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Abstract 

Synchrotron motion with rf phase modulation was studied experimentally. 
Poincarb maps in the resonant precessing frame were obtained from the ex- 
perimental data and compared with the tori of the resonant Hamiltonian. 
Our experimental data revealed island structure in longitudinal phase space. 
Experimental results for synchrotron motion excited by phase modulation at 
the third harmonic of the synchrotron frequency are also reported. 
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I. INTRODUCTION 

Synchrotron motion occurs in two dimensions of the six dimensional phase space for 
particle motion in a circular accelerator. Therefore, longitudinal beam dynamics studies 
associated with the synchrotron motion can be as important as the transverse dynamics 
associated with the betatron motion. An actual accelerator may contain longitudinal or 
transverse error fields, which vary with time randomly or sinusoidally and cause unpre- 
dictable outcomes resulting in degrading the performance of colliders or storage rings. In- 
deed, emittance blow-up and beam loss due to rf noise have been observed in the Super 
Proton Synchrotron at CERN [l]. Understanding effects of these time-varying devices on 
beam dynamics is important in setting tolerance levels during machine design, construction 
and commisioning. The studies of longitudinal beam dynamics may also lead to a better 
control of the time-varying components for emittance dilution, super slow beam extraction, 
controlled phase space manipulations, etc (11. Because of these possible benefits to future ac- 
celerators, careful experimental and theoretical studies of synchrotron motion with rf phase 
modulation are needed. 

The equation of motion for transverse oscillations of a particle trapped in a one degree 
of freedom resonance island, in the presence of betatron tune modulation, is equivalent to 
that of synchrotron motion with phase modulation. Studies of synchrotron motion with rf 
phase modulation have added importance for understanding the consequences of transverse 
betatron tune modulation. 

The rf phase modulation may arise from rf noise, rf power supply ripple, a driven rf phase 
shifter, or synchro-betatron coupling. The synchro-betatron resonance may be excited by a 
finite chromaticity, dispersion function in rf cavities, transverse wake fields, a beam-beam 
interaction, and a time varying transverse dipole field located at a nonzero dispersion region. 
In the latter case, the path length that the particle traverses in one revolution is modulated 
by AC = C DiBi(t), where Oi(t) is the modulation dipole kick angle and Di is the dispersion 
function at the dipole location (21. Therefore the arrival time of the particle at the rf gap 
relative to the rf wave will be modulated. The result is equivalent to that of rf phase 
modulation on synchrotron motion [3]. Recently, experimental measurements of the beam 
response due to the rf phase modulation have been reported [4]. Although our preliminary 
data analysis was shown to agree well with single particle tracking calculations, data analysis 
based on a Hamiltonian formulation was missing. This work is intended to bridge the gap 
between the report of the measured data and our understanding of particle motion based 
on the framework of the Hamiltonian dynamics. 

The plan of the paper is as follows. In Sec. II, we discuss the properties of the Hamiltonian 
for the synchrotron motion with phase modulation. The longitudinal phase space will be 
transformed to action-angle coordinates, where the Hamiltonian in the resonant rotating 
frame will be derived. In Sec. III, the experimental procedure and the data analysis using 
Hamiltonian dynamics will be reported. The conclusions are given in Sec. IV. 



II. HAMILTONIAN OF SYNCHROTRON MOTION WITH PHASE 
MODULATION 

The synchrotron mapping equations for a single particle, with rf phase modulation, are 
given by [5], 

4 n+l = 4s + 2rhq + (‘~,,+l - pn), 

n 

($).., = ($).+&sin&+i-A($)m, 

where ($) and 4 are conjugate phase space coordinates of the synchrotron motion describ- 
ing the fractional momentum deviation and the synchrotron phase respectively, h is the 
harmonic number, 7 is the phase slip factor, p, = a sin v,B, is the sinusoidal phase mod- 
ulation function, 0, is the cumulative orbital angle at the nth revolution used for the time 
variable, v, is the modulation tune or the ratio of the modulation frequency to the revolu- 
tion frequency, a is the phase error modulation amplitude, V is the effective rf voltage, ,& 
and E are respectively the speed and energy of an orbiting particle and X is the phase space 
damping parameter related to electron cooling at the IUCF Cooler Ring, or synchrotron 
radiation damping in electron storage rings. 

