
@ Fermi National Accelerator Laboratory 

FERMILAB-PUB-93/218-T 
Juiy, 1993 

SIGNALS FOR PARITY VIOLATION IN THE 
ELECTROWEAK SYMMETRY BREAKING SECTOR 

S. Dawson(“)’ and G. Valencia(“-“) 
(4 Physics Department, Brookhaven National Laboratory, Upton, NY 11973 

tb) Theoretical Physics, Fermi National Accelerator Laboratory, Batavia, IL 60510 
(‘1 Department of Physics, Iowa State University, Ames, IA 50011 

Abstract 

We consider the possibility of observing a parity violating but CP conserv- 
ing interaction in the symmetry breaking sector of the electroweak theory. We 
find that the best probe for such an interaction is a forward-backward asym- 
metry in W+W- production from polarized eRe2 collisions. An observable 
asymmetry would be strong evidence against a custodial SU(2) symmetry. We 
also discuss the effects of such an interaction in future e--y colliders as well as 
in rare decays of K and B mesons. 
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1 Introduction 

The standard model of electroweak interactions has now been tested thoroughly in 
a number of experiments. The only missing ingredients are the top-quark and the 
Higgs-boson. Whereas we expect that the top-quark will be found in the near future, 
the same cannot be said for the Higgs-boson. The Higgs-boson in the standard model 
is responsible for the breaking of electroweak symmetry, and experiments conducted 
thus far have not tested directly the energy scales at which the symmetry breaking is 
thought to occur. 

There are many different physics possibilities that could be responsible for the 
breaking of the electroweak symmetry. This makes it interesting to parameterize the 
symmetry breaking sector of the theory in a model independent way, and to explore 
the sensitivity of present and future experiments to the new physics. In general, one 
can divide the possibilities for the new physics into two classes. It is possible for 
the new interactions to remain weakly coupled. Such models typically. contain new 
particles in the few-hundred GeV mass range. Examples are models with low energy 
supersymmetry [I]. It is also possible that there are no new particles below a few TeV 
and that the electroweak interactions become strong. We will focus on the second 
possibility, although some of our results apply in the first case as well. 

We start from the minimal standard model without a Higgs boson. This model 
can be written as the usual standard model, but replacing the scalar sector with the 
effective Lagrangian [2]: 

L(‘) = ?Tr 
4 ( 

D’C’D C Ir > (1) 

The matrix C E exp(iw’ . F/v), contains the would-be Goldstone bosons w; that 
give the W and Z their mass via the Higgs mechanism. They interact with the 
SU(2)r. x U( 1)~ gauge bosons in a way dictated by the covariant derivative: 

D,C = &C + ;gW;r’ - ;g’B&. (‘4 

Eq. 1 is thus an SU(2)r, x U(l)u gauge invariant mass term for the W and Z. 
The physical masses are obtained with v x 246 GeV. This non-linear realization 
of the symmetry breaking sector contains the same low energy physics as the minimal 
standard model when the Higgs-boson is taken to be very heavy [2]. It is a non- 
renormalizable interaction that is interpreted as an effective field theory, valid below 
some scale A. The details of the physics that break electroweak symmetry determine 
the next-t-leading order effective Lagrangian. At energies small compared to A, it is 
sufficient to consider those terms that are suppressed by E2/AZ with respect to Eq. 1. 

We have previously discussed the case in which the new physics contains a custo- 
dial SU(2) global symmetry that is broken only by the hypercharge coupling g’ and 
by the mass splittings in the left handed N(2) f ermion doublets [3]. Furthermore, we 
specialized to the case of very high energy experiments in which the scalar interactions 
are stronger than the gauge interactions and it is consistent to set all the custodial 
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SCr(2) violating counterterms in the next-to-leading order effective Lagrangian to 
zero. 

We now want to extend that analysis and study the effects of custodial SU(2) 
breaking counterterms. The one with the minimum number of derivatives, two, is: 

Lc(‘) = ~A$[Tr(rsXtD,,C)]‘. 

This term describes deviations of the p parameter from one* and has been studied at 
length in the literature. Unfortunately, there are many operators with four derivatives 
that break the custodial symmetry in the next-toleading effective Lagrangian, making 
a general st u d y quite complicated. A complete set of these operators has been given 
in Ref. [2, 51. For specific problems, however, one finds that only a few operators 
are relevant. For example, for physics at LEP, only one of them contributes at tree- 
level to the so called “oblique” electroweak corrections expected to dominate in that 
context. It corresponds to the parameter “U” of Peskin and Takeuchi [6]. 

