduces the shape and features of the gravity-wave 
spectrum from detailed field evolution, and its amplitude is correct to within about 10%. 
The numerical utility of’the approximation is illustrated by a calculation involving nearly 
200 vacuum bubbles nucleated in a sample volume [5], which would be impossible with full 
field evolution even with extensive computational resources. 

As demonstrated in Section II, detonation bubbles satisfy the conditions of the envelope 
approximation. Specifically, the kinetic-energy density is concentrated in a thin shell near 
the bubble wall. In addition, the walls propagate at supersonic velocities, so anything that 
h appens in the collision region cannot affect the expansion of the bubble in the uncollided 
region. On the other hand, deflagrations will not satisfy either condition. First, the energy 
density is not concentrated near the bubble wall; this complicates evaluation of the stress 
tensor, as described below. The most serious problem, however, is that the walls propagate 
at subsonic velocities. This means that the spherical symmetry of the bubble walls can 
be disrupted shortly after the pre-compression shocks collide. Since efficient gravity-wave 
production requires coherent motions of large energy densities, we expect the radiation 
production from colliding deflagration bubbles to be substantially suppressed with respect 
to a detonation of similar strength. 

Using the envelope approximation and ignoring the bubble-collision regions, we can di- 
vide the spatial integration in Eq. (23) . t m o regions, one surrounding each spherical bubble 
centered at the bubble-nucleation site x,. The stress tensor becomes 

Tij(L,W) = & Am dt eiwt [g e-ivc’x* /, dR 1” drr2e-‘“t’XT;j(r, t)] (24) 

where N is the number of bubbl es, S, is the portion of the surface of bubble n that remains 
uncollided at time t, and the integration variables are chosen independently around each 
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bubble. If the bubble wall is thin, the exponential can be factored out of the radial integral, 
leaving the r-integral over the profile of the bubble stress tensor independent of the angular 
integral over the uncollided bubble wall. 

Given the stress-energy tensor, the total energy radiated in gravity waves into a frequency 
interval dw and a solid angle dR is [14] 

where A;+,, is the projection tensor for gravity waves, 

Aij,[m(l;) ~ 6i16jm - Zi(ji&SG + ticjijic,ic, - t6ij6~~ + tJijic,i& $ !jJi,i(il;j. (2’4 

Contracting with the tensor Aij,l, projects out the transverse-traceless piece of the source. 
We model a phase transition by assuming an exponential bubble nucleation rate per unit 

volume [15]: 

I? = roP. (27) 

Note that p here is unrelated to the velocities pr and ,L& defined in the combustion analysis 
of the previous section. This form is a reasonable ansats since in general the rate will be 
the exponential of a characteristic nucleation action; keeping the lowest terms in a Taylor 
expansion around the time of the phase transition gives Eq. (27). In general, /3 is expected 
to be of the order 41n(m&T)H N 1OOH for a Hubble rate H [16]. Bubbles are nucleated in 
a sample volume according to this rate. Each bubble expands at a constant velocity until all 
of the sample volume has been converted to the broken phase. The walls of the expanding 
bubbles, treated as thin shells, constitute the stress-energy tensor Tij(x, t) in Eq. (24). 

For this form for the nucleation rate, /?-’ is roughly the duration of the phase transition 
(151, and thus p-‘u is roughly the mean bubble separation (Le., the bubble size at the end 
of the phase transition). The frequency dependence of the spectrum is set by the time scale 
p-r, so the characteristic frequency of the radiation is w N p. To determine the scaling of 
the amplitude of the radiation spectrum, we note from Eq. (22) that for a single bubble of 
radius R, 

J 0 
R drr2Tij(r, t) = iR’K(a)&iPj = ~PK(a)~WlPikj 

where n(a) is the efficiency factor introduced previously which measures the fraction of 
vacuum energy E converted to bulk motions of the fluid. For vacuum bubbles, n = 1 since 
all of the vacuum energy goes into accelerating the bubble wall. Ignoring for the moment the 
eik’x factors in Eq. (24), Eqs. (25), (28), and (24) imply that for a fixed number of bubbles, 
N, dE/dw cc N(R3m)‘. (Note that the projection tensor A contracts with the unit vectors 
in Eq. (28) to form a dimensionless number which depends only on the geometry of the 
problem.) Substituting /3-‘v for the length scale gives 

%+ a: NG( R3~e)2/( Nu~P-~E) 0: G~~n~cxw~fi-~ 
“DC 
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where E ye N- NPc N_ N&P-s is the total vacuum energy in the sample volume. 
The neglected exponentials correspond to the usual quadrupole approximation, eik’X -+ 1. 