Defining the normalized momentum 6 as 2($), where v, = 
if- 

$$$ is the synchrotron 

tune, the difference equations, Eq. (2.1), can be written as, 

4 n+l = c& + 2av,6, + 2w,a cos v,B, 

6 n+l = 6, - 2rv, sin &+I - 2n$&, (24 

where we is the angular revolution frequency, 01 = ztx, and the derivative of the phase 
modulation function, v,a cos v,,,B,, is used for (pn+i -ip,,)/2 r in Eq. (2.2). Without external 
rf phase modulation, the synchrotron phase equation becomes, 

where w, = wsv, is the angular synchrotron frequency. The e-folding time of the phase 
space damping is $. The damping parameter for the IUCF Cooler Ring can be obtained 
from the damping of the phase amplitude of the coherent synchrotron oscillation following 
a phase kick. Figure IV shows the measured phase of the bunch as a function of the turn 
number after a phase kick. Measuring the damping rates after phase kicks, the damping 
parameter 01 was found to be limited about a = 3. f 1. s-r during this experiment, which 
was much smaller than the synchrotron angular frequency w, = 3342 s-i. Therefore the 
electron cooling is not very important to our data analysis for the transient solutions of 
Eq. (2.2). Neglecting the damping term by setting 01 = 0, Eq. (2.2) can be derived from the 
following Hamiltonian, 

H = ;“J2 + v.[l - cos 41 + v,a6cosv,,0, (2.3) 
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where the perturbing potential created by the rf phase modulation depends linearly on the 
momentum. To remove momentum dependence, we make a canonical transformation using 
the following generating function, 

F*(r#~,i) = (4-asinv,B)b, 

to obtain the coordinate transformation, 6 = i, 4 = 4 - asinv,B. The conjugate phase 
coordinate 4 is the phase displacement measured relative to the reference frame at the fixed 
revolution frequency. The new Hamiltonian becomes, 

H = ~v,@f v.[l - cos($+ asinv,B)]. (2.5) 

To study the resonant structure of Eq. (2.5), we transform the phase space coordinates, 
(&8), into the action-angle variables (.I,$), w h ere the action of the Hamiltonian is given 

by, 

In the limit of small action, i.e. J 5 2, the canonical transformation can be accomplished 
by using the generating function, 

FI($,$) = -$tan$ (2.7) 

to obtain 4 = Q% cos $I, 8 = -v’% sin $. The new Hamiltonian becomes 

H =v,Jsin’$+v,[l -cos(v%cos$+asinv,,B)] 

N v,~ - $J"+ AH, + C]AH~;~, + AH$,], (24 
k=O 

where AH0 = v,(-$cos2$ - 2C&(-)kJ2~(v!@ cos 2!~+] arises from the approximation 
of the canonical transformation by using Eq. (2.7) t o obtain the action-angle variables. Here 
J,'s are the Bessel functions of order n. With a canonical transformation to the true action- 
angle variables, AH, will be independent of 4 as shown in the appendix. The unperturbed 
synchrotron tune is amplitude dependent and is given approximately by CS % v,(l - i). 
This is a good approximation to the exact synchrotron tune, valid up to about J 5 2. > 

The perturbed Hamiltonian arising from the external rf phase modulation is given by, 

Af$Jil = (-)‘~.~J~2k+l(~)sin(v,e f (2!~ + l)~], f~ = 0, I,. 

Here the i components of the perturbing potential depict respectively the oscillating com- 
ponents of the sinusoidal rf phase modulation in phase or out of phase with the synchrotron 
oscillations. The external modulation terms, AH;;;,, become important when the modula- 
tion frequency is in resonance with a harmonic of the natural syncbrotron frequency of the 
system, i.e. v, x (2k + 1)~~. These resonances, created by the external harmonic phase 
modulation, are called parametric resonances [6]. 

4 



A. Tori at the first order synchrotron resonance 

When the modulation frequency is near one of the harmonics of the synchrotron fre- 
quency, the parametric resonance term in the Hamiltonian of Eq. (2.9) becomes important. 
Consider the resonance near the first harmonic. The coordinate system of the resonant 
precessing frame can be obtained using the generating function, 

&(?A j) = ($ - urn0 - ;) j, (2.10) 

where the coordinates are transformed according to & = $ - v,0 - ;, J = j. The corre- 
sponding new Hamiltonian becomes, 

,,,?I, + AH(j 12 0) , I . 