We will focus on a special operator, that apart from breaking the custodial sym- 
metry, violates parity and charge conjugation while conserving CP. The interest of 
this operator lies in the fact that it is unique, and that violating parity, it can in prin- 
ciple produce signatures that will set it apart from the other next-to-leading terms 
in the effective Lagrangian. Furthermore, since the weak interactions violate parity, 
there is no reason to expect this operator to have the additional suppression factors 
usually associated with CP violation. Observation of substantial effects in the cus- 
todial SfJ(2) breaking sector of the theory would have significant implications in our 
understanding of electroweak symmetry breaking. In particular, models would have 
to explain the smallness of Ap in the absence of a custodial symmetry [7]. 

In Section 2, we present the parity violating Lagrangian which is the focus of our 
study and discuss the interactions which it generates. In Sections 3 and 4, we turn our 
attention to potential future colliders. Section 3 contains a particularly interesting 
result for asymmetries in polarized e+e- production of W boson pairs. In Section 4 
we estimate the size of the effect for WZ production in an e-y collider. Rare K and 
B meson decays are discussed in Section 5. We show that the processes B, + p+p- 
and K+ + x+vc can be sensitive to the effects of the parity violating operator in the 
effective Lagrangian. Finally, Section 6 contains our conclusions. 

2 P and C violating but CP conserving Lagrangian 

The effective Lagrangian with these properties is: 

(4) 

ZExperimentally, Ap = 0.0016iO.0032 [4]. 
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where W,, is the SU(2) field strength tensor. In terms of W, E W;T~, it is given by? 

w,, = ; (a& - a,wp + ;g[w,, WI). (5) 

A similar operator, with Bop instead of We0 would read: 

I: = ~c”s”~Tr(~sCtD,C)Tr(~~iiDvZtZ) 

= ~c”“Y’B.BTr(~sC’D,C)Tr(r,D,~‘S), 
2n* 

which is seen to vanish due to the antisymmetric nature of the epsilon tensor after 
using D,CtC = -CtD,C. Eq. 4 is the only term in the effective Lagrangian which 
violates parity and conserves CP to O(P). 

The operator of Eq. 4 has been recently discussed by Appelquist and Wu [5], and 
the correspondence between our notation and theirs is &*/A2 = ~11. The reason 
for the additional factor that we introduce, is that this operator arises at next-to- 
leading order (in the energy expansion), and is thus suppressed by the scale of new 
physics. In models where the operator is generated at one-loop, as the one discussed 
in Ref. [5], the suppression factor appears as l&r’. This corresponds to the usual 
“naive dimensional analysis” result A = 4~7~. 

It is instructive to consider the model of Ref. [5]. In this model, custodial SU(2) is 
broken by the splitting between the masses of new SU(2) fermion doublets mu - mo, 
and the size of air is constrained by Ap. Requiring the new physics to contribute no 
more than a few percent to Ap, Ref. [5] finds or1 _< 2 x 10e4, which for A = 1 TeV, 
corresponds to & 5 3 x 10m3. In models where Ap is small as a consequence of 
an approximate custodial symmetry, & will have a natural size & % Ap. This is 
consistent with the power counting analysis we sketched in Ref. [3]. However, it is 
also possible, although not natural, to have Ap small without a custodial symmetry. 
In such models & would naturally be of order one. 

In unitary gauge, the effects of the Lagrangian Eq. 4, are very simple. There is a 
three gauge boson interaction: 

L(3) = -:2y* -@g” 9 ( w;aawp’ - w/$&w; z,, > 
which generates the Z(q) -+ W+(p+)W-(p-) “anomalous” coupling of Figure 1. In 
the notation of Ref.[S] we have the correspondence: 

There is also a four gauge boson interaction: 

p) = i2Wv2se coh,w- W+z A 
A2Ce a p &I y* (9) 

‘Notice that there is a typo in Eq. 2.1 of Ref. [3]. 
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Some of the Feynman rules that can be derived from Eq. 4, are shown in Figure. 1. 
Our notation is se = sin Bw, cd = cos 0~. 

