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Abstract

This is a status report on the recent theoretical development in the region of small
zp in deeply inelastic scattering.

1 Introduction

I am viewing this talk as a summary of the recent theoretical developments in the region of
small zg. ] hope to convince you that we made considerable progress in our understanding
of the theoretical basis and the physical meaning of the new phenomena that we anticipate
in the region of small zp. In the talk I am going to cover the following topics:

1. Anomalous dimension of high twist operators and a new evolution equation for the
deep inelastic structure function.

2. Energy conservation in Gribov - Levin - Ryskin ( GLR) equation.

3. Large rapidity gaps in deeply inelastic scattering.

4. Nonperturbative { instanton ) contribution to deeply inelastic scattering.

5. Scale of the shadowing ( screening ) correction ( SC ).
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2 Anomalous dimension of high twist operators and
a new evolution equation.

Let me start by recalling the main steps of our theoretical approach to deeply inelastic
scattering:

1. We introduce the moments of the deep inelastic structure function,namely

M(w,r) = '[)1 z} ldzp zpG(zp,Q?) = /om e“Vdy[zpG(zp, Q%) , (1)

where w = N — 1, y =In(1/z5) and r = In(Q?/Q3).
2. Each moment is given as Wilson Operator Product Expansion in the form:

1
ST
where C; is the coefficient function and (piO(‘) |p) is the matrix element of the twist 7

operator (see ref.[1] for details).

3. 1t is well known from the renormalization group approach that a coefficient function
C; behaves as

Cilw,7)(p|0V|p) ... (2)

M(w,r) = Ca(w,r)(p|0OD|p) + %04(w,r)(plo“’|p> +

i o« enr (3)
where v; is the anomalous dimension of the twist ¢ operator 1.

4. Now we neglected all high twist contributions ( all terms in eq. (1) except the first one
) assuming that they are small at large value of Q2 due to the factor 32-"1'-—’ in front.

5. The anomalous dimension of the leading twist contribution can be calculated using
GLAP evolution equation 2] and it is equal to

N.a,

7(w) = at w—0 (4)

TWw

6. The specific contribution to the value of the anomalous dimension of high twist operator
that originates from the exchange of many ‘leading twist ladders’ in t- channel was found
in the GLR paper (3] . It gives

Tan(w) = n‘yl(%). (5)

7. Recently Bartels [4] and Levin,Ryskin and Shuvaev [5] have performed the next step
in understanding the high twist contribution to eq. (1) and both groups calculated the

1 For simplicity we consider here the case of fixed a,.
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be able to help us for twist 2n > 4 operator. However we are able to learn more about our
system of partons in solving this problem, in particular we can answer the question: what
could be the scenario for the system of bosons ( gluons ) interacting with the attractive
forces besides a collapse.

2. to find the generalization of nonlinear GLR evolution equation taking into account
both the arbitrary initial condition and the correct value of the anomalous dimension for
high twist operator ( vz, # ny(¥) = "’—:l that has been used in GLR equation ). Here
I would like to emphasize that GLR equation was proved within additional hypothesis
that gluons have no correlations except the fact that they are distributed in the hadron
disc of the radius R. The correct value of the anomalous dimension for twist four operator
means that the correlation radius between two gluons increases at zg — 0. and gluons
create a more compact system than the hadron. In ref. [8] you can find the evolution
equation that describes the fact that the correlation radius increases and this growth will
be stopped due to shadowing corrections.

Solutions:

1. The value of the anomalous dimension of the high twist operators has been found
in ref. [9] by E.Laenen,E.Levin,M. Ryskin and A.Shuvaev. The main idea was to reduce
the complicated problem of the gluon - gluon interaction to interaction of colourless gluon
- “ ladders” ( Pomerons) in the t-channel. It was shown in refs. [4] [5] that this idea
works for the case of the anomalous dimension of the twist four operator. The fact that
we can consider the rescattering of n - pomerons to find the anomalous dimension v,,
really means that we are dealing with a quantum mechanical problem: the calculation of
the energy of the ground state for n - particle system where the interactions are attractive
and given by a four particle contact term ( A ). We can calculate the value of A in QCD.
It turns out that

A= 44a,é. (7

This observation considerably simplifies the problem and will enable us to reduce it
to solving the Nonlinear Schrodinger Equation for n-Pomerons in t - channel. It is very
important to mention that the effective theory is two dimendsional one or in other words
the Schrodinger equation can be written for n - particles moving only in one dimension.
It is well known ( see refs. [10] for details) that this problem can be solved exactly.