Since k.x scales like V, the quadrupole approximation will be valid for small bubble velocities, 
as expected. As v becomes larger, the contribution of the exponentials becomes important, 
and the us scaling in Eq. (29) will not hold. In fact, for the case of vacuum bubbles, v = 1, 
the quadrupole approximation overestimates the radiation spectrum by around an order 
of magnitude [4]. Since the quadrupole approximation scales exactly with us, the actual 
spectrum’s amplitude will increase more slowly with v than v3 for larger velocities. Our 
numerical results show that the deviation from us scaling begins around v = 0.1; see Fig. 6. 

The radiation spectrum is determined by numerically evaluating the integrals in Eq. (24) 
for the source configuration of many bubbles nucleated in a sample volume. We use tri- 
als with 20 to 30 bubbles because this number is computationally tractable and because 
significantly more bubbles give essentially the same results for the radiation efficiency, as 
demonstrated in Ref. [5]. Thus, for a given value of /3, the physical sample volume is pro- 
portional to us, insuring that approximately the same number of bubbles will be nucleated 
in the sample volume for any velocity. We have five trial nucleations in a spherical sample 
volume, each with between 17 and 33 bubbles, nucleated randomly according to Eq. (27). 
These are the same nucleation trials used in Ref. [5]. W e use the same nucleation trials for 
all bubble-expansion velocities by re-scaling all distances in the v = 1 case by a factor of 
U; using the same nucleation trials minimizes any spectrum differences arising simply from 
geometry of the bubbles. For each trial nucleation and bubble expansion velocity, we cal- 
culate the radiation-energy spectrum in the six directions (&?, zt3, M), and then average 
over the five trials and six directions to obtain a mean spectrum. These spectra are plotted 
as power per octave for various velocities in Fig. 7. The statistical variation in the mean 
due to the averaging is around 10%. Each spectrum peaks at a characteristic frequency of 
around 2p independent of bubble expansion velocity, as expected. In Fig. 6, we plot the 
ratio of energy radiated in gravity waves to the total energy (thermal plus vacuum energy); 
the straight line displays us scaling. The departure from y3 scaling as v ---t 1 is clear. The 
solid curve is the analytic fit to the fraction of energy liberated into gravity waves, 

5 x0.07n” (;)‘(%)’ (o.2T+vz) E 

Note that in the strong-detonation limit, ‘u -t 1 and a --t co, this reduces to the vacuum- 
bubble result of Ref. [3]. 

The radiation spectra in Fig. 7 depend on the parameters V, n, /3, and c = 3wia/4. A 
particular phase transition is characterized by the temperature at which it occurs and its 
latent heat, or equivalently by wr and a. For detonation bubbles, v and cz are related by 
Eq. (13), and n and a by Eq. (22). The parameter /3 describing the bubble-nucleation rate 
will be determined by the effective action for nucleating bubbles. Thus we have assembled 
all the necessary ingredients to calculate the gravity waves produced by a thermal first-order 
phase transition which proceeds via detonation bubbles. 
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B. Radiation From Fully Developed Turbulence 

Injection of energy into the universe will cause turbulence if the Reynolds number of the 
early-Universe plasma is large enough at the time of energy injection. Here we estimate 
the gravity waves produced by a Kolmogoroff spectrum of turbulence, independent of any 
details of the phase transition dynamics. 

The Reynolds number in the early-Universe plasma is very large for length scales L not 
too different than the Hubble radius H-’ N mpl/T’. Specifically, the Reynolds number 
Re = LV/v N 7g4(mPI/T), with L z 7H-‘, the kinematic viscosity v N ve, E u l/no N 
l/g’T is the particle mean-free path (g is a typical gauge coupling and T is the plasma 
temperature), and V/v = (bulkflowvelocity)/( microscopicvelocity) is taken to be of order 
unity. Thus, it is quite reasonable to expect turbulence to develop when the plasma is 
“stirred up” by a phase transition (the critical Reynolds number for the onset of turbulence 
is around 2000), especially if bubble walls are unstable to perturbations and become highly 
nonspherical. 