Within the minimal standard model, the operator Eq. 4 is generated at one-loop 
by the splitting between top-quark and bottom-quark masses. In the limit mt >> mw, 
and setting mb = 0, we find from the diagram in Figure 2: 

?J2 . 
( > iZZQ top 

=~(I-~q)~3xlo-’ 

Throughout our paper, we will express our results in terms of g,” adhering to 
convention. However, we wish to emphasize that the reader should keep Eq. 8 in 
mind. This expression tells us the natural size of g,“, and its relation to the new 
physics producing it. For example, if we assume that the new physics enters at 
1 TeV, then g,” - U(10m2) in theories in which there is no custodial SU(2) and Ap 
is small accidentally. Similarly, gf - 
custodial SU(2). 

0( 10e4) in theories that have an approximate 

3 Forward-backward asymmetry in eiei + W+W- 

In this section we study the effect of the parity violating operator Eq. 4 on the process 
efe- + W+W-. This process receives contributions from the diagrams of Figure 3. 
The t channel neutrino exchange diagram contributes only to eEeA --t W-W+. We 
will treat separately the two electron polarizations, because as we will see, only the 
process with right-handed electrons generates a parity odd observable proportional 
to g,“. 

We start by writing down the amplitudes generated by the lowest order effective 
Lagrangian (Eq. 1 plus the kinetic energy terms for the gauge fields), and by the 
parity violating Lagrangian Eq. 4. For e;ei we find: 

M(ete; + W+W-) = - g2si 
s(s - m;) 

t$E’~(p3, x+)qp4, A-) 

[ ( mi %&‘~ - m )a + FsR( q,,gmy - wm,)) + W?~,,,,(p~ - p$] (11) 

where Fp = 1, F,” = 2, and F,” = g$. For e;eA we find: 

WeAei --) W+W-) = -v:E*~(~, x+)c*yp,, A-) 
1 

g24 

[ ( 

s(s - 772;) . 

mi Fhub~ - P& + F:(q,,gw - q&J) +‘Wkww,(~~ - p$‘] 

+$Pl - P3)P(gw9,a + g”d&p - gapguy - i~~p”->} (12) 

where now: 

Ff = F,L/2 = I- -$& 
z @ > F,L=+&) 03) 
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and s, 2 are the usual Mandelstam variables. We find it convenient to use the vector 
equivalence technique [9], in which the spinor expression G*(pl)y,,u*(p2) is replaced 
with the equivalent vector V* = &(O, 1, pi, 0) (u+ being a right-handed electron). 
This allows computation of the amplitudes by explicitly replacing expressions for all 
four-vectors in the e+e- center of mass frame. 

We then find that the differential cross-section contains a parity-violating con- 
tribution from the interference of the gf term and the lowest order amplitude. It 
also contains a contribution proportional to ]g,“]‘. Th ese contributions are present 
for both electron polarizations. However, the cross-section for left-handed electrons 
is much larger than the cross-section for right-handed electrons, and is not very sen- 
sitive to the value of gf. This is why the studies of unpolarized cross-sections in the 
literature have found the effect of g,” to be less important than that of other (parity 
conserving) anomalous couplings. 

We will show that the cross-section with right-handed electrons is much more 
sensitive to g,” than the unpolarized cross-section is. However, deviations of the 
cross-section (polarized or not) from its minimal standard model value can also be 
due to any of the parity conserving anomalous couplings that we have ignored. 

Of greater interest to us will be the fact that the parity violating operator in- 
troduces a forward-backward asymmetry that is not present in the minimal standard 
model for the case of right-handed electrons (except, of course, for its one-loop contri- 
bution to g,” Eq. 10). This forward-backward asymmetry is a parity odd observable 
that is not affected by the other anomalous couplings that we have ignored and it is, 
therefore, the best place to search for gz. 

The differential cross-section for right-handed electrons is given by: 

h’T ld 
d(cos8) ei = s 

--p3 (s :!:I2 sin’ 0 

dm. l&p3 2 

d(cos0) CR = 
-- 
32s cj (s - 77~;)~ 

(5 + p’)’ sin* e 

dWL ra* p m;s 

d(cose) e; = 
-- 

s c$ (s - m$)2 
I + cos2 e + 2p--$gf cos e 

> (14) 

where we use the notation p2 = 1 - 4m&/s. We have summed over the different 
polarization states that contribute to the cross sections with two transversely polar- 
ized W’s in the final state, a=~, and with one transversely and one longitudinally 
polarized W’s in the final state, OTL. Our result agrees with that of Ahn et. aL[lO].” 
In terms of the notation of Ref. [lo], our result contains only the tree-level standard 
model values of Fl and F3, and we have only written terms that are linear in g,” 
(but our numerical results also include the terms quadratic in g$). Other anomalous 
couplings do not contribute to the forward backward asymmetry in eiei + W-W+ 
and they are not considered here. 