The time dependent component of the perturbing Hamiltonian, AH, is a superposition of 
terms oscillating at frequencies of 2v,,,, 4v,, . .7 given by 

“,ldZ 
AH= 2 co& + 244 + ~~cos(2~ + 2vd) - ; cos(4tj + 4&d?)] + ” , (2.12) 

where the second term arises from AH, discussed earlier. 
In the resonant precessing frame, the time independent part of the Hamiltonian con- 

tributes coherently to perturbing kicks arising from the stationary phase (or resonance) 
condition, $ = 0. Particle motion is therefore strongly perturbed by the external modula- 
tion when v, M v,. Particle trajectories in phase space can be described by tori of the time 
averaged Hamiltonian, 

(H)=(v,-I&$?- ) 

which is an invariant. Hereafter, we drop the tilde notation for simplicity. A particle 
trajectory will follow a torus of the Hamiltonian flow. Figure IV shows tori of Eq. (2.13) for 
various Hamiltonian values with v, = 0.935u, and a = 0.02. The Hamilton’s equations of 
motion are given by, 

j = -iv,o&Gsin $,, 

d=(ua-v,)-$-J-$$os$. 

The fixed points of the Hamiltonian, which characterize the structure of resonant islands, 
are given by j = 0, $ = 0. Using 9 = flcos$, with $ = 0 or ?r, to represent the phase 
coordinate of a fixed point, we obtain the equation for 9 as, 

When the modulation tune is below the bifurcation tune v,, there are three solutions to 
Eq. (2.15), i.e. two stable fixed points (SFP) and one unstable fixed point (UFP), given by 
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s.(x) = -~z’/‘cos g, ($ = K) 

g~(z)=-j$~ssin i-5 , (11,=0) 
( ) 

SC(z) = -&z’/‘sin i + 5 , 
( ) 

(ti = 0) 

(2.16) 

where z = 1 - 2, X,=1-& “s ’ ( = arctan dv, and I/,, called the bifurcation 
tune, is given by 

v, = Va 
1 
1 - $4e)s/s 1 , (2.17) 

or equivalently I, = &(4n)s/s. Here ga and gb are respectively the outer and the inner SFPs 
and gC is the UFP. The reason that go and ga are SFPs and gC is the UFP will be discussed 
in next section. In the limit that v,,, < v,, we have < + z, thus ga + -4zr/‘, gC -+ 4x1/s, 
and gb + 0. 

When the modulation frequency is approaching the bifurcation frequency from below, 
the UFP and the outer SFP move in and the inner SFP moves out. At the bifurcation 
frequency, z = z, and [ = 0, the UFP coincides with the inner SFP with gb = gC = (4a)r13. 

Bevond the bifurcation frequency, v, > L/, (z < z,), there is only one real solution to 
Eq. (2.15) given by, 

g.(x) = -(4ay [(\il~+l)li3-(/z@Y)r~s. (2.18) 

In particular, when z = 0 (urn = us), we have g. = -(SU)‘/~. 
The particle motion in the phase space can be described by tori of constant Hamiltonian 

around SFPs. The phase amplitudes of the SFPs and UFP are marked on Fig. IV. The 
solutions ga,g,+, and g, of Eq. (2.15) are plotted in Fig. IV as a function of the modulation 
frequency in ($)‘/s with v, _ < v,. The torus which passes through the UFP is called the 
separatrix, which separates two stable islands. The intercepts of the separatrix with the 
phase axis, gr and gs, are also shown in Figs. IV and IV. 

B. Island tune 

Let y,p, be the local coordinates about a fixed point of the Hamiltonian, i.e. 

y = JzJcos$ -g, p, = -vGsin$. (2.19) 

where g is a fixed point of the Hamiltonian. Making a local coordinate expansion, the 
Hamiltonian becomes, 

H = z 1 - c $ + !?&,;+ ._, 
( ) 

(2.20) 
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Therefore the fixed point g is a stable fixed point if (1 - g3/4a) 2 0. Because gz/4a 5 0 and 
0 5 gf/4a 5 1, g. and gb are SFPs. On the other hand, g,“/4a > 1, gC is the UFP. Since the 
equilibrium beam distribution, which satisfies the Vlasov equation, is in general a functional 
of the local Hamiltonian, Eq. (2.20) can also provide information on the local distortion of 
the bunch profile. 

The island tune for the small amplitude oscillations is given by 

(2.21) 

The island tune a$ound the inner SFP given by gb at v,,, << v, is approximately given by 
v;,rand x Iv*(l - 5) - v,l. This means that the solution of the equations of motion can 
be approximated by a linear combination of the homogeneous and inhomogeneous solutions 
[4]. When the modulation tune v, approaches v,, with (1 - gz/4o)“’ -+ 0, the island tune 
for small amplitude oscillation about the inner SFP approach;s 0 and the small amplitude 
island tune for the outer SFP at vm = v, is visra,,d = 3/v,(l - k) - v,J. In this region of the 
modulation frequency, the linear superposition principle would fail. When the modulation 
frequency becomes larger than the bifurcation frequency so that (1 - $)r/’ + I, we obtain 
again viria,,d = (v,(l - $) - I+,(, and the linear superposition principle is again applicable. 
The island tune for large amplitude motion about a SFP can be obtained by integrating the 
equation of motion along the corresponding torus of the Hamiltonian in Eq. (2.13). 

