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ABSTRACT 

It has been accepted belief for some tiine that gravity induces a minimal tail 

f’(k) - k4 in the power spectrum ss k + 0 for distributions with no initial power 
on large scales. In a recent numerical experiment with initial power confined to a 
restricted range in k, Melott and Shandarin (1990) found a k --+ 0 tail that at early 
stages of evolution behaves as k4 and grows with time as a4(t), where a(t) is the 
cosmological expansion factor, and at, late times depends on scale as k3 and grows 
with time as a*(t). They assert that both the early a4 time dependence and the k3 
scale dependence at late times are anomalous. 

I compute several contributions to the power spectrum of higher~order than those 
included in earlier work, and I apply the results to the particular case of initial power 
restricted to a finite range of k. As expected, in the perturbative regime P(k) - a4k4 
from the first correction to linear perturbation theory is the dominant term as k + 0. 
Numerical show that higher order contributions go as k4 also. However, perturbation 
theory alone can not tell whether the P N a2k3 result is “nonperturbative” or a 
numerical artifact. 
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1. Introduction 

For some time, it has been part of the conventional wisdom that nonlinear terms induce 

a minimal power spectrum P(k) - k4 as k + 0 for any inhomogeneous density distribu- 
tion (Zel’dovich 1965; Peebles 1974). Peebles (1980, 5 28.4) shows that such a term can be 
understood quite naturally when fluctuations created by moving mass from one position to 
anot,her in an ‘initially smooth universe. Naively, such a shift would induce Fourier ampli- 
tudes i(k) - kzg, where zo is the typical interparticle spacing, but since from momentum 
conservation the center of mass does riot move, this leading term cancels, and the next 
leading term indeed gives i - (kzo)‘, or P(k) - k4. 

Recently, in a high precision numerical experiment with initial power confined to a 
restricted range kl c k < kz, Melott and Shandarin (1990, MS) indeed found at early times 
a tail P(k) N k4 to the power spectrum as k + 0, growing with time as a4(t). At later 
times their results changed over to P(k) - k3, evolving in time as a2(t). MS assert that 
both the a4 behavior at early times and the k3 dependence at late times are anomalous. 
To investigate the possible effect of higher order terms, in the following, I calculate what is 
expected in such an experiment in perturbation- theory, including contributions from higher 
orders than have been considered previously. In Section 2, I quote some general perturbatioq 
theory results and derive expressions for higherorder‘contiibutions to P(k). In Section 3, I 
apply these to the initial conditions taken by MS. Section 4 contains a final discussion. The 
MS early-time-result, P - a4k4, is precisely the behavior expected from the first correction 
to linear perturbation theory. As k -+ 0, all higher order contributions are O(k4) also. The 
P - a2k3 result thus must be either “nonperturbative” or a numerical artifact. 

2. P(k) in Perturbation Theory 

In this section I review the machinery necessary to compute P(k) to arbitrary order in 
perturbation theory. It is convenient to perform the calculation in k-space. The basic field 
is the Fourier amolitude 

i(k) = J d3x6(z)e-ik’2, (1) 
where 6(z) = [p(z) - p]lp is the fractional density contrast. The power spectrum is found 
from the second moment, 

(~(W~(W) = kW3Mh + kdl P(k), (2) 

where k = lki[= IkZI. 

The amplitude 8[k) evolves under a-set of nonlinear eq~uations describing gravitational 
instability (cf. Peebles 1980, 5 9). One approach to~such a nonlinear problem, expected to 
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be valid when fluctuations are small, is a systematic solution order by order in perturbation 
theory in the initial amplitude. To linear order, one finds that fluctuations grow by an overall 
scale factor, as i(k,t) = A(t)&(k), w h ere I& is the amplitude at some early initial time to, 
80(k) = j(k,to), andA obeys 

dZA 2hdA 
,,+----4?rGpA=Q 

(Peebles 1980). At late times the growing mode dominates. For the standard, (matter- 
dominated, zero curvature, critical density) cosmological model, this is A(t) N t213 N o(t). 
Thus, to lowest order, p(k) = A2(t)Po(k). 