4Except for what appears to be a typo in Eq. 2.10 of Ref. [lo] where we find that As goes like P 
and not like Pz. 
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As can be seen from Eq. 14, there is a term in ~TL that is linear in cos0 (the 
scattering angle in the center of mass). This term arises from the interference of Fs 
and Fs and gives rise to a forward-backward asymmetry. Although there is a similar 
term in the differential cross-section for eiez + W+W-, in that case one also has a 
t-channel neutrino exchange diagram that gives rise to a very large forward-backward 
asymmetry within the minimal standard model. Thus, if we want to isolate the g,” 
term, it is very important to have right-handed electrons. Since the cross-section 
for left-handed electrons is several orders of magnitude larger than that for right- 
handed electrons, it presents a formidable background. In Figure 4, we show the 
results for the cross-section at 4 = 200 GeV, 6 = 500 GeV and 6 = 1 TeV 
respectively. In these figures we assume that the electron beam has a fraction pn of 
right-handed electrons and (1 - Pn) of left-handed electrons. We can see that only 
the cross-section for right-handed electrons is sensitive to the value of gz, and that 
this sensitivity increases with increasing center of mass energy. 

In Figure 5 we show the forward-backward asymmetry for fi = 200 GeV, 500 GeV, 
and 1 TeV. Again we find that the greatest sensitivity to g$ occurs for right-handed 
electrons, and that this sensitivity increases with increasing center of mass energy. 
However, in this case we see that as long as one has a high degree of polarization, 
even the lower energy machines could place a good bound on 9,“. 

A detailed phenomenological study of this process would have to address the 
issue of reconstruction of the scattering angle 0 after the W’s decay. It may also be 
possible to enhance the sensitivity to g,” by using the fact that the forward-backward 
asymmetry is present only in orn. 

4 e-y + VW-Z 

In this section we explore the possibility of observing the effects of the parity violating 
operator Eq. 4 via the anomalous four-gauge-boson coupling that it generates. We 
thus turn our attention to high energy vector-boson fusion experiments. Given the 
form of the four vector-boson interaction, Eq. 9, we look at processes involving one 
photon and one 2. There are several possibilities, for example 2-y production in high 
energy e+e- or pp colliders. This process, however, suffers from large standard model 
backgrounds. We will study instead an idealized situation where we can isolate the 
effects of the new interaction as much as possible from the backgrounds. We consider 
a high energy e-7 collider where we can cleanly identify the process e-y -+ VW-Z, 
and where we can also consider a polarized photon if need be. Some of the diagrams 
that give rise to this process are shown in Figure 6. 

The new interaction contributes both to the vector-boson fusion diagrams, Figure 
6a, and to the diagram that involves a three-gauge boson vertex, Figure 6b. This 
interplay of three and four-gauge-boson couplings from the same new operator makes 
the importance of a gauge invariant formulation of the effective Lagrangian manifest. 

As a first approximation, we will use the equivalence theorem to replace the final 
state W and 2 bosons by their corresponding Goldstone bosons, w and z. We first 
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compute the process W-y -* UJZ. The effective I+’ approximation is then used to fold 
the sub-process cross section with the distribution of W’s in the electron [ll]. 

The leading order amplitude (generated from Eq. 1) has been computed by us in 
Ref. 13). To that contribution we add the amplitude generated by Eq. 4 to find (for 
s >> mzw): 

wW-(ddq*) --* W-(PMPd)) = cyq,, X”)c”(q*, XY)g*se 
2 ut 

[ ( - US pLy + uP3uqlv + h&s” + sp@3” > 
.%75Zld 

- 2 -7-‘pyc.Pq;d] mW 
(15) 

The polarized cross sections, u(Xw, A’), are then: 

m* 1 
c7+- = o-+ = -- 

s; 3s 

6++ = b-- = $~(l.m~) 

*L+ =bL- = $&(,gf,*~m~) 

We fold these cross-sections with the luminosity for longitudinal and transverse Cv’s 
in an electron to obtain the effective-W approximation result shown in Figure 7. This 
figure indicates a potential sensitivity of this process to values of gf < 0.1 which are 
within the interesting range. 