The answer for the energy of the ground state translated into the value of the anoma-
lous dimension of the twist 2n operator is the following:

&,

o w"2{1 + -63:(1;2 -1}, (8)




anomalous dimension of the twist four gluon operator, using completely different tech-
niques. It turns out that the value of the anomalous dimension is equal to

n = Mm(3)1+ 8] =

e+ 8 (6

where §2 ~ (575)? = 107% is very small.

The most important outcome of this calculation is the fact that we cannot trust the
GLAP evolution equation in the region of small w (or large in(1/zp) ). Indeed for
w < wer the twist four contribution in eq. (1) becomes larger than the leading twist one.
The value of we, can be found from the equation

N.a, 4N_.a,
N(Wer) = 2== = =1 + mlwe) = -1 + ——[1+6%.

Of course we could arrive at the same conclusion using the GLR approach but now we
proved this statement considering the whole set of Feynman diagrams instead of the two
ladder contribution that the GLR paper took into account [3].

I would like to discuss first several lessons that we have learned from this calculation:

1. Eq. (6) confirms the main hypothesis of ref. [3] which is that the small 5 behaviour
of the deep inelastic structure function is determined by the exchange of many Pomerons
in t-channel and their interactions.

2. The smallness of § mentioned above reflects the smallness of pomeron - pomeron
interaction which is nonplanar and proportional to N, T

3. Strictly speaking the pomeron-pomeron interaction was not taken into account in
the GLR - equation.However the good news is the fact that the correction to the GLR
equation is so small that it gives a noticeable contribution only at ultra high energies.

Bad news:

At first sight the main theoretical conclusion from this exercise looks rather pessimistic
because it was shown that QCD cannot cure the old problem of the reggeon approach
that was pointed out in ref. [6], namely, the fact that pomeron cannot be the correct
first approximation to high energy interaction of virtual photon with a hadron at least in
perturbative QCD. In other words the pomeron - pomeron interactions turns out to be
attractive and the system of many pomerons cannot be stable.

Problems:

The above comments clearly show that we urgently need to solve two problems:

1. to find the value of anomalous dimension of higher than four twist operators. I
have to admit that I do not see any reason why a specific coherence effects in QCD will



where § = (N? — 1)~1. We can trust the answer only when £ < 1. So first we need
to solve the second problem to clear up what value of n really is important for the deep
inelastic structure function using the above result for the anomalous diomension and only
after the solution we have to go back to the calculation of the value of the anomalous
dimension. The point is that our all perturbation series are asymptotic ones, so I know
only one practical way how we can operate with such series, namely to we find (if possible
) the analytical function with the same seria and treat this function as a solution to our
problem. Expanding this function we are able to study what value of typical n works in
the series and to consider the question whether we can trust our answer. If the value of
the typical n will be of the order of 1 we can claim that we have solved our problem, if
not we have to go back and try to find a more general expression for the value of the
anomalous dimension of high twist operators that is valid for any large n.

Another conclusion that we can get from eq. (8) is the fact that the widespread
opinion that the number of colours N, is sufficiently good numerical parameter to use
in the perturbation series is not justified at least for the value of anomalous dimension.
Indeed from eq. (8) we see that at n of the order of N, the ¥ corrections become
important.

2. E.Laenen and E.Levin [11] have gotten the generalization of GLR evolution equa-
tion, taking into account both the arbitrary initial condition and the exact value of the
anomalous dimension ( see eq. (8)). Since the contribution of the high twist operators
become essential in the region of small z5 we have to consider the whole series (2) or
better to say the sum of all twist contribution to the deep inelastic structure function:

1 1 n in
3BG(Z‘B,Q2) = zBG(l)(;BB,Qﬁ) + a:1328(;(2) v + "'@(-n—_l)mBG( )($B,Q2) e (9)
To get the equation we need to introduce the generating function

g(zB,szﬂ) = Zenng(n) ’ (10)

n=1

where g() = z3G(")(z5,Q?). Comparing eq. (10) with eq. (9) we see that the deep
inelastic function is equal to