Interactions between modes in a nonlinear theory give rise to terms of all orders, 

l?(k) = lw(k) + cm(k) + cw(k) + . .) (4) 

where 8(n) N U(b$A”). F or g ravitational instability in an expanding universe, i(‘)(k) is a 
convolution, 

We) = J d3k, -... (2n)3 ~i(2~)3aD(k-Cki)]G~)(kl,...,C,)6(kl)’..6(k,) t5i 

(Goroff et al. 1986, GGRW), where in the integrals on the right-hand side i = z(l) = 
A(l)&(k). The first few of the integral kernels G, are G1 m 1, 

Gf)(&l k2) = 5 + :IEl. 
7 2 klk2 

(Fry 1984; GGRW), and 

G3(h, h k3) = 
1 

3k,2k,zkt1k1 + k212 
Ll . k2 Ikl + k*12 + ;11; kl (ICI + kz) 
21 I x [7k32(h + k2). (h + k2 + k3) + k3. (kl + k2) jkl + kz + k31’] 

+ kl. (kz + J$lh + k2 + kd* 
-X3k~%$;lkz + ks(* { 

1 z”2. Ic3 lb + k312 + $32 ka. (k2 + kd I 
+ 4 . (4 + k2 + W 

18k:k;k; 
b2. k3 lb + k312 + 5kf.b (k2 + ha)] , (7) 

(GGRW); this expression for G3 is to be symmetrized over permutations of (123) to obtain 

Gt). GGRW also present an explicit expression for G4 that I do not reproduce here and a 
recursion relation: that provideis the general G,. A useful general property demonstrated by 
GGRW is that Gn 0: kz, where k, is the sum of the arguments of Gn, k, = C ki. This 
property, a consequence of momentum cqnservation, ensures that (I?(“)‘) = 9 for all n. 
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We expect the coefficients in these expressions to sum to the 7!! = 105 terms from ( a^8 ). In 

P26, 15 of these involve Gp)(k’, -k’), and in P44, 9 involve Gt)(k’, -k’, k”, -k”), both of 
which vanish. Finally, at 0(6,$O) 

P55 = 225 P(k) [J d3k’ d3k” (8) 
w-G5 (k,k’,-k’,k”,-k”)P(k’)P(k’;) * 1 

+ ‘O* J d3k; d3k; d3k; d3k’ 
“3 Gk)(k;, k;, k - k; - k;, k;, -k’3) ---- 

~2~)3 (2s)3 (2,)3 (2s) 

x Gt)(k;,k;,k - k; - k;,k;,-k;)P(k;)P(k;)P(k - k; - k;)P(k;)P(k;) 

+ 120 J d3k; d3k; d3k; d3k’ -- ---+G;(k;, k;, k:, k:, k - Ck:) 
(2n)3 (2K)3 (2X)3 (2a) 

x P(k;) P(k;) P(k;) P(k;) P(k - Ck:). (21) 

P55 contains the 3 x 5 x 7 x 9 = 945 terms expected from (C?’ ). Following the results 
of equations (13), (17), (20), and (21), we can see that the general expression for Pnn will 

contain a term 

Pnn = n! J d3k’ 
n-1 G,2(15’1, k;, . . , k - Ck;) 

PI3 

x P(k;)P(k;) ... P(k;$P(k - Ck:). (22) 

In the specific case considered in § 3, terms of this form provide the dominant contribution 
at large k. 

The “minimal” spectrum appears as k -+ 0. Symmetrizing equation (7) for G3 over its 
arguments and averaging over angles, for small k we obtain 

3&k, k’, -k’) + -%rc’ 
630 k’* 

Thus. 

&(k) + -&k2P11(k) J d3k’Pll(lc’), 
(2%)3 k’* 

(23) 

(24) 

and for PO(k) < Qb4) as k .+ 0, Pu < O(k6), insignificant at- small k. From equation (6), 
ask-0 

~--_ 

G2(k’, k - k’) 
k* 

4 z(3 - 1ocos* I!?), (25) 

so, averaging over angles, to lowest order 

9 4 
P22 * ggk J d3k’ P*(k’) 

i (2n)3F. (26) 

This is the origin of the standard result. From the above we can see that those higher order 
terms that do not vanish as k + 0 are all expected to depend as k4 also. As demonstrated 
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by GGRW, it is a property of the G, that Gt) N (C ki)*. Thus, we expect that Pmn - 
G,G,, + k4 as k ---L 0, to all orders. 