The subprocess cross-sections are identical for the different photon polarizations 
if we sum over the W polarization. However, in the exact process e-y -+ VUJ-z the 
cross-section depends on the photon polarization. Within the effective-W approxi- 
mation this dependence is also present because the polarized cross-sections of Eq. 16 
are weighted by different factors: the distribution of W’s in the electron depends on 
the W polarization. This is also seen in Figure 7. 

From Eq. 16 we can see that the new term does not interfere with the lowest order 
term: there is no contribution linear in g,“. This means that we can only construct 
observables sensitive to gf that are parity even and can thus be generated by other 
anomalous couplings. Recall from Ref. [3], that the amplitude Eq. 15 receives contri- 
butions from the next-twleading order operators L~L, .&R, and .Llo; and that these 
contributions do interfere with the leading amplitude. Nevertheless, it is possible that 
the cross-section is more sensitive to the lg:(’ term than to those terms proportional 
to .L~L, !& or Llo in very high energy machines. The reason for this is that the \g$I’ 
term is the only one that contributes to the amplitude where all three vector-bosons 
are longitudinally polarized (this is the source of Q* in Eq. 16) and we expect these 
terms of “enhanced electroweak strength” to dominate at high energies. 

To construct an observable that can single out the gf coupling we need a term in 
’ the differential cross-section linear in gs . If we go beyond the effective-W approxima- 

tion, the new term proportional to gf will interfere with the lowest order amplitude 
through the parity violating term in the fermionic structure function [12]. Going be- 
yond the effective-W approximation requires the inclusion of the diagram in Figure 6b 
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as well. The interference term, not being present in the effective-W approximation, 
is thus kinematically suppressed. 

It appears that this process can potentially place significant constraints on gf, 
but a detailed phenomenological study of the real process e-y -+ VW-Z and its 
backgrounds is needed to draw any conclusions. 

5 Rare K- and B-meson decays 

These rare decays receive contributions from the parity violating effective Lagrangian 
Eq. 4 at the one-loop level. One-loop amplitudes with one vertex from the t3(E4) 
effective Lagrangian are O(Es). A complete study thus requires the next to next to 
leading order counterterms, as well as two loop contributions from the leading order 
effective Lagrangian. However, we will find that our one-loop amplitudes are finite so 
we will be able to draw some conclusions from our incomplete analysis. As a minimal 
consistency check, we first look at the effects on the gauge boson self-energies that 
could arise at the same order. This involves, for example, the potential contributions 
to Ap from one-loop diagrams with one next-to-leading (g,“) vertex. However, one 
can easily see that there are no contributions to the gauge boson self-energies linear 
in g$. This is evident, as there are not enough independent four-vectors to saturate 
the indices of the epsilon tensor. A contribution to the self-energies (and to Ap) 
quadratic in g$’ needs two next-&leading vertices, and is therefore one-order higher 
in perturbation theory (C)(E’) in our notation). 

As is well known, the effective operators responsible for rare meson decays arise 
from box and penguin diagrams [13]. S’ mce the lowest order effective Lagrangian 
(complete with fermions), and the new term Eq. 4, are separately gauge invariant, 
we are free to treat the two terms independently. We argued that the lowest order 
effective Lagrangian is just what remains when one removes the Higgs-boson from the 
standard model by taking its mass to infinity. However, it is easy to convince oneself 
that the standard model operators responsible for rare K and B decays do not depend 
on the Higgs-boson interactions. This is a consequence of the usual approximation 
in which external quark masses and momenta are set to zero. This means that, 
for example, H&s-penguin diagrams in which a H&s-boson couples to W’s or to 
top-quarks vanish in the limit of vanishing external quark masses and momenta. 
Since we will work in this approximation, our lowest order effective Lagrangian will 
simply reproduce the minimal standard model results which are usually obtained in 
Rc gauges. 

As we said, the new term Eq. 4 is separately gauge invariant, so we may choose to 
perform the calculations involving this term in any other gauge. The simplest thing 
for us will be to perform them in unitary gauge. In this gauge Eq. 4 enters only 
through the anomalous ZW+W: coupling in the “Z-penguin” diagram of Figure 8 
at the one-loop level. 