3BG(7’67 Qz) = Qz g(zB’Qz’ﬂ =—In Qz) . (11)

The new evolution equation looks as follows:

3*g(zp.Q? &,8% _ _
ali(:a?n’cgz = &G + 3 (G — Im) — 7€ Ve (g ~9),  (12)
zp



where g, = g'ﬂ, and + is the vertex for one “ ladder” to two “ladders” splitting that has

been calculated by Mueller and Qiu (see ref. [7] for details):

9N3
2 [

= — 13
To solve the above equation we need to put some initial and boundary conditions which
are the price we must pay for the relative simplicity of the equation. The bounda.ry
condition looks very simple,namely :

n = fized; mzi = fized; InQ? — oo g(z5,Q%7) — €"grra(z5,Q%), (14)
B

where grz4 is the solution of usual GLAP evolution equation.

However the initial condition is much more complicated problem since we need to
know the fuction g(zp = zgo,@?,7), while experimentally we are only able to measure
the structure function. So we need more detail information about the structure of a
hadron in the region zp ~ 1. To start, we suggest the initial condition in the form:

9(zB0, @*7) = Ze""

n=1

[9224(2B0, @%)]" = 1 — ezp(—e"grra(50,Q%)) . (15)

In favour of the above formula we can say that it is simple, has very transparent physical
meaning, namely,it reflects the assumption that there is no correlation between gluons
with 5 ~ 1 except the fact that they are distributed in the hadron disc of the radius R.
In the case of the nucleus such an approach can be proved and corresponds to so called
Glauber Theory of shadowing correction. In the case of the deeply inelastic scattering the
formula of this type was discussed by A.Mueller in ref. [12] and we use formulas from his
paper to establish the exact relationship with grz4 in eq. (15).

We are only in the begining of finding of the solution to eq. (12). At the moment
we can claim that we found how eq. (12) transforms to nonlinear GLR equation if we
neglect the second term in r.h.s. of eq. (12) and assume the eikonal initial condition of eq.
(15). We also solve eq. (12) with eq. (15) in the oversimplified case only remaining the
second term in r. h. s. of eq.(12). The result looks very encouraging since the effective n
that works in the series of eq.(9) turns out to be of the order of 1. However we certainly
have to consider this result as very preliminary since we need to understand the general
solution of eq. (12) better.



3 Energy conservation in GLR equation.

Now let me descend from heaven to earth and discuss more practical questions in low zg
physics. They illustrate in a direct way our difficulties related to the restricted leading
log approximation of perturbative QCD that we used to estimate the behaviour of the
structure function especially in the region of low zp. I would like to discuss here only one
of such questions, nanely the energy conservation in the nonlinear equation.

The simplest form of GLR equation looks as follows:

BEBG(:BB, Qz)
81ln f;@ln Q?

= &28G(28,Q") ~ o *[esG(en, Q) (16)
The first term describes the low zg behaviour of the GLAP evolution equation while the
second one takes into account the SC orignated from parton - parton annihilation in the

parton cascade. It is easy to show that even if we neglect the nonlinear contribution the
equation does not conserve energy. Indeed energy conservation means that

/oldzgzg{q(za.cz’) + 2(25,@") + G(e5,Q")} = [ 'desS(es, Q) = 1. (17)

Integrating explicitly eq. (16) one can see that eq. (17) is violated. However in
the linear case we know how to cure this problem: we need only to go out of so called
double log approximation of perturbative QCD and use the correct kernel of the GLAP
equation [2]. For energy conservation in the GLAP equation is very important to know
the behaviour of the kernel not only at small value of zp but also at zp ~ 1. So the fact
that we have a problem with the energy conservation in the nonlinear equation does not
look surprising since we can derive this equation only in In :l,f approximation and cannot
quarantee the kernel in the second term of the equation in the region of moderate zp.
However for practical use this very important problem seriously diminishes the predictive
power of the equation for accessible region of small z5.

Here I would like to suggest some generalization of eq. (16) that gives the enegy
conservation. The main idea of the generalization is based on a beautiful property of
the “fan” diagrams that were summed in the nonlinear term of the equation ( see ref.
(3] for details),namely they do not contribute to any even integral moment of the deep
inelastic structure function. The proof of this statement is very simple 2 and can be done
as straightforward generalization of so called Gribov Reggeon Calculus [13] for the case of
deep inelastic structure function and related to correct calculation of the real part of the

1t will be published soon elsewhere.