C. Separatrix of resonant islands 

The equation for the separatrix of the Hamiltonian in Eq.(2.15) is given by 

H(J,ti) 1 1 
us 

= 5x9,2 - gg”4 - 1 2%, (2.22) 

which intersects the phase axis at gr and gZ (see Figs. 2 and 3). Using the notation hi = 
.Yi/(4a)“3, we can express the intercepts of the separatrix as 

These intercepts, shown in Figs. IV and IV, are useful in determining the maximum phase 
amplitude of synchrotron motion with external phase modulation. 

D. The torus which passes through the origin 

For a beam with small bunch area, all particles can be approximately described as having 
initial phase space coordinates at the origin. The torus which passes through the origin is 
of interest in many problems related to phase modulation. The torus which passes through 
the origin, called the torus-O, satisfies the equation H(J,$) = 0. The intercepts I&, of the 
torus-0 with the phase axis are then given by 
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qk(& - 32rq$, + 32~) = 0, (2.23) 

wherez = 1-z. When I > s+, = 2’&,, or v, < v, = r/,(1 - 21/3zc), there are 
three solutions to Eq. (2.23) besides the solution & = 0. This means that there are two 
nonintersecting tori with the same zero Hamiltonian value. One of the tori is orbiting about 
the inner SFP, which is the torus-O, and the other one is orbiting about the outer SFP. 

At z = I,, two solutions of Eq. (2.23) b ecome degenerate. This means that the torus-0 
is also the separatrix of islands. When the separatrix passes through the origin, the phase 
axis intercept of Eq. (2.23) becomes, 

&(x,,) = -25’3(4a)“3. (2.24) 

At a higher modulation frequency with 1: < I,, there is only one real root to Eq.~ (2.23) 
besides &, = 0. The torus-0 is orbiting around the outer SFP. The intercept is then given 

by 

c&,(x) = -(16a)“3 { [(l-$+~]~‘~- [(~-&)“~-l]~‘~}. (2.25) 

III. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS 

The experimental procedure at the IUCF Cooler Ring started with a single bunch of 
about 3 x 10s protons with kinetic energy of 45 MeV. The cycle time was 10 s. The injected 
beam was electron-cooled for about 3 seconds. The full width at half maximum bunch length 
was about 5.4 m (or 60 ns) and its revolution period was 969 ns with an rf frequency of 
1.03148 MHz. The low frequency rf system of the IUCF Cooler Ring at h = 1 was used 
in this experiment. A 150 W solid state power amplifier was used to drive the rf cavity 
to obtain peak gap voltages of up to 500 V, sufficient to capture a beam with a typical 
momentum spread of &J - f3 x lo-’ from the injection cyclotron. - 

For the longitudina P rf phase shift experiments, the beam was kicked longitudinally by a 
phase shifter while the data acquisition system was started 2000 turns before the phase kick. 
The principle of the phase shifter used was reported earlier (41. The phase lock feedback loop 
was switched off in our experiment. The response time of the step phase shift was primarily 
limited by the inertia of the resonant cavity. At 1 MHz, the quality factor Q of the rf cavity 
was about 40, resulting in a half-power bandwidth of about 25 kHz. The corresponding 
response time for a step rf phase shift was about 40-50 revolutions. In this experiment, the 
synchrotron oscillation frequency was chosen to be about 540 Hz, or about 1910 revolutions 
(turns) in the accelerator. 

The subsequent beam-centroid displacements were measured with beam position mon- 
itors (BPM), which had an rms position resolution of about 0.1 mm. By averaging the 
position measurement without a phase kick, the stability of the horizontal closed orbit was 
measured to be less than 0.02 mm. The momentum deviation is related to the off momen- 
tum closed orbit, Ax,,, by Ax,, = D,$, where the horizontal dispersion function D, is 
about 3.9 m at the high dispersion BPM location. The position signals from the BPM was 
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passed through 3 kHz low pass filter before digitization to remove effects due to coherent 
betatron oscillations and high frequency noise. The BPM sum signal was used to measure 
the relative phase of the beam. It was passed through a 1.4 MHz low pass filter to eliminate 
the high harmonics of the bunch and reduce noise before it was compared with an rf signal 
in a phase detector. Details of our data acquisition system were reported earlier [4,7]. Two 
phase detectors were used during this experiment [8], a type II phase detector with a range of 
f90” and a type III phase detector with a range of 5180”. The type III phase detector had 
a phase error of about f10” near O”, but was adequate for measuring the synchrotron tunes. 
For more accurate measurements of phase amplitude response, the type II phase detector 
was used. To extend the range of our beam phase detection, a type IV phase detector with 
a range of f360” has been built for future experiments. 