For a heavy top-quark, we can ignore the contributions of charm and up-quarks in 
the intermediate state. The one-loop amplitude that contributes to the rare decays 
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is finite due to the GIM cancelation as noted by He [14]. We obtain for the effective 
one-loop vertex of Figure 8: 

4G.u a iI& = -i-- 
Jz 2ns; 

W(rt)E~~‘(l - ys)nj (17) 

where rt = m~/m&, and we have defined 

W(Q) = $*( i’ + ;;““,:;*) 
Our result agrees with that of Ref. [14]. This contribution to the rare decays modifies 
the standard model results for KL, B” + !+f!-. In the notation of Ref.[lG], the full 
results (leading order plus new contribution) are obtained by replacing: 

Y(a) -+ %) = Y(Q) + g,zc;w(z*) 

Y(4 = ; (S + (zt3$* log Z1) (19) 

The case of Kr. -+ p+j~- was discussed by He [14]. This mode, however, has a large 
long distance contribution due to a two-photon intermediate state that dominates the 
rate, and that is unaffected by the new couplings. Although one can compute reliably 
the absorptive part of the long distance component, at present one cannot compute 
its dispersive part. It is therefore not possible to place significant constraints on the 
short distance component (and thus on g,“) from the measured rate for this mode. 
Thus, the constraint obtained by He is purely theoretical, and it is equivalent to 
requiring that the new contribution be at most as large as the standard model short 
distance part. For mt = 150 GeV, Y(z,) zz W(Q) so this implies: 

which is not a very stringent result if, as one expects, A 2 1 TeV. 
A much better process to bound this contribution is B, --f p+n- because the 

rate is dominated by short distance physics, and is therefore free of large theoretical 
uncertainties. This will allow us to obtain an experimental bound on the anomalous 
coupling once this process is measured. It will be a bound that can be improved by 
improving the accuracy of the measurement. The rate for this process is given by s: 

G; 
IJB, + p+p-) = R F&+~1Vt~~::1*~(~~)* 

Numerically we use the Wolfenstein parameterization of the CKM matrix with A = .9 
and X = .22. Our normalization for FB is that in which fn = 132 MeV, we use Fn = 
200 MeV. Although this process has a very small rate, it has a very clean signature 
and should be seen in experiments at hadronic colliders with vertex detection. It 

50~r standard model result agrees with that of Ref. [15, 161. 
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is conceivable that a precision measurement of this rate will exist in the future. In 
Figure 9 we have plotted the rate as a function of g:. This figure confirms what one 
expects from Eq. 19: a measurement of the rate to within factors of two can only 
bound g$ to O(1). We can see from the figure that the sensitivity to g$’ increases 
with increasing top-quark mass. It is also evident that a significant constraint on 
g,” can only be placed by a precision measurement once the top-quark mass and the 
CKM angles are known accurately. 

The new vertex also contributes to the process li+ + x+YS. This process is also 
dominated by short distance physics so its precise measurement would allow us to 
place significant constraints on gf (or &). If we use the notation of Bums et. a/.[171 
for the standard model result, we find the full rate with the replacement: 

X(4 + h) = X(Q) + g,“&v(zt) 
X(Q) = T(S + (;i-l;2 1ogrJ 

in the contribution from a top-quark intermediate state, which becomes: 

B( K+ + n+vii) 
B(K+ + &+I/) 

= 

(22) 

for each neutrino flavor. In Figure 10 we have included the standard model charm- 
quark contribution with QCD corrections as given in Ref. [17] for typical values of all 
unknown parameters. We see that this process will easily place bounds of O(1) on 
g,“, but that only a precision measurement combined with detailed knowledge of the 
top-quark mass, CKM angles, and QCD corrections could place significant constraints 
on g,“. 

As pointed out by He [14], there is another anomalous three-gauge-boson coupling, 
gf - 1 in the notation of Ref. [g], that contributes to these processes at leading order 
in r&/m&. A deviation from the standard model rate in these processes would, 
therefore, not be a definite signal for 9,“. 

6 Conclusions 

We have studied the possibility of observing the leading parity violating operator in an 
effective Lagrangian description of the symmetry breaking sector of the electroweak 
interactions. We have considered several observables that are even under parity and 
that would not distinguish between the effect of the parity violating interaction and 
a parity conserving one. We have also studied one observable (the forward backward 
asymmetry in eiei 4 W+W-) that is odd under parity and would thus signal 
exclusively the parity violating interaction. 