In the case of fully developed turbulence the distribution of the turbulent kinetic-energy 
density is expected to take the stationary Kolmogoroff form [17], 

k h’turb - 0: k-=/3, 
dk 

which is characterized by a constant flow of turbulent kinetic energy from larger scales to 
smaller scales, 

P4 k dpturb - = 7L dk = const; 
n 

(32) 

here p is the plasma energy density. The turbulent velocity associated with an eddy of size 
L ‘U k-‘, VL, and its lifetime, r~, are related, rr. N L/v&. For the Kolmogoroff spectrum 

VL cc L-; 7L o( L2’3. (33) 

That is, an eddy survives for about a turnover time before it breaks into smaller eddies. (So 
long as the eddy survival time is a scale-independent factor times the eddy turnover time, 
the Kolmogoroff spectrum should develop.) 

On very small scales, k 2 kD, the spectrum is cutoff due to viscous damping of eddies. 
The damping scale kD is the scale on which viscosity diffuses the turbulence as fast as 
the transfer of kinetic energy from larger scales replenishes it: 7~ 11 L2/e ‘v 7~; for the 
Kolmogoroff spectrum ko oc t- ‘id. On scales k >> kD, kdp,,bldk cc k-“. 

The Kolmogoroff spectrum is established as turbulence is introduced on some large 
scale-e.g., by the “stirring” of the plasma by expanding bubbles-and is fed down to small 
scales as large eddies break into smaller eddies. It takes of the order of an eddy turnover time 
on the largest length scale to establish the Kolmogoroff spectrum. The stationary spectrum 
of turbulence persists as long as the plasma is being stirred. Once the stirring stops, the 
turbulence dissipates in about a turnover time for the largest length scale. 

Next, let us estimate the amount of gravitational radiation produced by eddies of char- 
acteristic size L. Using the quadrupole formula, Pow 2~ G(dJQ/dP)‘, and estimating the 
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triple time derivative of the quadrupole moment of a typical eddy as d3Q/dt3 N L3pvi/q, 
it follows that the volume density of gravitational radiation produced by eddies of size L is 

(34) 

where time 7 is the duration of the turbulence and the characteristic frequency w z ril 2~ 
VL/L N vL,k. In making this estimate we have made two reasonable assumptions: (i) that 
the quadrupole moment of an eddy varies by order unity on a turnover time; and (ii) that the 
radiation from different eddies adds incoherently. Like the turbulent kinetic energy itself, 
the energy in gravitational radiation achieves its maximum on the largest length scale. 

Finally, let us be more specific. Suppose that the largest length scale on which the 
turbulence is being driven is LO E P-IV, and that the fluid velocities on this length scale are 
uc (not to be confused with the velocity II of propagation of the bubble wall). Further, we 
assume that the turbulence persists for a time I z p-r, corresponding to the length of the 
phase transition. Then we have the following approximate relations: 

L ( > 
113 L 

z)LZ - 
LO 

WJ; TL21-zL 
VL 

a/3L~i=v-‘; 

b N (vLo/e)3’4L,’ ‘v L,‘; wD N T$ N vkD. 

It then follows that the spectrum of the energy density in gravity waves is 

(35) 

(36) 

(37) 

wo 1: T&l 1! pv-‘vo, (38) 

where this spectrum extends from frequency wo up to wn. 
Strictly speaking, these expressions are valid only in the regime of nonrelativistic fluid 

velocities, vo << 1, and likely overestimate the gravity-wave production if applied to a 
stronger transition. For a detonation, the initial fluid velocity no can be estimated from 
the fraction of the total energy that goes into kinetic energy of the fluid. Thus, in the 
weak-detonation limit, vc - (na)‘l’, and in the strong-detonation limit, vs - 1. For a 
deflagration, the fluid velocity may be estimated by Eq. (Al). 