A total of 16,384 points were recorded at 10 turn intervals. The top inset in Fig. IV 
shows the Poincare map in the longitudinal phase space, (4, $-). The FFT of the phase 
data is shown in the bottom inset. The resulting synchrotron tune as a function of the peak 
phase amplitude, shown in Fig. IV, is compared with the theoretical prediction shown as a 
solid line. 

A. Sinusoidal rf phase modulations 

The bunch, initially at pi = 0, & = 0, experiences the rf phase sinusoidal modulation 
with p = a sin v,0, where v, is the modulation tune and a < 1 is the modulation amplitude. 
The synchrotron phase satisfies the differential equation, 

2cu . 2o 
4 + -4 + v,’ sin 4 = -o”54, sin v,0 + -~,a cos r/,0. 

WI % 

IIere the dot corresponds to the derivative with respect to the 0 variable, and 4 is the particle 
phase angle relative to the modulated rf phase. Since the measurement time was typically 
within 150 ms after the phase kick or the start of the rf phase modulation, the effect of 
electron cooling was not important for these measurements. 

The upper left corner of Fig. IV shows an example of the measured 4 and 15 = $t$! 
YS the turn number at 10 turn intervals. The resulting response can be characterized by 
the response amplitude and the response period. The corresponding Poincare map is shown 
in the upper right corner of the figure. Transforming the Poincare map into the resonant 
precessing frame discussed in Eqs. (2.10.2.13), one obtains an invariant torus-0 shown in 
the lower part of Fig. IV. The winding motion around a smooth torus was oscillating at 
the frequencies of 2v, and 4u,,,, which results from the time dependent components of the 
Hamiltonian in Eq. (2.12). The time dependent winding motion can be suppressed slightly 
by using the elliptical function data analysis discussed in the appendix. 

It becomes clear that the measured response period corresponds to the period of a torus- 
0 about a SFP and the response amplitude is the intercept of the torus-0 with the phase 
axis. Figure IV shows the measured response period and response amplitude as a function 
of the rf modulation frequency along with the prediction of a single particle tracking cal- 
culation, which was found to agree well with the experimental data [4]. The response of 
particle trajectory will trace out a torus-O. At modulation frequencies below a characteristic 
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frequency, i.e. v, < v, = (1 - 21/3 5, vs, where z, is given in Eq. (2.17) and v, is the mod- ) 
ulation frequency for which the torus-0 becomes the separatrix (See Sec. IID), the particle 
trajectory orbits around the inner SFP. At modulation frequencies beyond v,, the torus will 
orbit about the outer SFP. The sharp rise in the observed spectrum at low frequencies and 
the slow decrease at high frequencies reflect a characteristic transition of particle trajectories 
orbiting around different SFPs in the nonlinear parametric resonant system. 

The maximum amplitude response corresponds to the rf modulation frequency where 
the torus-0 is also the separatrix, which occurs at z = z,, i.e. the frequency that 92 = 0 in 
Fig. IV. Thus the peak responses of both the amplitude and the period will occur at the 
same modulation frequency (see Sec. II D) given by, 

‘/m,p = v, (1 - 324 ( 

with the peak phase amplitude 141 = 25/3(4a)‘/3 g’ lven by Eq. (2.24). The peak response 
period is infinite when the torus-0 is also the separatrix. This feature is visible from the 
single particle tracking calculation shown as solid lines in Fig. IV. 

It is worth pointing out that the above analytic solution is derived from the perturbative 
expansion in terms of the action-angle variable which is limited to J 5 2. Therefore when 
the phase modulation amplitude is larger than 5”, particle motion cannot be described 
by the method discussed in Sec. II at the modulation frequency around v,,? of Eq. (3.1) 
because the maximum amplitude will exceed this limit. At higher modulation amplitudes, 
our numerical simulations show that particles can jump outside the rf bucket (the stable 
region in the longitudinal phase space) and then be recaptured in the same bucket (h = 1 
rf system). When the bunch is moving outside the rf bucket, beam decoherence also occurs. 
Some of our data exhibited this decoherence at large modulation amplitudes. 