The parity violating operator also breaks custodial SU(2) symmetry, and therefore 
its natural size depends on whether the fundamental theory has a custodial symmetry 
or not. In theories with a custodial symmetry (or an approximate one), we expect 
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gsz to be 0(10m4) whereas without a custodial symmetry it could be 0(10-s). The 
minimal standard model generates gf at one-loop at the lo-* level. 

The most promising place to look for a non-zero value of gf is a forward-backward 
asymmetry in polarized eke; collisions. The sensitivity of this asymmetry to gf is 
significantly reduced when the polarization of the electron beam is not near 100%. 
The asymmetry is sensitive to gs z in machines with a center of mass energy as low 
as 200 GeV, but a much better sensitivity is obtained at higher energies. At higher 
energies, the total cross-section is also sensitive to g,” provided that there is a high 
degree of ek polarization. 

We found that in addition to the usual anomalous three gauge boson vertex asso- 
ciated with g$, gauge invariance requires the existence of a four gauge boson vertex 
yZW+W- that is also proportional to g,“. We performed a preliminary study of the 
sensitivity of an ey collider to g,” that makes use of this new coupling. We find that 
at very high energies there is an increased sensitivity to g,” because the new operator 
contains a coupling of the photon to three longitudinal vector bosons not present in 
the minimal standard model. The enhanced interactions of longitudinal vector bosons 
at high energies are thus the origin of the potentially large sensitivity of the process 
e-y + VW-Z to gf. 

We find that the rare decays B, + p+p- and I<+ --t n+~p can easily place bounds 
of O(1) on g:, but that to improve this, one needs a precise measurement of the rate 
combined with knowledge of all the standard model parameters. 

A search for gf in these observables would yield valuable information on the 
electroweak symmetry breaking sector. In particular, an observation of a non-zero g,” 
would be strong evidence against a custodial SU(2) symmetry. 
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FIGURE CAPTIONS 

1. Feynman rules from Eq. 4. We show the two vertices that appear in unitary 
gauge, as well as some vertices involving would-be Goldstone bosons that we use. 
The notation in the figure is si = sine b = .23, cg = cos 0~. Our convention is 
that all momenta labelled Q enter into the vertex, and all labelled p leave the 
vertex. 

2. One-loop contribution to gf in the minimal standard model. 

3. Diagrams contributing to e+e- + W+W-. The full circle in the first diagram 
represents the three gauge boson vertex both from leading order and Eq. 4. 

4. Total cross-section for the process e+e- + W+W- for a) & = 200 GeV, 
b)& = 500 GeV and c) fi = 1 TeV. Th e r d’ff erent curves from upper most 
to lowest correspond to a fraction of right handed electrons in the beam of O%, 
90%, 95%, 99% and 100%. 

5. Forward-backward asymmetry for the process e+e- -+ W+W- for a) 6 = 
200 GeV, b)& = 500 GeV and c) &’ = 1 TeV. The different curves from 
upper most to lowest correspond to a fraction of right handed electrons in the 
beam of O%, 90%, 95%, 99% and 100%. 

6. Types of diagrams contributing to e-y -+ VW-Z. a) Diagrams with the vector- 
boson fusion topology (including both contact terms and s-and-t-channel gauge 
boson exchanges. b) Diagram with a three gauge boson vertex that contributes 
to the process e-y + v’w-z beyond the effective-W approximation. 

7. e-y -+ vzu-z cross-section in the effective-W approximation. We plot separately 
the results for each photon polarization with g,” = 0 (lower curves) and with 
g,” = 0.1 For gz = 0.1 the upper curve corresponds to Xi and the lower curve 
to Xl. For gs - ’ - 0 the upper curve corresponds to XT and the lower curve to 
x:. 

8. One-loop contribution from Eq. 4 to the ZidiZ effective vertex. The effective 
three gauge boson vertex is represented by the full circle. 

9. Rate for B, + p+p- as a function of g ,“. The dashed curve corresponds to 
mt = 200 GeV, the dotted curve to mt = 150 GeV and the solid curve to 
mt = 100 GeV. 

10. B(K+ + x+vP) as a function of gf. As an example we use p = 0, 7 = ,4, 
Vcb = ,041, AQCD = 200 MeV, and n, = 1.4 GeV following Ref. [17]. The 
dashed curve corresponds to mt = 200 GeV, the dotted curve to mt = 150 GeV 
and the solid curve to mt = 100 GeV. 
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