Our estimate for the gravitational radiation produced in a phase transition should be 
viewed as an absolute, albeit approximate, lower bound. No account was made of the 
radiation emitted by the bubble walls themselves; only that arising from the turbulent 
motion of the plasma that was stirred up by the release of the latent heat was taken into 
account. Further, we wish to emphasize that our analysis and estimates should apply to any 
violent injection of energy on large scales in the early Universe. 
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IV. RELIC GRAVITY WAVES 

To translate the results of the previous section into the potentially observable back- 
ground of gravity waves today, we must propagate the gravity waves forward from the phase 
transition until today. This is simple since the gravity waves are essentially decoupled from 
the rest of the universe. The energy density in gravity waves decreases as R-‘, and the fre- 
quency of the gravity waves redshifts as R-l, where R is the scale factor. If the universe has 
expanded adiabatically since the phase transition, meaning that the entropy per comoving 
volume S cc R3g(T)T3 remains constant, then the ratio of the scale factor at the transition 
to the scale factor today is given by 

R. 
-=8.0~~0-14(~)“~(~). 
& 

In these expressions, g(T) counts the total number of relativistic degrees of freedom at a 
given temperature, and the star subscript refers to the value of a quantity at the time of the 
phase transition. If we denote the fraction of total energy density in gravity waves at the 
transition as RGW. and the characteristic frequency at the transition as j., then the fraction 
of critical density today Row and characteristic frequency jc today are 

jo = j. (2) = 1.65 x lo-‘Hz (&) (-&-) (&)*‘s 

&w = hv. ($)’ (2)’ = 1.67 x 10-5h-2 (~)““&+ 

(40) 

where h is the current value of the Hubble parameter in units of 100 km see-’ Mpc-‘, and 
we have used the relation 

Ha= 8*GP*d 8?r3g.T,4 
. 3 = 90m;, . 

We also define a characteristic amplitude h,(f) p ro d 

frequency j as 
uced by stochastic gravity waves around 

h,(f) = 1.3 x 10-‘*[RoW(f)h2]“2 y , 
i ) 

where Rcw( j) is the contribution per frequency octave to the energy density in gravity 
waves [18]. 

Using the results in the previous section, we can describe the gravity waves from bubble 
collisions by 

S-lcw ha e 1.1 x 1o-6Kc1 ($)‘(&)’ (o,2;+vl) (;)“’ 
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f max z 5.2 x IO-‘Hz (3 (-&) (&)1’6, 

h&ax) a 1.8 x lo-r4n (e) ($)‘(y) (o,2;+y3)1’2 (3”“. (46) 

For detonation bubbles, in the weak-transition limit CY --+ 0, n c( fi, so the amplitude of 
gravity waves is suppressed by a factor of 03/a relative to the amplitude in the case of a 
pure-vacuum transition. 

For the case of turbulent mixing, the same analysis applies though our estimates are 
much rougher. We assume that after the phase transition the ratio of the energy density 
in gravitational waves to that in radiation is of the order of Row. ‘v (H./,B)%cz~K~ and 
the spectrum peaks at the frequency 2vf. z P~-~cr’/*n’/~. Then we have the following 
estimates: 

bvh’ N 10-S ($)2vv: (Ag’, 

f- N 2.6 x 1O-8 Hzu,,v-’ 
(ii) k&J G%)1’6 1 

hC&,.) N 5 x lo-l3 u,’ ($)‘(isgx) (g3. 

Note that the characteristic amplitude for gravity waves from bubble collisions and from 
turbulence scales in the same way, and our rough estimates indicate that fully-developed 
turbulence is comparable to, and maybe more potent than, bubble collisions in generating 
gravity waves. 

For a particular first-order phase transition, knowledge of the parameters V, /3, n, and CI 
suffice to determine the resulting gravity-wave spectrum from bubble collisions. For deto- 
nation bubbles, v and IE are functions of ~1 (cf Figs. (1) and (5). In contrast the time scale 
,B and the energy scale a are determined entirely by the bubble-nucleation probability. In 
terms of fundamental physical quantities, p and a are determined by the effective potential 
for bubble nucleation. Knowledge of the mean bubble separation LO = p-‘v and the char- 
acteristic fluid velocity vs suffice to determine the spectrum of gravitational radiation from 
turbulence resulting from the transition. 

As a direct application of our general formalism, we consider the electroweak phase tran- 
sition. This cosmological phase transition has been the focus of much attention recently. If 
the electroweak phase transition was first order, then the baryon asymmetry of the Universe 
may have been produced at the electroweak phase transition [19]. Such a transition would 
have produced gravitational radiation; we now use our results to estimate the strength of 
this signal. 