B. Invariant tori derived from experimental data 

In one case, the beam was kicked with a phase shifter of about 42” and the rf system 
was then modulated with sinusiodal phase modulation with phase amplitude a = 1.45”. 
Figure IV shows the measured Poincarb map of the normalized longitudinal phase space 
at the top and the corresponding Poincarb surface of section in the resonant frame at the 
bottom. Note that the phase kick took about 40-50 revolutions to reach its intended phase 
kicked amplitude visible from Fig. IV. In this run, we used the type II phase detector, 
which did not have the dead area around 0”. However, this phase detector was limited at 
f90”. The trajectory of beam bunch in the presence of external rf phase modulation traced 
out a torus determined by the initial phase space coordinates of the bunch. Since the torus, 
which passed through a fixed set of initial phase space coordinates, depended on the rf phase 
modulation frequency, the measured tori would depend on the driven frequency. Figure IV 
displays a sample of invariant tori deduced from the experimental data. The solid lines are 
invariant tori of the Hamiltonian in Eq. (2.13), where the synchrotron frequency was fitted 
to be about 535+3 Kz. 
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C. Experimental observation at the third synchrotron harmonic 

From the result of Sec. II, we notice that the phase modulation at even multiples of syn- 
chrotron frequency does not give rise to coherent parametric resonances. Our experiemntal 
results verified indeed that there was no apparant response at the second harmonic of the 
synchrotron frequency. However, the theory indicates that when the modulation frequency 
equals to odd multiples of the synchrotron frequency, the parametric resonance becomes 
important. We have performed experimental measurements for v, Y 3v,. 

Instead of measuring the transient solutions by using our data acquisition system, we 
measured the steady state solution in this later experiment. The beam was injected and 
modulated by the rf phase shifter in an 11 s cycle time. The measurement was performed 7 
s after injection. We chose the synchrotron frequency to be about 261 Hz with an rf phase 
modulation amplitude a of 6”. The longitudinal beam distribution obtained from the signal 
of the BPM sum signal displayed on the oscilloscope triggered at the rf frequency is shown in 
Fig. IV. Since the damping e-folding time was about 0.34 set, sufficient time was allowed for 
particles to damp into parametric resonant islands of the Hamiltonian. Therefore, the beam 
was observed to split into beamlets as shown in Fig. IV. The outer beamlets will circulate 
about the center of the phase space at the frequency of ~~/3, which is the synchrotron 
frequency at the island amplitude. Detailed information about these attractors (islands) 
could be obtained by kicking a tightly bunched beamlet into these resonance islands for 
Poincare map tracking. Such a process becomes difficult when the stable region of the 
attractor is small. In such a situation, there is little information that can be gained from 
the digitized phase information of our phase detector. We measured instead the phase 
amplitude of attractors from the oscilloscope trace of a BPM sum signal, the results of 
which are tabulated in Table 1. 

The resonant Hamiltonian at the third synchrotron harmonic is given by [lo], 

which has 7 fixed points, of which 4 are stable and 3 are unstable. The phase amplitudes of 
these fixed points are 

s~rp = a + Jm, 
2 

surp = Jw - a 
2 (3.3) 

Table 1 compares the measured phase amplitude in the second column with the SFP calcu- 
lated from Eq. (3.3) at synchrotron frequencies 260, 261, and 262 Hz, where f8 = 261 Hz 
fits better the island amplitude. The “steady state” beam distribution after about 5 x lo5 
revolutions obtained from the numerical simulations with an initially uniform particle dis- 
tribution in the phase space is shown in Fig. IV. Tracking results confirm that SFPs of the 
third harmonic modulation become attractors in the weak dissipative system. Besides the 
three dominant resonant islands, the tracking results show that there are many more islands 
beyond the validity of our perturbative treatment discussed in Sec. II. Since those islands 
with large phase amplitudes are small, it will be difficult to observe them experimentally. 