Compton amplitude. Let me remind you that the deep inelastic structure function is the
imaginary part of the same amplitude. It means that the correct form of the nonlinear
term cannot contribute to the second monents of the deep inelastic structure function
which is the integral ( 17 ).

Finally the new form of the GLR equation reads as follows:

w_aMa(‘l‘lezQ’_) = &,M(w,ln Q%) — a /Ecwz( — )M (', @ )M(w—u',Q%) . (18)

One can see that the second term does not contribute to the second moment ( w = 1).
The equation can be rewritten in In é = y representation,namely

333G(33, Qz)
dln ialn Q?

= a,z5G(28,Q") - [25G(25,@")]* . (19)

cos’(

Q2 2 8ln 1 L)
Now the second term looks more complicated but in practice the high derivatives
with respect to ln;}; are very small so it should be easy to solve the new equation.

Unfortunately I have no numerical solution by now.

4 Large Rapidity Gap ( LRG) in deeply inelastic
scattering.

In this section I would like to describe briefly the result that I got for the survival prob-
ability of the LRG in the deep inelastic scattering [14]. I am viewing on deeply inelastic
scattering as a good laboratory to study the structure of the parton cascade to develop
Bjorken’s ideas [15] on the LRG physics. Unfortunately we have no theory to describe
hadron - hadron interaction with guaranteed theoretical accuracy and we have to use a
model approach to discuss so called “soft” hadron physics. That is the reason why I prefer
to discuss the deeply inelastic processes for better understanding and generalization of
Bjorken’s formula since we can use QCD as the theory of the parton cascade and we can
arrive at a definite conclusion with respect to the survival probability of the LRG.

To understand the problems that we face discussing the LRG physics let me consider
the production of a Higgs particle via WW fusion in y*(Q?, zg)p collision as was suggested
by Bjorken [15]. The cross section of this reaction can be described by a simple factorized
formula due to AGK cutting rules [16] and / or the factorization theorem [17].

do

_ - %  _ 20
fly — Ay, ym, pae) p—— (20)



/¢ (Q21 8, qis» a31) ¢ (qig,zz) + d%q1ed*ga; - Ohara (qf, g, 931325) (+ta—qa+a+H),

where
1

=ln—,; Ay =y — 12, (21)
zp

while ¥, (y3) is rapidity of produced quark. In eq. (20) we used the so called transverse
momentum factorization approach [18]. Furthermore oyurq is the cross section for the hard
subprocess:

&1 (21, q1e) + g2 (22, g2e) — d1(z1, p1e) + qa(z2,p2e) + H , (22)
whereas the function ¢ is closely related to the deep inelastic structure function namely

2

a(2F(2,q) = [ aula®) (g% )dg" (23)

We do not need to know the exact formula for the hard cross section in eq. (20), for us it
is only important to know that the rapidity gap between the two produced quarks with
transverse momenta p;; =~ py is large enough.

At first sight this mechanism of Higgs production has an excellent signature for the
experimental detection. The event topology is very remarkable: two collimated (p;; ~
—pat) jets with rapidities y; and y; and no hadrons between them except the Higgs boson
and the secondary particles from its decay. However, the formula of eq. (20) can not
give the value of the cross section for the event with such a striking signature. Indeed
each parton with £ > z, can interact with a parton with z < z,. and such an interaction
generally speaking produces a lot of partons (hadrons) with rapidities between y; and
y1. It should be stressed that in the case of deeply inelastic scattering such an additional
interaction can contribute only because of the shadowing correction in this process that I
have discussed in the previous sections of the talk.

Thus, to calculate the cross section of Higgs production with a rapidity gap we need
to multiply the value calculated by eq. (20) by factor < S? > which gives the survival
probability of the rapidity gap. < S? > is equal 1 in the deeply inelastic process if we
neglect the contribution of the shadowing correction.

Bjorken suggested a formula [15] that allows one to calculate < S? > . However
this formula was based on the eikonal approach which oversimplifies the structure of
the parton interactions, reducing the complicated parton cascade with a rich variety of
different parton interactions to an interaction between the fastest parton and the slowest
one in the Breit frame for the deep inelastic scattering. It should be stressed that the
eikonal approach is in obvious contradiction with the structure of QCD cascade that has
been described by eq. (16).