The minimal standard model electroweak phase transition occurs when the SU(2)r. x 
V(l), gauge symmetry is broken to U(1) EM. The bubble-nucleation rate and latent heat 

17 



of the transition follow from the effective potential for the Higgs field 4. In Appendix B, 
we review a general form for the effective potential and its specific realization for a one-loop 
electroweak calculation. We adopt the reference values mt = 100 GeV for the top mass and 
rn~ = 60 GeV for the H. eggs mass; the end of Appendix B shows how the relevant parameters 
vary with these masses. The transition then occurs at a temperature 2’. % 104GeV and 
results in H./p = 1.3 x 10-s, a = 1.4 x 10-s, n = 7.8 x 10-s, and v = c, = 0.57. Then for 
bubble collisions, we get flh’ z 9.8 x IO-r3 and h. Y 1.5 x lo-s7, peaking at a frequency 
around f- z 4.1 x lo-’ Hz. Reasonable changes in the reference values for the Higgs 
and top masses and uncertainties in the accuracy of the one-loop effective potential could 
conceivably change these values by an order of magnitude or more. The weak gravity-wave 
signal that results from the electroweak phase transition is a consequence of the fact that 
the transition in the standard model is very weakly first order, if first order at all. 

Various generalizations of the standard model, particularly enlarged Higgs sectors in 
supersymmetric models, can substantially strengthen the electroweak transition [20]. Other 
more speculative first-order transitions, such as in various GUT theories, may also have 
taken place. We can ask what characteristics must a first-order phase transition possess to 
generate a gravity wave signal which is potentially detectable. For the LIGO facility with 
advanced detectors, the ultimate sensitivity to a stochastic background is an amplitude of 
around 2 x lo-s5 at 100 Hz [18,21]. Requiring the peak frequency of the radiation spectrum 
to fall at 100 Hz, the most sensitive LIGO frequency, gives (p/H.)(T./l GeV) 21 2 x 10’ by 
Eq. (45). Then for the expected value of p/H. rz 100, Eq. (46) gives h, N 9x 10-zsna/(l+a) 
at the peak frequency, making detection by LIGO marginal at best. 

The situation is more promising for a space-based interferometer. Projected capabilities 
of a long baseline interferometer between two satellites are a frequency range from lob5 to 
10-i Hz, and a sensitivity down to an amplitude of 10mza at lo-’ Hz [18,22]. In this case, 
requiring the peak of the gravity wave spectrum to fall at lo-’ Hz gives (p/H.)(T./l GeV) 21 
2 x 10s. Again taking p/H. N 100, this corresponds to a phase transition temperature of 
20 GeV; the characteristic amplitude of the gravity waves is h, N lo-n’n(r/(l + a). This 
background is detectable as long as no/(1 + a) 2 10e3, a r easonable condition for a strong 
phase transition. These estimates can be made less stringent by noting that the gravity wave 
spectrum for colliding bubbles falls slowly with frequency, and that measuring the gravity 
wave background at a frequency 10 or 100 times higher than the peak frequency only results 
in the amplitude dropping by a factor of a few. We have also not included any gravity waves 
from turbulence, which could give a comparable and independent contribution. A strong 
electroweak phase transition at 7’ = 100GeV . 
interferometer. 

is potentially detectable by a space-based 

In conclusion, we have calculated the gravitational radiation produced by two potentially 
strong sources during a first-order phase transition: the collision of spherically symmetric 
bubbles, and fully-developed turbulence. Detailed numerical simulation of many colliding 
bubbles leads to a characteristic radiation spectrum which scales with a, n, and p, param- 
eters related to the latent heat, efficiency, and time scale of the transition respectively; the 
spectrum also depends on the bubble expansion velocity v in a sensible way. Relativistic 
detonation bubbles provide a simple model for bubble dynamics which allows n and v to be 
expressed in terms of LZ. Likewise, estimates of the radiation spectrum from stationary Kol- 
mogoroff turbulence give similar scalings with these parameters. These estimates indicate 
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that turbulence is likely as potent a source of gravitational radiation as bubble collisions. 
The magnitude of the frequency and amplitude of the resulting gravity-wave stochastic back- 
ground makes detection of a strong phase transition by a future space-based interferometer 
an open possibility, but makes unlikely detection of a first-order phase transition by the 
upcoming LIGO detectors. 
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APPENDIX A: FLUID FLOW IN DEFLAGRATIONS 

Here we present a detailed analysis of deflagration bubbles, analogous to that of deto- 
nations in Sec. 1I.A. Our aim is to determine the radial-velocity profile of the deflagration 
bubble. 