It is reasonable however to ask how quickly this asymptotic behavior might be reached. 
That is addressed in a particular case in the next section. 

3. Application to Top-hat Initial Spectrum 

Following the numerical work of Melott and Shandarin (1990, MS), I investigate the 
behavior of the higher order perturbation theory terms presented in 5 2 for a top-hat initial 
power spectrum, 

PO(k) = 
i 

CO kl < k < k2, 

0 otherwise, 
(27) 

where Co is a constant. MS choose k2 = 2kl; I take kl = 1, kz = 2. Perturbati6n theory 
results depend only on the combination &A*(t); I set Co = 1. A measure of the amount of 
evolution or the degree of nonlinearity is the rms density fluctuation for the linearly evolved 
power spectrum, A* = (6(z)*), or 

J 
3 

A* = 
7A* 

f-&A*(t)Pg(k) = 6a2. 

The integrals for Pmn are evaluated numerically, by a Romber method for low orders and 
(8) by Monte Carlo for higher dimensions. The kernels G, and Gf) are given by equations (6) 

and (7) [symmetrized], while Gt) and Gt) are evaluated numerically, using the GGRW 
recursion relation. 

Figure 1 shows separate contributions from Pll, P13, P22, P15, P24, P33, P35, P44, and 
P55,plotted for A* = IO-*. The terms PII, P13 (eq. [Ill), P15 (eq. [14]), and the first term 
of P33 (eq. [17]), ranked by decreasing amplitude, are nonvanishing only for 1 < k < 2. Note 
that I?13 and 95 are negative. The leading term for k < 1 is P22 (eq. [13]), followed by 
P24 (eq. [IS]) and P33 (eq. (171, second term) at sixth order, and then P44~(eq. [ZO], second 
term) P35 (eq-[19], second term only), and P44 (eq. [20], first term) at eighth order, and 

finally %a i%&%k*-. on~);-aC-ttnCh,~er.-~4-and- P&hange*ign. ..The,leading 
terms for k > 2 are P22 for 2 < k < 4, P33 for 4 < k < 6, P44 for 6 < k < 8, and P55 for 
8 < k < 10. For the tophat spectrum of equation (27), equation (26) gives 

9A4k4 
Pz* --+ - - 

81a2A4k4 
396r2 - 4802 (29) 

as theiexpected behavior as k + 0. This is plotted as the dot-dash line in Figure 1. 

A complete calculation at eighth and tenth order would require Go through GCJ, beyond 
the scope of this paper, or at least the strength of the author (computing Pig. requires 
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from small-scale events occurring at late times, nonlinear contributions may turn out be 
important. Observations suggest that there appears to be more power on moderately large 
scales (a few hundred h-’ Mpc) than in standard cold dark matter model, yet the microwave 
background remains remarkably smooth. One way to reconcile these two observations is if 
power decreases as k + 0 more rapidly than the scale-invariant n = 1. 

Parts of this work were performed while the author enjoyed the hospitality of the Aspen 
Center for Physics. Research supported in part by the DOE and by NASA (grant NAGW- 
2381) at Fermilab. 
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Figure Captions 

Fig. l.-Perturbation terms Pmn(k) vs. Ic at A2 = 10w2. See text for individual identitica- 
tions. Dashed lines indicate Pm,, < 0. The dot-dash line is the expected asymptotic k4 
behavior from equation (26). 

Fig. 2.-Scaled P,,,$ (eq. 130)) vs scaled Ic, = k/2n for n = 2, 3, 4, and 5 (top to bottom 
for small k). 

Fig. 3.--P(k) from the sum of perturbation terms vs. Ic for A2 = 1/5122, 1/1282. 1/322, 
l/S2, 1/22, and 22 (bottom to top). 
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Figure 2 
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Figure 3 