11 



IV. CONCLUSION 

An experimental study of the rf phase modulation has been carried out. When the phase 
space motion is transformed into the resonant rotating frame, the invariant tori around 
fixed points of the Hamiltonian play an essential role in describing the dynamics of driven 
synchrotron motion. The complicated phase space motion is replaced by a simple predictable 
invariant of the Hamiltonian flow. The observed response amplitude and period can then 
be calculated analytically based on the time independent Hamiltonian. The remaining time 
dependent components of the Hamiltonian are found to create small winding motion around 
an invariant torus dominantly at the frequency 2~4,. The orbit perturbation arises mainly 
from the coherent perturbation of the parametric resonance. We also observed that there was 
no apparent response to the rf phase modulation at the second harmonic of the synchrotron 
frequency. At the third synchrotron harmonic, the measured phase amplitude of attractors 
agreed with the stable fixed points of the resonance Hamiltonian. Better understanding of 
synchrotron motion in circular accelerators will benefit the design and operation of future 
storage rings and colliders. These studies may also be useful in evaluating the feasibility of 
using the rf noise for a super-slow extraction in high energy colliders. 
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APPENDIX: THE ACTION-ANGLE OF THE UNPERTURBED HAMILTONIAN 

Let the Hamiltonian of Eq. (2.3) be divided into the unperturbed Hamiltonian HO and 
the perturbation Hamiltonian HI, 

HO = ~v,O’ + 2v, sin’ z, (Al) 

HI = u,d COS &,,e. (A21 

Here the unperturbed synchrotron phase space coordinates are relative to the fixed revolution 
frequency reference frame. However, the phase space coordinates (4,6) in Eq. (2.3) are 
referenced to the rf phase modulated coordinate system. When the amplitude of the rf 
phase modulation is small, the reference frame with respect to the revolution frequency 
and the reference frame with respect to the rf wave are nearly identical, and the method 
described here offers the advantage of extending the range of validity of the action-angle 
expansion. 

Expressing the synchrotron coordinates in terms of the parameters (Jc, w) 

4 sin- = Icsinw, 
6 

2 
- = kcosw, 
2 (A3) 

one obtains Ho = 2v.,kz. Thus the action of the unperturbed Hamiltonian becomes, 

J = & j”d” = $E(k) - (1 - k’)IC(k)], 

where the complete elliptical functions are given by [‘J], 

E(k) =J,“Jmdw, K(k)=if l-;zsinzw dw 

The synchrotron tune is obtained from the Hamilton’s equation of motion, i.e. 

aH, T 
*====s,,,, 

where we have used the identities, 

(A4) 

(A5) 

2kz dE(k) - = E(k) - K(k), 
dk2 

2k 2 dIc(k) F = &E(k) - Ii(k). 

The angle variable, $, which is conjugate to the action J, can be obtained by integrating 
h. (A5), 

11= ZB t *o. 

The task is to express the normalized off-momentum coordinate, 6, in the perturbed 
Hamiltonian HI, in Fourier harmonics of the conjugate angle +!I. Using Hamilton’s equation, 
4 = ~$6, we can relate the orbital angle 8, to the zu parameter of Eq. (A3) as 

v,(B - e,) = Jm; y = u - uo, 
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where 
1 1 

21= 
- k* sins ‘w 

dw, 210 = dw. 
1 1 - k* sins zu 

Here the Jacobian elliptical function is then defined as 

sin zu = sn(u(k), cos w = cn(v(k). 

Thus the expansion of the S in Fourier harmonics of $I is equivalent to the expansion of 
cn(u)k) in 4 = z. The task can be achieved by using the formula of Eq. (16.23.2) in 
reference [9], i.e. 

cd+) = kK(k) o 1 + qzn+l cosPn t l)A “-2 q”+“2 f-46) 

where 11 is the synchrotron phase with the 9 parameter given by, 

q=e -.W~+,(~)2+*4(~)3+992(~)4t.... 

with K’(k) = K(m). For synchrotron motion with small action J 5 2, we use the 
power series expansion, i.e. 

X(k)=;[l+(~)2k’+(~)*k’+(~)*k”t~+ 

E(k)=; I- (;)*y- (i&t- (k??)‘; _... ], 

to obtain, 

J=2k* 1+;k2+$k4+..$ 
( (A? 

k2 = ; (1 - &J - -& - . .) (A81 

Thus the off-momentum variable, 6, can be expressed as, 

312 
2k cn(ulk) = (25)‘/* cos II, + $&- cos 31/, + g cos S$ + . (A91 

Substituting the expansion of the elliptical cosine function into Eq. (A2), one obtains the 
Hamiltonian in terms of action-angle variable similar to that of Eq. (2.8). The leading order 
terms in these two expansions are identical. They begin to deviate from each other at the 
higher order harmonics. The difference is small. 