We again start with Eq. (7). If we are considering deflagrations, then in the wall frame, 
fluid flows into the discontinuity with a velocity v1 and out of the wall frame with a velocity 
va > vl, and both Q,‘v~ < c,. In the case of spherical deflagration, since the fluid at 
the center of the bubble is at rest, this means that (in the “laboratory” frame) the wall 
propagates at a velocity Q, so the fluid velocity is v = 0 for t < Q. Since ~1 > ~1, the 
expansion of the gas during combustion exerts a piston effect on the fluid outside the bubble 
and pushes the fluid just outside the bubble with a velocity 

v(( = 11*) = v2 - v1 
1 - v1v2 = vo. 

So in order to determine the radial velocity profile in a spherical deflagration, we need to 
solve Eq. (7) subject to the boundary condition Eq. (Al). This is straightforward. 

To begin, note that since V, E, (1 - v<),Y’ > 0 always, dv/d( < 0 as long as p < c,. Since 
p 5 c, for [ <: c, (the equalities holding only if v = 0 and [ = c,), we know that dv/@ < 0 
and that v is always decreasing for t < c,. The fluid far from the center of the bubble is at 
rest, so for some value of [ < 1, the fluid velocity v goes to zero. The question is whether 
this occurs for (i) [ < c,, (ii) E = c,, or (iii) < > c,. 

If at some value of <, v --f 0, then lnv + -co, and d(lnv)/@ -+ -co; however, 
d(lnv)/d< + --oo if and only if the quantity in brackets in the left-hand side of Eq. (7) 
goes to zero (i.e. ,u = c,). Since this does not occur for [ < c,, the fluid velocity v does not 
decrease to zero for t < c,. 

Now if we suppose that v -+ 0 at t = c,, then we can study Eq. (7) in the limit v < 1, 
(< - c,) << 1, and we find that the solution in this case is [8] 

t-c,=$ln:, v, ( - c, < 1. (A21 
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For v > 0 the right-hand side is always positive, but the left-hand side is negative for < < c., 
so there is no solution to Eq. (7) w h ere the velocity goes to zero at [ = c,. 

Therefore, the radial velocity must go to zero for some value of f > c,. Again, if v is to go 
smoothly to zero, then dlnv/d[ + --co, as v + 0. It is clear from Eq. (7) that this cannot 
occur for < > c,, so a discontinuity must occur, and as we may have guessed for supersonic 
propagation, there must be a shock. Although dlnv/d[ does not diverge as v + 0, it does 
go to -co for some [ > c.; this occurs when ,u = c, [where v = ([ - c.)/(l - v[)]. So assume 
that this is where the physical discontinuity occurs. Doing so, we find that in the frame 
of the discontinuity, fluid flows into the discontinuity with a velocity fir = t and flows out 
of the discontinuity with a velocity /3s = c,(# 1/3pi). In a shock, pi = 1/3ps [8], so this 
discontinuity cannot be physical. Therefore, the shock must occur at some value of t less 
than that at which Jo = c,. 

To find the value oft at which the shock occurs, we again note that in the frame of the 
discontinuity the velocities of the fluid in and out of the discontinuity are 01 = t and pa = ~1, 
and then note that in a shock /?I = l/38. This then tells us that the shock occurs when 

Ip 1 --= 
c. C, 

(A3) 

It is reassuring to note that this occurs for a value of 4 smaller than that at which dln v/d[ 
diverges (determined by p/c. = 1). 

So, to determine the velocity profile (and from it the stress-energy tensor) for a spherical 
deflagration bubble, Eq. (7) is integrated subject to the boundary condition, Eq. (Al), until 
pt/c: = 1. At this point there is a shock. As the strength of the transition is increased, ve 
will increase, and the value of [ at which the shock occurs will increase. This simply means 
that the strength of the pre-compression shock preceding the deflagration front increases as 
the strength of the transition increases. 