The correct formula for the survival probability < S? > taking into account the
structure of the parton cascade in the deep inelastic scattering looks as follows (see ref.

[14] for details):

1
<St>= =
SrLa(y — 1,9

‘p(y bt’q) -‘i 1h, ¥ l‘lz
gy e [ b TG e e ) (39

where

T(b) = / d2b, F'(b, — b)F(b.) .

F(b,) is introduced as
‘I’(bn ZB, Qz) = F(b,)qS(zB, Qz) ’ (25)
where in LLA of QCD we can claim that

[@e@borp) = 6(@?) . (26)

G(Q}) is the electromagnetic form factor of a hadron. @rr4 is the solution of the linear
evolution equation,namely eq.(16) without the nonlinear term. This contribution appears
in eq. (24) since in the expression for the inclusive cross section all shadowing corrections
between partons with ¥ > y; and with y < y; cancel due to AGK - cutting rules.
Formula (24) looks quite different from Bjorken’s formula for < S? > and the next step

will be make the numerical estimate to clarify in what kinematical region this difference
will be important.

5 Instantons in deep inelastic scattering.

J.Balitsky and V. Braun [19] found that the instanton contribution could be sizable in
the deep inelastic structure function. This contribution is a pure nonperturbative effect
which can be large only in the region of small zp. The main observation is that the quark
- antiquark pair of the transverse size Q—l,- can interact with the instanton inside the
proton. The size of the instanton fluctuation is equal to

1
2 _ )
Qz(gig_’l)z . (eiz)z

P (27)
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Practically p? ~ 2Gev~? in the kinematical region of HERA so this size is not too smalil.
The instanton contribution to

]l’L . ec:(”;’)s(:ﬁ') . (28)

i 13 27
Fpreterton(zp,Q%) = C/d:c'z'G(z',pz) ) WT[a'(pz)

The value of C is of the order of 10~* — 10~% and function S is equal

S=1—£and€—21+z

& —. (29)

The biggest contribution comes from the region of zg/z’ ~ 0.25 and Q? ~ 400GeV? and
for this Q?%:

innuanton

F;

The cross section for instanton production is pretty small but the signature of the event is
quite clear: a lot of particles ( multiplicity of the order of 2"') within the rapidity interval
of the order of 1 and with transverse momentum of the order of 1GeV are produced
together with the current jet. I firmly believe that this quite interesting possibility to
study the properties of nonperturbative QCD but we need time to check the calculation
and understand better the main characteristics of these striking events.

~ (2 - 5)%.

6 Scale of Shadowing Correction.

One of the problems that we face in our estimates of the valus of SC is the fact that we do
not know the value of radius R in the equations (13) and (16).The physical meaning of R
is that it is the correlation radius between two gluons in a hadron, the value of which we
cannot calculate in the framework of perturbative QCD. The spectrum of the estimates
covers the values from the radius of hadron (R ~ 1F'm) to the radius of the constituent
quark (Rg ~ 0.2 —0.3Fm). For the first value we get small SC in the HERA kinematical
region while for the second we expect sufficiently big SC.

The right strategy to calculate R is to use some methods of nonperturbative
QCD such as QCD sum rules or lattice calculation. I am very happy that very
recently the estimates from QCD sum rules have appeared in the market, namely
V.Braun,P.Gornicki,L.Mankiewicz and A.Shafer [20] applied the sum rules of QCD to
calculate the correlation radius between gluons. The result is very encouraging, they got
R = 0.3 - 0.35 Fm. So this radius is smaller than the radius of proton. Of course, it is

11



only the first estimate,we need time to understand how reliable this estimates,but I think
it is the right direction approach to the selfconsistent theoretical description of the deep
inelastic scattering process.

7 Conclusions.

I hope I have convinced you that an important step has been made toward the understand-
ing of the main properties of QCD at low z5. I had no time to discuss such problems as
diffraction dissociation processes, AGK cutting rules and the factorization theorem that
should be reconsidered in the light of the new development in the theory at low zp con-
sidered in the first section of the talk. I hope that you have gotten a taste of the difficult
and interesting problems that we are fighting with in this field of high energy physics.
Certainly all of us believe that the coming experimental data from HERA will shed the
light on the discussed problems as well as stimulate the appearence of new ones.
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