Using the elliptical functions for our data analysis, we can calculate the k value from the 
measured phase space coordinates, (4,6), by using the relation of Eq. (A3), 

k2 = T + sin2 $, (AlO) 
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The action can be obtained from Eq. (A4) 
obtained from the expansion, 

or Eq. (A7). The synchrotron phase, 4, can be 

6 -- -Ttan 
2sin $ - 2K 

For synchrotron motion with a relatively large k, a better approximation for the data analysis 
can be obtained using the polynomial approximation of Eqs. (17.3.34) and (17.3.36) of 
reference (91 to evaluate K(k),,?(k) and Q f unctions in order to obtain the action-angle, 
J and $. For each data point (4,S), Eq. (AlO) is used to calculate k. The action J 
is then obtained from Eq. (A4). Th e corresponding angle variable 4 is obtained from 
Eq. (All). The PoincarG map in the resonant frame is then given by phase space points in 
(V%COS($ - v,B), v%sin(G - ~~6’)) h s own in Fig. IV. for the same data set as that of 
Fig. IV. We found that the winding motion in the Poincak map observed in Fig. IV became 
less pronounced for large amplitude oscillations shown in Fig. IV. This indicates that the 
time independent Hamiltonian is suppressed in the data analysis by using the elliptical 
functions. The characteristic feature remains identical to the simpler approach discussed in 
Sec. II. 
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TABLES 

TABLE I. The phase amplitude of outer beamlet measured from the oscilloscope 

fa WI 260 261 262 

fm WI 4 P%l(data) ssrp bgl Pk. (3.311 
763.08 41. f 2. 36.9 39.7 42.3 
764.06 39. f 2. 35.9 38.8 41.4) 
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FIGURES 

FIG. 1. The measured phase oscillation following a phase kick. The damping coefficient, ob- 
tained from the e-folding time of the phase amplitude, is about 0.34 s. 

FIG. 2. The tori of the time averaged Hamiltonian at v,,, = 0.935v, and a = 0.02. The sepa- 
ratrix for two resonant islands is the crescent shaped curve with cusps reaching the unstable fixed 
point. 

FIG. 3. The fixed points in unit of (4a)‘@ are plotted as a function of the modulation frequency 
in (z)1’2, where z = 1 - 2 and I, = &(4~)*‘~ with a as the amplitude of the phase modulation. 
The SFPs are represented by g,/(4a)+ and gJ(4a)‘/s and the UFP is ge/(4a)1’3. The intercepts 
of the separatrix with the phase axis are shown as g1/(4a)“s and gJ(4a)“s. 

FIG. 4. The dependence of the measured synchrotron tune on the phase amplitude are plot- 
ted and compared with theoretical prediction. The Poincarb map in the synchrotron phase space 
following a phase kick is shown in the top inset. Here, the symbol 6 on the ordinate of the inset 
corresponds to y. The scale here is a factor of two larger than that of the earlier published data 
[4], which was in error by a calibration factor of 2. 

FIG. 5. The normalized off momentum coordinate 6 and the phase C#I is plotted as a function 
of revolutions. The data was taken in 10 turn intervals. The dead spot of the type III detector 
is clearly visible. The corresponding Poincare map is plotted on the upper right corner. The 
Poincar& surface of section (torus-O) in the resonant precessing frame is shown on the lower part 
of the figure. 

FIG. 6. The measured peak response amplitude and response period are plotted as a function 
of the driving frequency. Single particle tracking calculations are shown for comparison. 

FIG. 7. The Poincare map for the bunch experiencing sinusoidal rf phase modulation with 
amplitude 1.45” after an initial phase kick of 42” is shown for fm = 490 Hz in the upper part of the 
figure. The corresponding Poincare surface of section in the resonant frame is shown in the lower 
part of the figure for comparison. 

FIG. 8. The Poincark surface of section at the resonant frame for different modulation frequen- 
cies at a fixed initial phase kick amplitude is shown in comparison with theoretical prediction of 
the time independent Hamiltonian Eq. (2.13). 

FIG. 9. The effect of the rf phase modulation at the third harmonic of the synchrotron fre- 
quency. Note here that the synchrotron phase space in the resonant frame has three SFPs and 
three UFPs besides the SFP at the origin. 
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FIG. 10. The final beam profile distribution at about 5 x 10’ revolutions obtained from a 
numerical simulation of the synchrotron motion starting from a uniform phase space distribution 
of di E [--H, n] and & E [-2,2] with rf phase modulation frequency f,,, = 2.88f., the modulation 
amplitude a = 6” and the damping parameter a = 2.5 s-’ 

FIG. 11. The Poincar& map in the resonant precessing frame obtained by using the elliptical 
function data analysis is shown for an rf phase modulation amplitude 1.45” at f,,, = 490 Hz following 
a 42’ initial phase kick. The result should be compared with that of Fig. IV obtained from the 
Bessel function data analysis of Sec. II. 
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