Generally, Eq. (7) must be solved numerically, but if the transition is weak, then vs 1! vr 
and vo < 1. In the limit of small velocities (v < 1, and as long as [ - c, is not too small), 
Eq. (7) becomes 

( ) g-1 dv=z, , 4 f (A4) 

which can be integrated subject to the boundary condition v(&) = us, to give 

(A51 

According to this solution, near the deflagration front, the radial velocity falls off quadrati- 
cally with radius and then begins to decrease even faster and goes to zero at t = c,. Strictly 
speaking, this solution is not valid at [ = c, and the radial velocity does not go to zero 
exactly at t = c,, but if the transition is indeed weak, the pre-compression shock will be at a 
value of < just slightly larger than < = c,, and Eq. (A5) should provide a good approximation 
to u(t). In Fig. 8, we plot the fluid velocity as a function of [ for a rather weak deflagration 
(us = 0.1 and us = 0.01). We plot the fluid velocity as function of [ for stronger deflagrations 
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in Fig. 9; the dashed curve illustrates a deflagrations with vr = 0.1 and vc = 0.09, and the 
solid curve illustrates the case where vr = 0.5 and v. = 0.45. 

The fluid flow in a spherical deflagration is different from that in a planar deflagration 
[g-11]. In a planar deflagration, the velocity of the fluid between the deflagration front and 
the pre-compression shock is constant. On the other hand, the fluid velocity and enthalpy 
density decrease with increasing t in spherical deflagration, as we have shown. Therefore, for 
given values of 81 and /3s, the pre-compression shock is weaker in a spherical deflagration than 
it would be in a planar deflagration, and in the limit of a weak transition, it is much weaker. 
(Similar conclusions were obtained for non-relativistic deflagrations 1231). Consequently, the 
allowable modes of deflagration in a phase transition in the early Universe may be slightly 
different than those discussed previously [g-11]. 

APPENDIX B: THE EFFECTIVE POTENTIAL FOR BUBBLE NUCLEATION 

Calculation of the gravity waves from a first-order phase transition requires two essential 
pieces of information about the transition: the parameters o and fi. These parameters 
characterize the overall properties of the transition and follow from the effective potential 
for bubble nucleation. 

1. A Model Effective Potential 

In a typical first-order phase transition, the probability for nucleation of a low- 
temperature phase bubble will be determined by the tunneling action between two vacua of 
an effective potential. To parameterize this effective potential, we consider the general form 

V(4, T) = $(P - T,)qP - &?T@ + ;A& 
where 7, a, and X are arbitrary positive constants and 2’0 sets the temperature scale [10,24]. 
This potential possesses two inequivalent minima. The symmetric phase potential minimum 
is always at 4 = 0 where V(4) = 0. The broken phase minimum occurs at 

d=u(T)s.g (1+$-q 
where we have defined 

z _ 97x (T2 - c1) to - t 
jgT p =-. to - tc 

PI 

(B3) 

In the second expression for I, we have presumed a quadratic relation between time and 
temperature, t,Tj = t,Tz, valid in a radiation dominated universe at constant entropy. The 
critical temperature T, at which the free energy of the symmetric and broken phases are 
equal is given by the relation 



At the critical temperature, the energy density of the broken phase first dips below that 
of the symmetric phase; at the temperature To, the symmetric phase becomes unstable. A 
first-order phase transition occurs at a temperature T., with T, > T. > 2’s. 

To determine the latent heat and vacuum energy associated with the transition, we begin 
with the value of the potential at the broken phase minimum: 

B(T) = -V(v(T), T) = g 
1 
g - ; +1+(1-$)3”], (B5) 

which is the difference in free energy density between the two states of the system. The 
derivative of I3 is given by 

4T) -yT + y 

and latent heat is defined as 

L z -T,g(Te = $T,zT;. 

The vacuum energy associated with the transition is [lo] 

P6) 

E = B(T) - TB’(T). (W 

To calculate p for a given phase transition, the basic quantity we need is r(t) = AeeS(‘), 
the bubble-nucleation rate per unit volume per unit time. The dimensionful prefactor A is 
expected to be of order T,’ but is unimportant for the present calculation. The argument 
in the exponential is the action for nucleating critical bubbles. At high temperatures, this 
action is well-approximated by [25] 

S(t)= 12W2 Lll (‘,“)“’ F(%7c&--To)) 

= 13.7aX-s~%3/sF(s) P9) 

where the function F is defined by 

F(z) z 1-t; I + G+ o’26 1 (l-x)2 . W’) 

This parameterization is accurate to around 1% for 0 < z < 0.95 [25]. 
The nucleation rate is a rapidly increasing function of time near the phase transition, so 

it is sensible to expand the action in a Taylor series about t = t.: [15] 

S(t) c-d s, - qt - L), Wl) 

P = -:I,=,. = -gg&. ’ 0. 
Then the nucleation rate can be rewritten as T = I’eexppt as in the previous Section. 
Simple estimates show that the electroweak transition takes place when 5’ x 130 [10,25]. 
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2. The Electroweak Case 

The exact parameters of the electroweak symmetry breaking phase transition are not 
yet well known, due both to uncertainties in the standard model (e.g., the top and Higgs 
masses) and to theoretical difficulties in calculating the effective potential, which determines 
the order of the phase transition and the bubble-nucleation rate. For the present calculation, 
we use the one-loop approximation to the finite-temperature effective potential [26] with an 
improved cubic term [25]: where the coefficients are given by 

1 
7= ;1;“(2”fv+m;t2m:), 

0 

a = &2mtY + m;), 

T,‘= k m& &(2dv+m:,-4m:)], 

(B13a) 

(B13b) 

(B13c) 

XT=.--- +I 3 4tf 4 
2v,l 

2m& In - $m$ln-- 4 
16nsu,4 QT= aeT2 

4mj In - 
LZFT’ 

(B13d) 

with us = 246 GeV, In a~ x 3.51, and In eF z 1.14. 
We adopt the following reference values: W mass mw = 80.6GeV, Z mass rnz = 

91.2GeV, top mass mt = IOOGeV, and Higgs mass mH = 60GeV. With these masses, 
the above coefficients have the values 7 = 0.17, a = 0.018, To = 103.6GeV, and 
XO G XT(T = TO) = 0.028. The H’ rggs self-coupling XT depends very weakly on T, and 
we will ignore the variation in Xr over the temperature range of interest. 

For the above parameters, I = 0.74 if the phase transition occurs when S = 130. Then 
Eq. (B8) gives E = 0.049T: so 

cr = 3O+?g,T,‘= 1.4 x 10-3. (B14) 

Working out the derivative in Eq. (B12) leads to p 2~ 400/t., which gives 

H. 
- = 1.3 x 10-s, 
P 

(B15) 

using the relationship t . = 0.3Omnr/T,lg!‘s. Since a is so small, Eq. (13) shows that the 
expansion velocity of detonation bubbl es is essentially v = c, = I/& Finally, the fraction of 
the vacuum energy which goes into bubble wall kinetic energy is, by Eq. (22), IE = 7.8 x 10-3. 
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FIGURES 

FIG. 1. Velocity & of propagation of detonation front as a function of Q. 

FIG. 2. Fluid velocity for a detonation as a function oft = r/t for: (a) o = 0.01 (solid curve); 
(b) a = 1.0 (dot-dash curve); and (c) a = 100 (dashed curve). 

FIG. 3. Enthalpy density, w(s), divided by the euthalpy density ‘wt outside the bubble, for a 
detonation as a function of [ for: (a) 01 = 0.01 (solid curve); (b) a = 1.0 (dot-dash curve); and (c) 
~2 = 100 (dashed curve). 

FIG. 4. Stress-energy density, T(t) = urvay2, for a detonation as a function of t for: (a) 
o = 0.01 (solid curve); (b) ~2 = 1.0 (dot-dash curve); and (c) a = 100 (dashed curve). 

FIG. 5. The fraction n of vacuum energy that goes into kinetic energy of the fluid in a detonation 
as a function of a. The solid line is a numerical calculation; the dashed line is the analytic fit given 
by Eq. (22). 

FIG. 6. The fraction of total energy (within au arbitrary volume) that is radiated into gravity 
waves by colliding bubbles as a function of bubble expansion velocity. 

FIG. 7. The energy per octave radiated in gravity waves for a phase transition with spherical 
bubbles expanding at velocity W, for v = 0.2, v = 0.4, 2) = 0.6, v = 0.8, and u = 1.0. 

FIG. 8. Fluid velocity for a deflagration as a function ofI = r/t for 212 = 0.1 and vo = 0.01. 

FIG. 9. Fluid velocity for a deflagration as a function of [ = r/t for ~1 = 0.5 and vo = 0.45 
(solid curve) and 2)s = 0.1 and vo = 0.09 (dashed curve). 
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